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Abstract

Background: Gene set analysis (GSA) methods test the association of sets of genes with a phenotype in gene
expression microarray studies. Many GSA methods have been proposed, especially methods for use with a binary
phenotype. Equally, if not more importantly however, is the ability to test the enrichment of a gene signature or
pathway against the continuous phenotypes which are routinely and commonly observed in, for example,
clinicopathological measurements. It is not always easy or meaningful to dichotomize continuous phenotypes into
two classes, and attempting to do this may lead to the inaccurate classification of samples, which would affect the
downstream enrichment analysis. In the present study, we have build on recent efforts to incorporate correlation
structure within gene sets and pathways into the GSA test statistic. To address the issue of continuous phenotypes
directly without the need for artificial discrete classification and thus increase the power of the test while ensuring
computational efficiency and rigor, new GSA methods that can incorporate a covariance matrix estimator for a
continuous phenotype may present an effective approach.

Results: We have designed a new method by extending the GSA approach called Linear Combination Test (LCT)
from a binary to a continuous phenotype. Simulation studies and a real microarray dataset were used to compare
the proposed LCT for a continuous phenotype, a modification of LCT (referred to as LCT,), and two publicly
available GSA methods for continuous phenotypes.

Conclusions: We found that the LCT methods performed better than the other two GSA methods; however, this
finding should be understood in the context of our specific simulation studies and the real microarray dataset that
were used to compare the methods. Free R-codes to perform LCT for binary and continuous phenotypes are
available at http://www.ualberta.ca/~yyasui/homepage.html. The R-code to perform LCT for a continuous
phenotype is available as Additional file 1.

Background

Gene set enrichment analysis (GSEA) has greatly ad-
vanced high-throughput gene expression studies and a
number of methods have been proposed to perform this
type of analysis (see reviews by Goeman and Buhlmann
[1] and Nam and Kim [2]). An important methodo-
logical challenge of GSA is the need to deal with large
gene sets and small sample sizes. While most GSA me-
thods employ a permutation-based approach to evaluate
the significance gene sets, Kim and Volsky [3] gave a
parametric view of the test statistic by assuming that
the averages of fold changes across the gene-sets are
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distributed approximately normally. However, the majo-
rity of work in this field has focused on testing the en-
richment of gene sets against binary, and sometimes
categorical, phenotypes. Equally, if not more import-
antly, is the ability of the method to test the enrichment
of a gene signature or a molecular pathway against a
continuous phenotype. Such continuous variables are
measured routinely and many important clinicopatho-
logical observations such as tumor size or the measure-
ment of marker proteins are continuous. It may not
always be technically easy or meaningful to categorize
continuous phenotypes into two or more discrete clas-
ses. Indeed such artificial categorization may lead to
inaccurate classification of the samples, which will even-
tually affect the downstream enrichment analysis.

© 2013 Dinu et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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We observed an important methodological distinction
between the competitive and self-contained GSA ap-
proaches [1,4]. Competitive methods use gene per-
mutation to test whether or not the association of the
phenotype with a gene set is similar to its association
with the other gene sets (the “Q1 hypothesis”), while
self-contained methods employ sample permutation to
test the equality of the two mean vectors of gene-set
expressions which correspond to the two phenotype
groups (the “Q2 hypothesis”). Here, we focused on the
self-contained methods because, unlike the gene permu-
tation approaches, sample permutation preserves corre-
lations within gene sets; a property that we have used to
design the proposed method for continuous phenotypes.

