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Abstract

Background: Microarray technology is widely used in cancer diagnosis. Successfully identifying gene biomarkers
will significantly help to classify different cancer types and improve the prediction accuracy. The regularization
approach is one of the effective methods for gene selection in microarray data, which generally contain a large
number of genes and have a small number of samples. In recent years, various approaches have been developed
for gene selection of microarray data. Generally, they are divided into three categories: filter, wrapper and
embedded methods. Regularization methods are an important embedded technique and perform both continuous
shrinkage and automatic gene selection simultaneously. Recently, there is growing interest in applying the
regularization techniques in gene selection. The popular regularization technique is Lasso (L1), and many L1 type
regularization terms have been proposed in the recent years. Theoretically, the Lq type regularization with the
lower value of q would lead to better solutions with more sparsity. Moreover, the L1/2 regularization can be taken
as a representative of Lq (0 < q < 1) regularizations and has been demonstrated many attractive properties.

Results: In this work, we investigate a sparse logistic regression with the L1/2 penalty for gene selection in cancer
classification problems, and propose a coordinate descent algorithm with a new univariate half thresholding operator
to solve the L1/2 penalized logistic regression. Experimental results on artificial and microarray data demonstrate the
effectiveness of our proposed approach compared with other regularization methods. Especially, for 4 publicly available
gene expression datasets, the L1/2 regularization method achieved its success using only about 2 to 14 predictors
(genes), compared to about 6 to 38 genes for ordinary L1 and elastic net regularization approaches.

Conclusions: From our evaluations, it is clear that the sparse logistic regression with the L1/2 penalty achieves higher
classification accuracy than those of ordinary L1 and elastic net regularization approaches, while fewer but informative
genes are selected. This is an important consideration for screening and diagnostic applications, where the goal is
often to develop an accurate test using as few features as possible in order to control cost. Therefore, the sparse
logistic regression with the L1/2 penalty is effective technique for gene selection in real classification problems.
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Background
With the development of DNA microarray technology, the
biology researchers can analyze the expression levels of
thousands of genes simultaneously. Many studies have
demonstrated that microarray data are useful for classifica-
tion of many cancers. However, from the biological per-
spective, only a small subset of genes is strongly indicative
of a targeted disease, and most genes are irrelevant to can-
cer classification. The irrelevant genes may introduce noise
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and decrease classification accuracy. Moreover, from the
machine learning perspective, too many genes may lead to
overfitting and can negatively influence the classification
performance. Due to the significance of these problems, ef-
fective gene selection methods are desirable to help to clas-
sify different cancer types and improve prediction accuracy.
In recent years, various approaches have been developed

for gene selection of microarray data. Generally, they are di-
vided into three categories: filter, wrapper and embedded
methods. Filter methods evaluate a gene based on discrim-
inative power without considering its correlations with other
genes [1-4]. The drawback of filter methods is that it exam-
ines each gene independently, ignoring the possibility that
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groups of genes may have a combined effect which is not ne-
cessarily reflected by the individual performance of genes in
the group. This is a common issue with statistical methods
such as T-test, which examine each gene in isolation.
Wrapper methods utilize a particular learning method

as feature evaluation measurement to select the gene
subsets in terms of the estimated classification errors
and build the final classifier. Wrapper approaches can
obtain a small subset of relevant genes and can signifi-
cantly improve classification accuracy [5,6]. For example,
Guyon et al. [7] proposed a gene selection approach util-
izing support vector machines (SVM) based on recursive
feature elimination. However, the wrapper methods
greatly require extensive computational time.
The third group of gene selection procedures is embed-

ded methods, which perform the variable selection as
part of the statistical learning procedure. They are much
more efficient computationally than wrapper methods
with similar performance. Embedded methods have
drawn much attention recently in the literature. The em-
bedded methods are less computationally expensive and
less prone to over fitting than the wrapper methods [8].
Regularization methods are an important embedded tech-

nique and perform both continuous shrinkage and auto-
matic gene selection simultaneously. Recently, there is
growing interest in applying the regularization techniques in
the logistic regression models. Logistic regression is a power-
ful discriminative method and has a direct probabilistic inter-
pretation which can obtain probabilities of classification
apart from the class label information. In order to extract
key features in classification problems, a series of regularized
logistic regression methods have been proposed. For ex-
ample, Shevade and Keerthi [9] proposed the sparse logistic
regression based on the Lasso regularization [10] and Gauss-
Seidel methods. Glmnet is the general approach for the L1
type regularized (including Lasso and elastic net) linear
model using a coordinate descent algorithm [11,12]. Similar
to sparse logistic regression with the L1 regularization
method, Gavin C. C. and Nicola L. C. [13] investigated
sparse logistic regression with Bayesian regularization. In-
spired by the aforementioned methods, we investigate the
sparse logistic regression model with a L1/2 penalty, in par-
ticular for gene selection in cancer classification. The L1/2
penalty can be taken as a representative of Lq (0 < q < 1)
penalty and has demonstrated many attractive properties,
such as unbiasedness, sparsity and oracle properties [14].
In this paper, we develop a coordinate descent algorithm

to the L1/2 regularization in the sparse logistic regression
framework. The approach is applicable to biological data
with high dimensions and low sample sizes. Empirical
comparisons with sparse logistic regressions with the L1
penalty and the elastic net penalty demonstrate the effect-
iveness of the proposed L1/2 penalized logistic regression
for gene selection in cancer classification problems.
Methods
Sparse logistic regression with the L1/2 penalty
In this paper, we focus on a general binary classification
problem. Suppose we have n samples, D = {(X1, y1), (X2,
y2),…, (Xn, yn)}, where Xi = (xi1, xi2 ,…, xip) is ith input
pattern with dimensionality p and yi is a corresponding
variable that takes a value of 0 or 1; yi = 0 indicates the
ith sample in Class 1 and yi = 1 indicates the ith sample
is in Class 2. The vector Xi contains p features (for all
p genes) for the ith sample and xij denotes the value of
gene j for the ith sample. Define a classifier f(x) = ex /(1 +
ex) such that for any input x with class label y, f(x) pre-
dicts y correctly. The logistic regression is expressed as:

P Y i ¼ 1jXið Þ ¼ f X′
iβ

� � ¼ exp X′
iβ

� �
1þ exp X′

iβ
� � ð1Þ

Where β = (β0, β1,…, βp) are the coefficients to be esti-
mated, note that β0 is the intercept. The log-likelihood is:

l βjDð Þ ¼ −∑
n

i¼1

yi log f X′
iβ

� �� �þ 1−yið Þ log 1−f X′
iβ

� �� �� �
ð2Þ

We can obtain β by minimizing the log-likelihood (2).
In high dimensional application with p >> n, directly
solving the logistic model (2) is ill-posed and may lead
to overfitting. Therefore, the regularization approaches
are applied to address the overfitting problem. When
adding a regularization term to (2), the sparse logistic re-
gression can be modelled as:

β ¼ argmin l βjDð Þ þ λ∑
p

j¼1

PðβjÞ
8<
:

9=
; ð3Þ

Where λ > 0 is a tuning parameter and P(B) is a
regularization term. The popular regularization tech-
nique is Lasso (L1) [10], which has the regularization
term P(β) = ∑ |β|. Many L1 type regularization terms
have been proposed in the recent years, such as SCAD
[15], elastic net [16], and MC+ [17].
Theoretically, the Lq type regularization P(β) = ∑ |β|q

with the lower value of q would lead to better solutions
with more sparsity. However when q is very close to
zero, difficulties with convergence arise. Therefore, Xu
et al. [14] further explored the properties of Lq (0 <q <1)
regularization and revealed the extreme importance and
special role of the L1/2 regularization. They proposed
that when 1/2< q <1, the L1/2 regularization can yield
most sparse results and its difficulty with convergence is
not very high compared with that of the L1
regularization, while when 0< q <1/2, the performance
of Lq penalties makes no significant difference and solv-
ing the L1/2 regularization is much simpler than solving
the L0 regularization. Hence, the L1/2 regularization can
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be taken as a representative of Lq (0 < q < 1)
regularizations. In this paper, we apply the L1/2 penalty
to the logistic regression model. The sparse logistic re-
gression model based on the L1/2 penalty has the form:

β1=2 ¼ argmin l βjDð Þ þ λ∑
p

j¼1

jβjj1=2
8<
:

9=
; ð4Þ

The L1/2 regularization has been demonstrated many at-
tractive properties, such as unbiasedness, sparsity and oracle
properties. The theoretical and experimental analyses show
that the L1/2 regularization is a competitive approach. Our
work in this paper also reveals the effectiveness of the L1/2
regularization to solve the nonlinear logistic regression prob-
lems with a small number of predictive features (genes).

A coordinate descent algorithm for the L1/2 penalized
logistic regression
The coordinate descent algorithm [11,12] is a “one-at-a-
time” approach, and its basic procedure can be described as
follows: for each coefficients, to partially optimize the target
function with respect to βj(j= 1, 2,…, p) with the remaining
elements of β fixed at their most recently updated values.
Before introducing the coordinate descent algorithm

for the nonlinear logistic regularization, we first consider
a linear regularization case. Suppose the dataset D has n
samples, D = {(X1, y1), (X2, y2),…, (Xn, yn)}, where Xi =
(xi1, xi2,…, xip) is ith input variables with dimensionality
p and yi is the corresponding response variable. The

variables are standardized: ∑
n

i¼1

x2ij ¼ 1 and ∑
n

i¼1

yi ¼ 0:

Therefore, The linear regression with the regularization
term can be expressed as:

R βð Þ ¼ argmin
1
n∑

n

i¼1

yi � X′β
� �2 þ λ∑

p

j¼1

P βj

� 	8<
:

9=
; ð5Þ

Where P(B) is the regularization term. The coordinate
descent algorithm solves βj and other βk ≠ j (k ≠ j repre-
sent the parameters remained after jth element is re-
moved) are fixed. The equation (5) can be rewritten as:

R βð Þ ¼ argmin

(
1
n

yi−∑
k≠j

xikβk þ xijβj

0
@

1
A

2

þλ∑
k≠j

P βk
� �þ λP βj

� 	)

ð6Þ
The first order derivative at βj can be estimated as:

∂R
∂βj

¼∑
n

i¼1

−xij yi−∑
k≠j

xikβk � xijβj

0
@

1
A

0
@

1
Aþ λP βj

� 	0
¼ 0 ð7Þ
Define ~y jð Þ
i ¼∑

k≠j

xikβk as the partial residual for fitting βj

and ωj ¼∑
n

i¼1

xij yi−~y
jð Þ
i

� 	
, the univariate soft thresholding

operator of the coordinate descent algorithm [11] for the
L1 regularization (Lasso) can be defined as:

βj ¼ S ωj; λ
� � ¼ ωj þ λ ifωj < −λ

ωj−λ ifωj > λ
0 if ωj



 

 < λ

8<
: ð8Þ

Similarly, for the L0 regularization, the thresholding oper-
ator of the coordinate descent algorithm can be defined as:

βj ¼ Hard ωj; λ
� � ¼ ωI ωj



 