Correlations among gene expression measurements
have long been observed, especially among measure-
ments for functionally related gene set. Yet in the past,
only the multivariate analysis of variance test for gene
set analysis (MANOVA-GSA) for categorical phenotypes
[5] and the Linear Combination Test (LCT) for binary
phenotypes [6] have used a covariance matrix estimator
of gene expressions to compute the enrichment test stat-
istic. The main challenges in using these methods are
the relatively small sample sizes and large gene sets; a
situation which is not uncommon in GSA, especially in
small microarray studies. To overcome these difficulties,
shrinkage methods [7] have been used to estimate the
gene expressions covariance matrix. However, GSA has
rarely been used for continuous phenotypes, and cur-
rently no methods that incorporate a covariance matrix
estimator are available. Previously, when we compared
the performances of various self-contained GSA me-
thods for binary phenotypes, we found that LCT was
more computationally efficient than MANOVA-GSA
and approximated its superior power very well. Here, we
propose both an extension of LCT to continuous phe-
notype (hereafter referred to as LCT) and a modified
version of LCT (hereafter referred to as LCT,). We
compared the proposed methods with two existing GSA
methods for continuous phenotype; namely, Significance
Analysis of Microarrays for Gene Sets (SAM-GS) [8] and
Global Test [9]. We used simulations to compare the
performances of the GSA methods with small sample
sizes and large gene sets.

In addition, we analyzed the performances of the GSA
methods using real microarray gene expression data
from prostate tumor samples of African-American pros-
tate cancer patients [10]. Increased plasma or serum lep-
tin levels have previously been found to be associated
with development of prostate cancer [11-13]. We, there-
fore, used the C2 catalog, an extensive collection of me-
tabolic and signaling pathways and gene sets, from the
Molecular Signatures Database (MSigDB) of Gene Set
Enrichment Analysis application of Broad Institute of
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MIT and Harvard. The catalog was screened for associa-
tions with human leptin gene (LEP) expression, a well-
studied marker of adiposity, and various metabolic and
inflammatory conditions, and we identified important
molecular pathways that were associated with high ex-
pression of this marker in a prostate cancer cohort. In
our comparative study, we focused on testing both the
power and computational efficiency of the four GSA
methods.

Methods

Linear combination test for a continuous phenotype

In this section we derive the LCT for a continuous
phenotype. Our derivations follow the binary phenotype
framework in that the correlation structure is accommo-
dated in a similar way to the binary phenotype, and the
shrinkage covariance matrix estimation is implemented
to take care of the small sample size and large gene set
problems.

Consider gene expression data consisting of a total
of n subjects. The null hypothesis to be tested is, that
the expression of a predefined gene set with p genes,
Xy ..., X,} is not associated with the phenotype Y.
One way of expressing this multivariate hypothesis
univariately as a null hypothesis is Hy; that is, no lin-
ear combination of Xj,..., X, is associated with the
phenotype. Let Z(B8) = B;X;+... + B,X, be a linear
combination of Xj,..., X,. Then, for a given vector 8
of combination coefficients, whether or not the combin-
ation Z(p) is associated with the phenotype can be tested
in the univariate model as follows: Y; = ag+ o1 Z(3) + e,
where i denotes subjects 1, ..., n , Y; denotes phenotype
measurement of i subject, ap and «; are the intercept
and slope respectively, and, ¢; is ~ N(0,0°). This expression
describes a classical simple linear regression problem. To
test Hy, we can consider the most-significant linear com-
bination of {Xj..., X,}; namely, the linear combination
with the maximum sample correlation with the pheno-
type, among all possible linear combinations. We have

B = arg max PY.2(8)

as the coefficients of the most-significant linear combin-
ation. As the square of the sample correlation, ignoring
0y%, we have:

Gz
Y,Z(B) /J)Tﬁﬁ :

Where Q is the gene expressions covariance matrix
with the #/'— Th entry being

1
Wy =—— X (w—%Xn) (% =%
i l’l—ll:l,n( n—%n) (X —%y)
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where xy; is the gene expression corresponding to gene
h, and subject /. Therefore,

2 - /)’TCOVYJ(COVYAVXT/),

Py .z ﬁTQﬁ

Where CovKX:(Y,Xl),.,,,Cov(Y,Xp))T The above optimi-
zation problem can be written as

T
A
B = arg maxﬁT ﬁ.
F B B
Where A=Covy,xCovyyand B = . Thus, the solution
to this optimization problem is the maximal eigenvector
of AB™ and pi 2(8°) is the corresponding eigenvalue

[14].