 > λ
� � ð9Þ

where I is the indicator function. This formula is equivalent
to the hard thresholding operator [17].
According to equations (8) and (9), we can know that the

different penalties are associated with different thresholding
operators. Therefore, Xu et al. [18] proposed a half
thresholding operator to solve the L1/2 regularization for
linear regression model. It is an iterative algorithm and can
be seen as multivariate half thresholding approach. In this
paper, we propose the univariate half thresholding operator
of the coordinate descent algorithm for the L1/2
regularization. Based on equation (7), the gradient of the
L1/2 regularization at βj can be expressed as:

∂R
∂βj

¼ βj−ωj þ λ
sign βj

� 	
4

ffiffiffiffiffiffiffi
βj




 


r ¼ 0 ð10Þ

Firstly, we consider the βj > 0 statement, and let,

ffiffiffiffiffiffiffi
βj




 


r
¼ μ,

βj=μ
2. When βj > 0, the equation (10) can be redefined as:

μ3−ωjμþ λ

4
¼ 0 ð11Þ

There are three cases of ωj < 0, 0 < ωj <
3
4 λ

2
3;

and ωj >
3
4 λ

2
3 respectively.

(i) If ωj < 0, the three roots of equation (11) can be
expressed as follows:

μ1 ¼ −2 r sin φ
3 ; μ2 ¼ r sin φ

3 þ i
ffiffiffi
3

p
r cos φ

3 and

μ3 ¼ r sin φ
3 −i

ffiffiffiffiffi
3

p
r cos φ

3 ;

where r ¼
ffiffiffiffiffiffi
ωjj j
3

q
, φ ¼ arccos λ

8r3
� �

. When r > 0, none of
the roots satisfices μ1 > 0. Thus, there is no solution to
equation (11) when ωj < 0.

(ii) If 0 < ωj <
3
4 λ

2
3, the three roots of equation (11) are:

μ1 ¼ −2 r cos φ
3 ; μ2 ¼ r cos φ

3 þ i
ffiffiffi
3

p
r sin φ

3 and

μ3 ¼ r cos φ
3 −i

ffiffiffi
3

p
r sin φ

3.
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There is still no solution to equation (11) in this case.

(iii) If ωj >
3
4 λ

2
3 , the three roots of equation (11) are

given by:

⋅μ1 ¼ −2 r cos
φ

3
; ⋅μ2 ¼ 2r cos

π−φ
3

� 	
and μ3

¼ 2r cos
π þ φ

3

� 	
:

In this case, the μ2 is a unique solution of equation (10).

Thus, the equation (11) has non-zero roots only when ωj

> 3
4 λ

2
3. The unique solution of equation (10) is as follow:

βj ¼ μ2ð Þ2 ¼ 2
3
ωj



 

 1 þ cos
2 π � φ ωj

� �� �
3

� 
� 


On the other hand, in the βj < 0 statement, we de-

noted

ffiffiffiffiffiffiffi
βj




 


r
¼ μ and βj = − μ2. The equation (10) can be

transformed into the equation:

μ3−ωjμ−
λ

4
¼ 0 ð12Þ

The equation (12) also has a unique solution

when ωj < − 3
4 λ

2
3:

μ2 ¼ 2r cos π−φ
3

� �
and βj ¼ − μ2ð Þ2 ¼ − 2

3 ωj



 

�
1 þ cos

2 π�φ ωjð Þð Þ
3

� 
� 

.

In conclusion, the univariate half thresholding oper-
ator can be expressed as:

βj ¼ Half ωj; λ
� �

¼ 2
3
ωj 1þ cos

2 π � φλ ωj
� �� �

3

� 
� 

if ωj



 

 > 3
4

λð Þ
2
3

0 otherwise

8><
>:

ð13Þ
where φλ(ω) satisfies:

cos φλ ωð Þð Þ ¼ λ

8
ωj j
3

� 
−3
2

The coordinate descent algorithm for the L1/2
regularization makes repeated use of the univariate half
thresholding operator. The details of the algorithm will
be described later. This coordinate descent algorithm for
the regularization can be extended to the sparse logistic
regression model. Based on the objective function (3) of
the sparse logistic regression, one-term Taylor series ex-
pansion for l(B) has the form of

L β; λð Þ≈ 1
2n∑

n

i¼1

Zi−Xiβð Þ0Wi Zi−Xiβð Þ þ∑
p

j¼1

P βj

� 	
ð14Þ

Where Zi ¼ Xi
~β þ Y i−f Xi

~βð Þ
f Xi

~βð Þ 1−f Xi
~βð Þð Þ is an estima-

ted response, Wi ¼ f Xi
~β

� 	
1−f Xi

~β
� 	� 	

is a weight

and f Xi
~β

� 	
¼ exp Xi

~β
� 	

= 1þ exp Xi
~β

� 	� 	
is a evalu-

ated value at current parameters. Redefine the partial re-

sidual for fitting current ~βj as ~Z jð Þ
i ¼∑

n

i¼1

Wi ~Zi−∑
k≠j

xik~βk

� 


and
Xn
i¼1

xij Zi−~Z
jð Þ
i

� 	
, we can directly apply the coordinate

descent algorithm with the L1/2 penalty for sparse logistic re-
gression and the details are given follows:
Algorithm: The coordinate descent algorithm for sparse logistic with the L1/2 penalty



Table 1 The average errors (%) for the test data sets
obtained by the sparse logistic regressions with the
L1/2, LEN and L1 penalties in 30 runs

Sample size L1/2 LEN L1

ρ ¼ 0:1;
σ ¼ 0:2

n=50 28.2 31.8 31.2

n=80 10.7 23.1 22.2

n=100 8.1 16.9 15.7
ρ ¼ 0:1;
σ ¼ 0:6

n=50 31.4 33.1 33.3

n=80 18.4 27.1 26.6

n=100 14.2 22.4 21.3
ρ ¼ 0:4;
σ ¼ 0:2

n=50 30.1 32.6 33.0

n=80 11.1 23.3 22.9

n=100 9.1 19.0 16.4
ρ ¼ 0:4;
σ ¼ 0:6

n=50 35.1 35.5 36.3

n=80 20.5 27.2 26.9

n=100 15.1 22.7 22.9

Table 2 The average number of variables selected by the
sparse logistic regressions with the L1/2, LEN and L1
penalties in 30 runs

Sample size L1/2 LEN L1

ρ ¼ 0:1;
σ ¼ 0:2

n=50 7.5 31.6 27.1

n=80 8.8 43.1 40.3

n=100 8.9 49.7 45.7
ρ ¼ 0:1;
σ ¼ 0:6

n=50 8.3 33.6 29.2

n=80 10.6 45.7 41.9

n=100 10.8 54.4 50.1
ρ ¼ 0:4;
σ ¼ 0:2

n=50 7.8 33.5 28.3

n=80 8.9 44.5 41.8

n=100 9.0 51.2 46.6
ρ ¼ 0:4;
σ ¼ 0:6

n=50 8.6 41.3 29.9

n=80 10.7 45.9 44.1

n=100 11.2 56.4 53.4
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The coordinate descent algorithm for the L1/2 penal-
ized logistic regression works well in the sparsity prob-
lems, because the procedure does not need to change
many irrelevant parameters and recalculate partial resid-
uals for each update step.

Results
Analyses of simulated data
In this section, we evaluate the performance of the
sparse logistic regression with the L1/2 penalty in simula-
tion study. We generate high-dimensional and low sam-
ple size data which contain many irrelevant features.
Two methods are compared with our proposed ap-
proach: Sparse logistic regression with the Elastic Net
penalty (LEN) and Sparse logistic regression with the
Lasso penalty (L1).
We generated the vectors γi0,γi1,…,γip (i = 1,…,n) in-

dependently from the standard normal distribution
and the predictor vector(i=1,…,n) is generated by
xij ¼ γ ij

ffiffiffiffiffiffiffiffi
1−ρ

p þ γ i0
ffiffiffi
ρ

p
(j=1,…, p), where ρ is the correl-

ation coefficient of the predictor vectors [19]. The simu-
lated data set generated from the logistic model:

log
Y i

1−Y i

� 

¼ β0 þ∑

p

j¼1

xijβj þ σ⋅ε ð15Þ

Where ε is the independent random error generated
from N(0,1) and σ is the parameter which controls the
signal to noise. In every simulation, the dimension p of the
predictor vector is 1000, and the first five true coefficients
are nonzero: β1 = 1, β2 = 1, β3 = -1, β4 = -1, β5 = 1,
and βj = 0(6 ≤ j ≤ 1000).
The estimation of the optimal tuning parameter λ in

the sparse logistic regression models can be done in
many ways and is often done by k-fold cross-validation
(CV). Note that the choice of k will depend on the size
of the training set. In our experiments, we use 10-fold
cross-validation (k=10). The elastic net method has two
tuning parameters, we need to cross-validate on a two-
dimensional surface [16].
We consider the cases with the training sample size

n = 50, 80, 100, the correlation coefficient ρ =0.1, 0.4
and the noise control parameter σ =0.2, 0.6 respectively.
Each classifier was evaluated on a test data set including
100 samples. The experiments were repeated 30 times
and we report the average test errors in Table 1. As
shown in Table 1, when the sample size n increases, the
prediction performances of all the three methods are im-
proved. For example when ρ =0.1, and σ =0.2, the aver-
age test errors of the L1/2 method are 28.2%, 10.7% and
8.1% with the sample sizes n=50, 80, and 100 respect-
ively. When the correlation parameter ρ and the noise
parameter σ increase, the prediction performances of all
the three methods are decreased. For example, when
ρ =0.4 and n =100, the average test errors from the L1/2
method increased from 9.1% to 15.1%, in which σ in-
creased from 0.2 to 0.6. When σ =0.6 and n =80, the aver-
age test error from the L1/2 method increase from 18.4%
to 20.5%, in which ρ increased from 0.1 to 0.4. Moreover,
in our simulation, the influence of the noise may be larger
than that of the variable correlation for the prediction per-
formance of all the three methods. On the other hand, at
the same parameter setting case, the prediction perform-
ance of the L1/2 method is consistent and better than the
results of the LEN and L1 methods. For example, when
ρ =0.1, σ =0.2 and n=100, the predictive error of the L1/2
method is 8.1% much better than 16.9% and 15.7% got by
the LEN and L1 methods respectively.



Table 3 The frequencies of the relevant variables
obtained by the sparse logistic regressions with the
L1/2, LEN and L1 penalties in 30 runs