When the size of the gene set is larger than the sample
size (i.e., p > n) the matrix B is singular. Similar to the
adjustment implemented in MANOVA-GSA [5], a pos-
sible remedy for the singularity is to employ a shrinkage
covariance matrix as proposed previously by Schafer and
Strimmer [7]. Thus, the singular covariance matrix Q
can be replaced with a shrinkage covariance matrix Q*
given by @, = p},,\/Om@y, with shrinkage coefficients

Py, =1 if h=hand p;,, = p min{l max(O, 1—/1') }, if

h=h" where py),- is the sample correlation between the
h— th and /'- th genes, and the optimal shrinkage inten-

sity 1* can be estimated by 1* = ¥ Var(py)] L puw’
h=h' hzh

The computational cost of incorporating the covari-
ance matrix estimator into the test statistic in this way is
very high. To address the computational efficiency prob-
lem, we use a group of normalized orthogonal bases,
instead of the original observation vectors. First, we per-
form an eigenvalue decomposition of the shrinkage covar-
iance matrix Q* =UDUT (V},..,V,) = (X;.., X,)UD™ ">
The square of the sample correlation can be rewritten as

yT Covy vCovy vTy
yTy

where y=D1/2LITﬁ, Covxvz(KVJ),..,,Cov(Y,Vp))T According
to a matrix algebra calculation [14], the coefficients of the
most-significant combination are given by y* =< Covyy,
This LCT statistic is, therefore, proportional to the sum
over the gene set of the square covariance between the
phenotype and gene expression measurements, after the
orthogonal transformation

Pr(y*) = CZ Cov(Y, V,»)2

j=Lp

Py) =

where ¢ is a constant. The statistical significance can be
evaluated against the null hypothesis with a permutation
test (permuting phenotype labels) using this test statistic.
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The constant ¢ can be ignored in the permutation test.
This approach is advantageous computationally because
Q* = UDUT is evaluated only once for the original data,
and then there is no need to evaluate it for each permuted
version of the data.

A modification of the linear combination test for a
continuous phenotype

We also considered an alternative form of LCT (LCT,)
which we derived in the linear regression context. A
least squares estimate of the regression function is given

by f =X (X TX)le TY where X represents the gene ex-
pression matrix and Y represents the vector of pheno-
type values. In case of singularities, a shrinkage version
of the regression function estimate analogous to LCT
can be obtained. An alternative version of LCT, can be
derived as the square of the L, norm of the shrinkage re-

gression function LCT, = [[f|[2.