Sample size Method

ρ ¼ 0:1;
σ ¼ 0:2

n=50 L1/2 21 22 19 15 15

LEN 24 25 21 17 17

L1 22 24 20 15 17

n=80 L1/2 30 30 30 30 30

LEN 30 29 30 30 30

L1 30 29 30 30 30

n=100 L1/2 30 30 30 30 30

LEN 30 30 30 30 30

L1 30 30 30 30 30
ρ ¼ 0:1;
σ ¼ 0:6

n=50 L1/2 17 17 17 14 14

LEN 18 19 17 16 14

L1 18 18 18 16 15

n=80 L1/2 30 29 30 28 28

LEN 30 28 30 28 27

L1 30 28 30 27 26

n=100 L1/2 30 30 30 30 30

LEN 30 30 30 30 30

L1 30 30 30 28 30
ρ ¼ 0:4;
σ ¼ 0:2

n=50 L1/2 19 18 18 16 15

LEN 21 22 21 17 17

L1 18 21 19 16 17

n=80 L1/2 30 30 30 30 30

LEN 30 28 30 29 29

L1 30 27 30 29 29

n=100 L1/2 30 30 30 30 30

LEN 30 30 30 30 30

L1 30 30 30 29 29
ρ ¼ 0:4;
σ ¼ 0:6

n=50 L1/2 14 16 15 12 12

LEN 17 17 17 12 14

L1 17 15 14 9 13

n=80 L1/2 29 25 26 28 29

LEN 28 24 24 27 24

L1 27 24 24 23 23

n=100 L1/2 30 29 30 30 30

LEN 30 27 28 28 30

L1 29 27 27 28 30

Liang et al. BMC Bioinformatics 2013, 14:198 Page 6 of 12
http://www.biomedcentral.com/1471-2105/14/198
Table 2 shows the average number of the variables
selected in 30 runs for each method. Since the simu-
lation datasets have x1-x5 relevant features, the ideal-
ized average number of variables selected by each
method is 5. In Table 2, the results obtained by the
L1/2 penalized method are obviously closed to 5 and
3–10 times smaller than those of the LEN and L1
penalties at the same parameter setting. For example,
when ρ =0.1, σ =0.2 and n=100, the average numbers
from the LEN and L1 methods are 49.7 and 45.7 re-
spectively, and the result of L1/2 method is 8.9.
Moreover, when the sample size n, the correlation
parameter ρ, and the noise parameter σ increase,
the average numbers from all the three methods
increase, but the values of the LEN and L1 methods
increase faster than those of the L1/2 method. This
means that the L1/2 penalized method consistently
outperforms than other two methods in term of
variable selection.
To further evaluate the performance of the L1/2 pe-

nalized method, we report the frequency with which
each relevant variable was selected among 30 runs for
each method in Table 3. When the sample size is
small (n=50), the L1/2 penalty selects the relevant vari-
ables slightly less frequently than the other two
methods and all the three methods select true nonzero
coefficients with difficulties, especially when ρ and σ
are relatively large. For example, when ρ =0.4, σ =0.6,
n=50, and for β5, the selected frequencies of the L1/2,
LEN and L1 methods are 12, 14 and 13 respectively in
30 runs. As n increases, all the three methods tend to
select the true nonzero coefficients more accurately
and the L1/2 penalty method performs slightly better,
in terms of variable frequencies, than the other two
methods under the different parameter settings of ρ
and σ. To sum up, Tables 1, 2 and 3 clearly show that
the L1/2 method is winner among the competitors in
terms of both prediction accuracy and variable selec-
tion in the different variable correlation and noise
situations.

Analyses on microarray data
In this section, we compare our proposed L1/2 penalized
method with the LEN and L1 methods on 4 publicly
available gene expression datasets: Leukaemia, Prostate,
Colon and DLBCL. A brief description of these datasets
is given below and summarized in Table 4.

Leukaemia dataset
The original dataset was provided by Golub et al. [7],
and contains the expression profiles of 7,129 genes for
47 patients of acute lymphoblastic leukaemia (ALL) and
25 patients of acute myeloid leukaemia (AML). For data
preprocessing, we followed the protocol detailed in the
supplementary information to Dudoit et al. [1]. After
thresholding, filtering, applying a logarithmic transform-
ation and standardizing each expression profile to zero
mean and unit variance, a dataset comprising 3,571
genes remained.



Table 4 Four publicly available gene expression datasets
used in the experiments

Dataset No. of genes No. of samples classes

Leukaemia 3571 72 ALL/AML

Prostate 5966 102 Normal/Tumor

Colon 2000 62 Normal/Tumor

DLBCL 6285 77 DLBCL/FL

Table 6 The classification performances of different
methods for 4 gene expression datasets

Dataset Method Cross-validation
error

Test error No. of selected
genes

Leukaemia L1/2 2/50 1/22 2

LEN 1/50 1/22 9

L1 1/50 1/22 6

Prostate L1/2 5/71 3/31 5

LEN 5/71 4/31 34

L1 5/71 3/31 25

Colon L1/2 4/42 3/20 5

LEN 5/42 4/20 13

L1 5/42 4/20 7

DLBCL L1/2 3/60 2/17 14

LEN 2/60 1/17 38

L1 3/60 3/17 23
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Prostate dataset
This original dataset contains the expression profiles of
12,600 genes for 50 normal tissues and 52 prostate
tumor tissues. For data preprocessing, we adopt the pre-
treatment method [20] to obtain a dataset with 102 sam-
ples. And each sample contains 5966 genes.

Colon dataset
The colon microarray data set in Alon et al. [21] has 2000
genes per sample and 62 samples which consist of 22 nor-
mal tissues and 40 cancer tissues. The Colon dataset are
available at http://microarray.princeton.edu/oncology.

DLBCL dataset
This dataset contains 77 microarray gene expression
profiles of the 2 most prevalent adult lymphoid malig-
nancies: 58 samples of diffuse large B-cell lymphomas
(DLBCL) and 19 observations of follicular lymphoma
(FL). Each sample contains 7,129 gene expression values.
More information on these data can be found in Shipp
MA et al. [22]. For data preprocessing, we followed the
protocol detailed in the supplementary information to
Dudoit et al. [1], and a dataset comprising 6,285 genes
remained.
We evaluate the prediction accuracy of the three pe-

nalized logistic regression models using random parti-
tion. This means that we divide the datasets at random
such that approximate 70-80% of the datasets becomes
training samples and the other 20-30% test samples.
More information on these data is given in Table 5. For
selecting the tuning parameter λ, we employ the ten-fold
cross validation scheme using the training set. We repeat
this procedure 30 times and the averaged misclassifica-
tion errors were reported in Table 6. Here the denomi-
nators of the ten-fold cross validation errors and the test
errors describe the sample size of training and test
Table 5 The detail information of 4 microarray datasets
used in the experiments
Dataset No.of Training(class1/class2) No.of Testing(class1/class2)