Simulation study design

We carried out a number of simulation studies to com-
pare the performances of the proposed LTC methods
with two published self-contained GSA methods for
continuous phenotype; namely, an extension of SAM-GS
to continuous phenotype via regression analysis [8], and
Global Test [9] which uses a random effects model to
test the association between gene expression and phe-
notype. For each gene set of size p, we generated a gene
expression matrix X,,,, We changed the number of ob-
servations # from 10 to 20, 50 and 100, and the gene set
size p from 20 to 100, 200 and 400. We focused on sce-
narios where the gene set size is larger than the sample
size, i.e. p > n, because these scenarios are more pre-
dominant and are challenging for GSA. We adopted a
mixed correlation structure between genes in each set as
follows: among the first p; genes, the correlations are
constant (p; = p); among the next p, genes, the cor-
relation between the i-th and j-th genes is p; = ! with
p =0.0, 0.3, 0.6 and 0.9; and the remaining genes are not
correlated. The various simulation scenarios are summa-
rized in Table 1. For each gene set, a continuous pheno-
type was generated from a normal distribution N(Xy,I).
where p is a vector of length p. In the null model that
we used to compare the size of the tests, we set p to 0.
In the alternative model that we used to check the
power of the tests, first, we generated randomly five of
the first 20 components of p from N (v|v|) with v ran-
ging from O to 2 in increments of 0.1, then, we generated
randomly five of the next 20 components of p from N
(-v|v|) with v ranging from O to 2 in increments of 0.1;
the rest remaining components were set at 0. The simu-
lation data were replicated 1,000 times in each model.
The p-values are based on 1,000 permutations.
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Table 1 Type | errors for four GSA methods: LCT, LCT,, SAM-GS and Global-Test
Type | 0.005 0.01 0.05
n 10 10 10
p 20 20 20
pl=p2 5 5 5
Method p=00 p=03 p=06 p=09 p=00 p=03 0=06 p=09 p=00 p=03 p=06 p=09
LCT 005 003 003 002 012 012 008 009 045 049 044 052
LCT, 006 007 004 003 013 013 009 009 048 057 048 046
SAMGS 004 005 006 004 014 012 007 008 044 051 048 050
Global 007 008 on on 013 019 017 015 053 052 054 053
n 20 20 20
p 100 100 100
pl=p2 20 20 20
Method p=00 p=03 p=06 p=09 p=00 p=03 0=06 p=09 0=00 p=03 p=06 p=09
LCT 010 009 010 010 012 014 014 016 056 053 051 058
LCT, 0o 01 009 007 014 017 017 014 056 055 055 054
SAMGS 010 on 010 007 012 017 018 014 056 053 052 051
Global 004 004 005 006 010 005 006 012 033 041 043 052
n 50 50 50
p 200 200 200
pl=p2 40 40 40
Method p=00 p=03 p=06 p=09 p=00 p=03 0=06 p=09 0=00 p=03 p=06 p=09
LCT 010 010 010 on 016 016 015 015 057 055 051 053
LCT, 008 010 0o 008 016 016 017 013 053 058 049 059
SAMGS 010 008 o1 009 015 015 015 019 056 057 051 050
Global 004 004 004 001 009 012 012 010 040 059 052 051
n 100 100 100
p 400 400 400
pl=p2 60 60 60
Method p=00 p=03 p=06 p=09 p=00 p=03 0=06 p=09 p=00 p=03 p=06 p=09
LCT 008 006 003 005 012 010 010 007 049 046 043 034
LCT, 009 006 004 004 012 0on on 010 055 054 042 034
SAMGS 006 007 005 008 012 009 010 on 047 050 047 040
Global 002 003 003 002 009 005 007 006 056 036 034 034

The R-package to implement Global Test is available
for download from http://www.bioconductor.org. The
LCT tests and SAM-GS for continuous phenotypes were
implemented by us using the R statistical software [15].

Results

Simulation study

We found that the type I errors were similar across the
four GSA methods (Table 1). As the sample size increa-
sed, the type I error moved closer to the nominal level,
as is expected when permutation of phenotype labels is
used. The empirical power (with # =20 and p = 100) was

calculated using a nominal level of 0.05 for values of the
v parameter ranging from 0 to 5 in increments of 0.25,
and correlations between each pair of genes of p =0.0,
0.3, 0.6 and 0.9 (Figure 1). When there was no corre-
lation among genes (p=0.0), the four GSA methods
exhibited very similar testing powers. At low correlation
values, the LCT, method appeared to be conservative
and less powerful; perhaps, because LCT, is based on
shrinkage of the regression function, similar to the ridge
regression method [16]. However, with increasing corre-
lations among genes (p = 0.3, 0.6, 0.9), the differences in
power values between the LCT and Global Test methods
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Figure 1 Power comparison (n =20 and p = 100) between four GSA approaches: LCT, LCT,, SAM-GS and Global Test.

became increasingly larger. Compared with either the
SAM-GS or Global-Test methods, LCT and LCT, both
exhibited much better ability to deal with the given cor-
relations among genes.

Identifying gene sets associated with human leptin gene
expression measurements

Leptin is a well-known marker protein for human adi-
posity and the circulating levels of leptin in the blood
are directly proportional to the total amount of body fat.
Leptin is also associated with various metabolic and in-
flammatory conditions. We applied all four GSA me-
thods to analyze a real Affymetrix microarray dataset
consisting of genome-wide transcriptomic measurements
of prostate tumor samples from African-American pros-
tate cancer patients [10] against the continuous phenotype
of the human leptin gene (LEP) expression values. The
publicly available data were downloaded from Gene
Expression Omnibus [17] [GEO:GSE6956]. The data that
we used in the present study are part of a larger micro-
array study into immunobiological differences in prostate
cancer tumors between African-American and European-
American men. Because LEP expression levels may be
different between the two groups, we used only the data

from the African-American group to test the LCT me-
thods. For our analysis, we used the expression values of
13,233 genes measured in tumor samples from 33 pa-
tients. The tumor samples were resected adenocarcinomas
from patients who had not received any therapy before
prostatectomy and were obtained from the National
Cancer Institute Cooperative Prostate Cancer Tissue
Resource (CPCTR) and the Department of Pathology at
the University of Maryland. According to Wallace et al.
[10], the macro dissected CPCTR tumor specimens were
reviewed by a CPCTR-associated pathologist who con-
firmed the presence of tumors in the specimens. The tis-
sues were collected between 2002 and 2004 at four
different sites. The median age of prostatectomy was 61
and the median prostate-specific antigen (PSA) at diag-
nosis was 6.1 ng/mL. Fifty-five percent of the tumors
were stage pT2, and 45% were stage pT3 or more.
Detailed RNA extraction, labeling and hybridization
protocols were as described previously [10]. The gene
expression values were centered and scaled across the
samples before the four GSA methods were applied. The
need for such standardization was pointed out in an ear-
lier comparative study of GSA methods for a binary
phenotype [18].
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For comprehensive analysis, we used the C2 catalog
from MsigDB [19] consisting of 1,892 gene sets, in-
cluding metabolic and signaling pathways from major
pathway databases, gene signatures from biomedical lit-
erature including 340 PubMed articles, as well as other
gene sets compiled from published mammalian micro-
array studies. Following Subramanian et. al. 2005 [19],
we restricted the size of gene sets to between 15 and 500
which gave us 1,403 gene sets for use in our analysis.
Each gene set was tested for its association with the LEP
expression measurements. A limitation of our study is
that the findings come from a relatively small observa-
tional study and therefore cannot be generalized to other
populations.

In terms of computational efficiency, we noted that
LCT incorporated the covariance matrix into the estima-
tions for only a small cost (CPU time of 413 seconds)
compared with the cost using SAM-GS (CPU time of
397 seconds). In contrast, Global Test was very compu-
tationally attractive (CPU time of 92 seconds). The CPU
times were recorded on our PC (Processor: x86 Family 6
Model 23 Stepping 10 Genuine Intel 3Ghz; 4GB RAM).

We compared the p-values for the gene sets obtained
by the four methods; in particular, the lower p-values,
which we assumed indicted the most interesting gene
sets. Table 2 shows the percentages of the gene sets for
which the p-values were less than 0.005, 0.01, 0.05, and
0.10 from the four GSA methods. We found that the
performance of LCT and LCT, was similar. The per-
formance of SAM-GS and Global Test was also similar
but different from the performance of LCT and LCT,,
which is consistent with the results of the simulation
study. To adjust for multiple comparisons when multiple
gene sets are tested, false discovery rate (FDR) could be
used instead of Type I error probability; however, the
use of adjustment methods would not affect the con-
clusions of our comparative evaluation study. The FDR
values were computed as described by Storey [20].

Gene sets and pathways that were identified, by at
least one of the four GSA methods, to be associated with
the LEP gene expression measurements (p-value <0.05)
are listed in Table 3 in ascending order of the p-values
obtained using LCT. The corresponding FDR values
were 0.195 for LCT, 0.197 for LCT?2, 0.135 for SAM-GS,

Table 2 Percentages of gene sets with p-values less than
0.005, 0.01, 0.05 and 0.10