Leukaemia 50(32 ALL/18 AML) 22 (15 ALL/7 AML)

Prostate 71(35 ALL/36 AML) 31(15 ALL/16 AML)

Colon 42(14 Normal/28 Tumor) 20(8 Normal/12 Tumor)

DLBCL 60(45 DLBCL/15FL) 17(13 DLBCL/4 FL)
datasets respectively. The fractions of the ten-fold cross
validation errors and the test errors and the number of
gene selected are the approximated integers of the corre-
sponding average number at 30 runs. As shown in
Table 6, for Leukaemia dataset, the classifier with the L1/2
penalty gives the average ten-fold cross validation error
of 2/50 and the average test error of 1/22 with about 2
genes selected. The classifiers with LEN and L1 methods
give the average ten-fold cross validation errors of 1/50
and the average test errors of 1/22 with about 9 and 6
genes selected respectively. This means that all three
methods can be successfully applied to high-dimensional
classification problems and classify the Leukaemia
dataset with same accuracies. Note that, the L1/2 method
achieved its success using only about 2 predictors
(genes), compared to about 9 and 6 for the LEN and L1
methods. For Prostate and Colon datasets, it can be seen
the L1/2 method achieves the best classification perfor-
mances with the highest accuracy rates using much
fewer genes compared with those of the LEN and L1
methods. For DLBCL dataset, the L1/2 logistic regression
achieves better classification performance than that of
the L1 method and worse than that of the LEN method.
However, as well as other three datasets, the L1/2
method achieved its success using much less predictors
(about 14 genes), compared to about 38 and 23 for the
LEN and L1 methods. This is an important consideration
for screening and diagnostic applications, where the goal
is often to develop an accurate test using as few features
as possible in order to control cost.
Figures 1, 2 and 3 display the solution paths and the

gene selection results of the three methods for the Pros-
tate dataset in one sample run. Here the x-axis displays
the number of running steps, the y-axis in the left sub-

http://microarray.princeton.edu/oncology


Figure 1 The results of the sparse logistic regression with the L1/2 penalty on Prostate dataset. The solution paths and the gene selection
results of the sparse logistic L1/2 penalty methods for the Prostate dataset in one sample run.
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figure is the coefficients measured gene importance and
the y-axis in the right sub-figure is the misclassification
errors based on the ten-fold cross validation. The opti-
mal results of three methods are shown as vertical dot-
ted lines. Figure 1 indicates that the number of nonzero
coefficients (selected genes) of the optimal results
obtained by the L1/2 method is 5. In contrast, Figures 2
and 3 indicate that the numbers of nonzero coefficients
(selected genes) of optimal results obtained by the LEN
and L1 methods are 37 and 26 respectively. Generally
speaking, the penalized logistic regression methods can
be successfully applied to the cancer classification prob-
lems with high dimensional and low samples microarray
data, and our proposed L1/2 method achieves better per-
formance especially in gene selection.

Brief biological analyses of the selected genes
The summaries of the 10 top-ranked informative genes
found by the three sparse logistic regression methods for
4 gene expression datasets are shown in Tables 7, 8, 9
and 10 respectively. The genes with star(*) are the most
frequently selected genes to construct the classifiers
according to the last column of Table 6, and the com-
mon genes obtained by each classifier are emphasized
with bold. The biologically experimental results proved
Figure 2 The results of the sparse logistic regression with the LEN pen
results of the sparse logistic elastic net penalty methods for the Prostate da
some genes included in the frequently selected gene sets
that produce high classification accuracy rate are mostly
and functionally related to carcinogenesis or tumor
histogenesis. For example, in Table 7, the most fre-
quently selected gene set of each sparse logistic method
for leukemia classification, including cystatin C (CST3)
and myeloperoxidase (MPO) genes, that achieve high
classification accuracy by the L1/2 method, are experi-
mentally proved to be correlated to leukemia of ALL or
AML. The cystatin C gene is located at the extracellular
region of the cell and has role in invasiveness of human
glioblastoma cells. Decrease of cystatin C in the CSF
might contribute to the process of metastasis and spread
of the cancer cells in the leptomeningeal tissues [23].
The myeloperoxidase gene is taking role in anti-
apoptosis process where cancer cells kill themselves [24].
For the colon dataset (Table 9), the most frequently se-
lected gene set of each sparse logistic method includes
genes such as guanylate cyclase activator 2B (GUCA2B),
myosin, light chain 6, alkali, smooth muscle and non-
muscle (MYL6) and Human desmin (DES) genes. These
genes are the top 3 significant informative genes ranked
by our proposed L1/2 method and also selected by Ben-
Dor et al. [25], Yang and Song [26] and Li et al. [27]. On
the top of these genes lists is guanylate cyclase activator
alty on Prostate dataset. The solution paths and the gene selection
taset in one sample run.



Figure 3 The results of the sparse logistic regression with the L1 penalty on Prostate dataset. The solution paths and the gene selection
results of the sparse logistic L1 penalty methods for the Prostate dataset in one sample run.
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2B (GUCA2B) gene. Notterman et al. [28] showed that a
reduction of uroguanylin might be an indication of colon
tumors, and Shailubhai et al. [29] reported that treat-
ment with uroguanylin has a positive therapeutic signifi-
cance to the reduction in pre-cancerous colon ploys.
In Tables 7, 8, 9 and 10, some genes are only fre-

quently selected by the L1/2 method, but not discovered
by the LEN and L1 methods. The evidence from the liter-
atures showed that they are cancer related genes. For ex-
ample, for the colon dataset, the genes cholinergic
receptor, nicotinic, delta polypeptide (CHRND) and
platelet/endothelial cell adhesion molecule-1 (PECAM1)
were also selected by Maglietta R. et al. [30], Wiese A.H.
Table 7 The 10 top-ranked informative genes found by the th
Leukaemia dataset

Rank Gene description

L1/2 LEN

1 CST3 cystatin C * CFD complement facto

2 MPO myeloperoxidase * CST3 cystatin C *

3 IL8 interleukin 8 MPO myeloperoxida

4 GYPB glycophorin B (MNS blood group) DNTT deoxynucleotid
terminal *

5 IGL immunoglobulin lambda locus TCL1A T-cell leukemia/

6 DNTT deoxynucleotidyltransferase,
terminal

IGL immunoglobulin

7 LOC100437488 interleukin-8-like IL8 interleukin 8 *

8 LTB lymphotoxin beta (TNF superfamily,
member 3)

ZYX zyxin *

9 TCRB T cell receptor beta cluster LTB lymphotoxin bet
member 3) *

10 S100A9 S100 calcium binding protein A9 CD79A CD79a molecu
associated alpha

The genes with star(*) are the most frequently selected genes to construct the class
obtained by L1/2 , LEN , L1 classifiers are emphasized with bold.
et al. [31], Wang S. L. et al. [32], and Dai J. H. and Xu Q.
[33]. These genes can significantly discriminate between non-
dissected tumors and micro dissected invasive tumor cells. It
is remarkable that apparently (to our knowledge) some dis-
covered genes that have not been seen in any past studies.
On the other hand, from Tables 7, 8, 9 and 10, we

found that the most frequently selected genes and their
ranking orders by the LEN and L1 methods are much
similar compared with those of the L1/2 method. The
main reasons are that the classification hypothesis needs
not be unique as the samples in gene expression data lie
in a high-dimensional space, and both of the LEN and
L1 methods are based on the L1 type penalty.
ree sparse logistic regression methods from the

L1

r D (adipsin) * CST3 cystatin C *

CFD complement factor D (adipsin) *

se * MPO myeloperoxidase *

yltransferase, IL8 interleukin 8 *

lymphoma 1A * DNTT deoxynucleotidyltransferase,
terminal *

lambda locus * TCL1A T-cell leukemia/lymphoma 1A *

IGL immunoglobulin lambda locus

LTB lymphotoxin beta (TNF superfamily,
member 3)

a (TNF superfamily, CD79A CD79a molecule, immunoglobulin-
associated alpha

le, immunoglobulin- HBB hemoglobin, beta

ifiers according to the last column of Table 6, and the common genes



Table 8 The 10 top-ranked informative genes found by the three sparse logistic regression methods from the Prostate
dataset

Rank Gene description

L1/2 LEN L1

1 SLC43A3 solute carrier family
43, member 3 *

AMOTL2 angiomotin like 2 * USP4 ubiquitin specific peptidase
4 (proto-oncogene) *

2 CD22 CD22 molecule * USP4 ubiquitin specific peptidase 4 (proto-
oncogene) *

CD22 CD22 molecule *

3 KHDRBS1 KH domain containing, RNA binding,
signal transduction associated 1 *

EIF4EBP2 eukaryotic translation initiation
factor 4E binding protein 2 *

EIF4EBP2 eukaryotic translation
initiation factor 4E binding protein 2 *

4 ZNF787 zinc finger protein 787 * PRAF2 PRA1 domain family, member 2 * Gene symbol:AA683055, probe set:
34711_at *

5 GMPR guanosine monophosphate reductase * CACYBP calcyclin binding protein * AMOTL2 angiomotin like 2 *

6 AMOTL2 angiomotin like 2 Gene symbol:AA683055, probe set: 34711_at * VSNL1 visinin-like 1 *

7 EIF4EBP2 eukaryotic translation initiation
factor 4E binding protein 2

VSNL1 visinin-like 1 * FLNC filamin C, gamma *

8 USP2 ubiquitin specific peptidase 2 SLC43A3 solute carrier family 43, member 3
*

PRAF2 PRA1 domain family, member 2 *

9 USP4 ubiquitin specific peptidase
4 (proto-oncogene)

CD22 CD22 molecule * CACYBP calcyclin binding protein *

10 ACTN4 actinin, alpha 4 TMCO1 transmembrane and
coiled-coil domains 1 *

SLC43A3 solute carrier
family 43, member 3 *

The genes with star(*) are the most frequently selected genes to construct the classifiers according to the last column of Table 6, and the common genes
obtained by L1/2 , LEN , L1 classifiers are emphasized with bold.
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Construct KNN classifier with the most frequently
selected relevant genes
In this section, to further evaluate the performance and
prediction generality of the sparse logistic regression
with L1/2 penalty, we constructed KNN (k =3, 5)
Table 9 The 10 top-ranked informative genes found by the th
dataset

Rank Gene description

L1/2 LEN

1 GUCA2B guanylate cyclase activator
2B (uroguanylin) *

GUCA2B guanylate
activator 2B (urog

2 MYL6 myosin, light chain 6, alkali,
smooth muscle and non-muscle *

MYH9 myosin, hea

3 DES desmin * DES desmin *

4 CHRND cholinergic receptor, nicotinic,
delta polypeptide *

MYL6 myosin, ligh
smooth muscle an

5 PECAM1 platelet/endothelial cell
adhesion molecule-1 *

GSN gelsolin *

6 ATPsyn-Cf6 ATP synthase-coupling
factor 6, mitochondrial

COL11A2 collagen,

7 ATF7 activating transcription factor 7 ATPsyn-Cf6 ATP sy
factor 6, mitochon

8 PROBABLE NUCLEAR ANTIGEN (Pseudorabies
virus)[accession number:T86444]

ssb single-strand bin

9 MYH9 myosin, heavy chain 9, non-muscle Sept2 septin 2 *

10 MYH10 myosin, heavy chain 10, non-muscle MXI1 MAX interactor

The genes with star(*) are the most frequently selected genes to construct the class
obtained by L1/2 , LEN , L1 classifiers are emphasized with bold.
classifiers using the relevant genes which were most fre-
quently selected by the L1/2 penalized logistic regression
method. In this experiment, we use the random leave-
one-out cross validation (LOOCV) to evaluate the pre-
dictive ability and repeat 50 runs.
ree sparse logistic regression methods from the colon

L1

cyclase
uanylin) *

GUCA2B guanylate cyclase
activator 2B (uroguanylin) *

vy chain 9, non-muscle * ATPsyn-Cf6 ATP synthase-coupling
factor 6, mitochondrial *

MYH9 myosin, heavy chain 9, non-muscle *

t chain 6, alkali,
d non-muscle *

GSN gelsolin *

MYL6 myosin, light chain 6, alkali,
smooth muscle and non-muscle *

type XI, alpha 2 * COL11A2 collagen, type XI, alpha 2 *

nthase-coupling
drial *

MXI1 MAX interactor 1, dimerization protein *

ding protein * UQCRC1 ubiquinol-cytochrome c
reductase core protein I *

DES desmin *

1, dimerization protein * ZEB1 zinc finger E-box binding homeobox 1*

ifiers according to the last column of Table 6, and the common genes



Table 10 The 10 top-ranked informative genes found by the three sparse logistic regression methods from the DLBCL
dataset

Rank Gene description

L1/2 LEN L1

1 CCL21 chemokine (C-C motif) ligand 21 * MTH1 metallothionein 1H * MTH1 metallothionein 1H *

2 HLA-DQB1 major histocompatibility complex, class II,
DQ beta 1 *

MT2A metallothionein 2A * MT2A metallothionein 2A *

3 MT2A metallothionein 2A * SFTPA1 surfacant protein A1 * CCL21 chemokine (C-C motif) ligand
2 *

4 THRSP thyroid hormone responsive * TCL1A T-cell leukemia/lymphoma 1A * SFTPA1 surfacant protein A1 *

5 lgj immunoglobulin joining chain * ZFP36L2 ZFP36 ring finger protein-like 2 * POLD2 polymerase (DNA directed),
delta 2, accessory subunit *

6 TCL1A T-cell leukemia/lymphoma 1A * FCGR1A Fc fragment of IgG, high affinity
Ia, receptor (CD64) *

lgj immunoglobulin joining chain *

7 GOT2 glutamic-oxaloacetic transaminase 2,
mitochondrial (aspartate aminotransferase 2) *

lgj immunoglobulin joining chain * MELK maternal embryonic leucine
zipper kinase *

8 Plod procollagen lysyl hydroxylase * TRB2 Homeodomain-like/winged-helix
DNA-binding family protein *

CKS2 CDC28 protein kinase regulatory
subunit 2 *

9 STXBP2 syntaxin binding protein 2 * MELK maternal embryonic leucine zipper
kinase *

EIF2A eukaryotic translation initiation
factor 2A, 65kDa *

10 SFTPA1 surfacant protein A1 * CCL21 chemokine (C-C motif) ligand 2 * AQP4 aquaporin 4 *

The genes with star(*) are the most frequently selected genes to construct the classifiers according to the last column of Table 6, and the common genes
obtained by L1/2 , LEN , L1 classifiers are emphasized with bold.

Liang et al. BMC Bioinformatics 2013, 14:198 Page 11 of 12
http://www.biomedcentral.com/1471-2105/14/198
Table 11 summarizes classification accuracies of four
datasets with KNN classifiers with selected genes by
our proposed methods. From Table 11, we can see
that all the classification accuracies are high than 90%,
especially the classification accuracy on the Leukaemia
dataset is 98.3%. The KNN classifiers with relevant
genes which were selected by the sparse logistic re-
gression with the L1/2 penalty can achieve high classifi-
cation accuracy. The results indicate that the sparse
logistic regression with the L1/2 penalty can select
power discrimination genes.

Conclusions
In cancer classification application based on micro-
array data, only a small subset of genes is strongly
indicative of a targeted disease. Thus, feature selec-
tion methods play an important role in cancer classi-
fication. In this paper, we propose and model sparse
Table 11 Summary of the results of KNN classifiers using
the most frequently selected genes by our proposed L1/2
penalized logistic regression method

Methods K-NN(k=3) K-NN(k=5)

Leukaemia 98.3% 94.4%

Prostate 95.1% 94.2%

Colon 95.1% 90.6%

DLBCL 94.8% 91.2%
logistic regression with the L1/2 penalty, and develop
the corresponding coordinate descent algorithm as a
novel gene selection approach. The proposed method
utilizes a novel univariate half thresholding to update
the estimated coefficients.
Both simulation and microarray data studies show that

the sparse logistic regression with the L1/2 penalty
achieve higher classification accuracy than those of or-
dinary L1 and elastic net regularization approaches,
while fewer but informative genes are selected. There-
fore, the sparse logistic regression with the L1/2 penalty
is the effective technique for gene selection in real classi-
fication problem.
In this paper, we use the proposed method to solve

binary cancer classification problem. However, many
cancer classification problems involve multi-category
microarray data. We plan to extend our proposed
method to solve multinomial penalized logistic re-
gression for multiclass cancer classification in our
future work.
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