Method P-value

<.005 <01 <05 <10
LCT 3 4 27 63
LCT, 3 4 20 46
SAM-GS 1 2 14 27
Global Test 0 2 15 34
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and 0.936 for Global Test. The adipocytokine signaling
pathway was predicted to be strongly associated with
LEP expression by all four GSA methods. This result
was expected, given that adipocytokines are a group of
adipose tissue-derived hormones that includes leptin. In
addition to being linked to obesity and diabetes, adipo-
cytokines may be involved in the regulation of angio-
genesis and tumor growth [21]. Regulation of autophagy
was found to be associated with LEP expression con-
sistent with previous findings that leptin played a role in
the neuroendocrine control of autophagy [22]. Auto-
phagy is a fundamental process in tumorigenesis and
treatment response because it can act as a tumor-sup-
pression mechanism, yet it can also enable tumor cell
survival under conditions of metabolic stress, including
nutrient deficiency [23]. Furthermore, LEP expression
was strongly associated with both hypoxia-inducible
factor-1 (HIF1) targets (LCT p-value=0.006; LCT,,
SAM-GS and Global Test p-value <0.03) and the hyp-
oxia pathway (LCT p-value = 0.035). Leptin can be acti-
vated in response to hypoxia in breast cancer cells where
the process is mediated through hypoxia-inducible
factor-1 [24,25].

Among the gene sets and pathways associated with
LEP expression only by the LCT method, we highlight the
insulin signaling candidate pathway (LCT p-value=
0.049). A positive association between serum insulin levels
and LEP expression has been reported in obese humans
[26]. Furthermore, the association of circulating insulin-
like growth factors with increased risk of prostate cancer
has been reported in a meta-analysis [27]. Interestingly,
the proteasome degradation candidate pathway was found
to be significant by both Global Test (p-value = 0.029) and
SAM-GS (p-value =0.028), but not by LCT (p-value=
0.12). A small microarray study (N =10) found that the
genes in the proteasome degradation pathway were differ-
entially expressed 72 hours after polyethylene glycol-leptin
injection [28]. Other gene sets and pathways found to be
significantly associated with LEP expression but with less
well elucidated roles are shown in Table 3 and may be
worthy of future investigation.

Discussion

Many self-contained GSA methods have been proposed.
However, although many of these methods have the po-
tential to be generalized to any design, they have only
been illustrated for a binary or categorical outcome.
Thorough extension of these methods to a continuous
phenotype has rarely been reported, and studies into
their implementation, simulation studies to check type I
error and power, and their application to real datasets
are lacking. Here, we describe the extension of a “self-
contained” GSA method from a binary to a continuous
phenotype. The new GSA tests, LCT and LCT,, address
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Table 3 Gene sets and pathways associated with LEP gene expression measurements

Gene set Size LCT LCT, SAMGS Global
NADLER_OBESITY_UP 46 0 0.004 0.108 0.098
HSA04920_ADIPOCYTOKINE_SIGNALING_PATHWAY 68 0.003 0.003 0.042 0.032
HSA04140_REGULATION_OF_AUTOPHAGY 26 0.004 0.007 0.003 0.002
HIF1_TARGETS 32 0.006 0.025 0.027 0.03
DORSEY_DOXYCYCLINE_UP 29 0.011 0.063 0.174 0.174
SHIPP_DLBCL_CURED_UP 28 0.013 0.003 0.01 0.02
INK_UP 24 0.015 0.026 0.083 0.074
PROSTAGLANDIN_SYNTHESIS_REGULATION 28 0.016 0.04 0.165 0.155
CARDIACEGFPATHWAY 16 0.019 0018 0.02 0.01
CITED1_KO_HET_UP 23 0.022 0.023 0.036 0.031
XU_CBP_DN 32 0.022 0.027 0.06 0.064
CHREBPPATHWAY 16 0.027 0.029 0.029 0.023
OXSTRESS_BREASTCA_UP 24 0.027 0.046 0.044 0.047
AGUIRRE_PANCREAS_CHR17 61 0.029 0.034 0.082 0.06
ST_GAQ_PATHWAY 27 0.031 0.047 0.109 0.083
HSA04340_HEDGEHOG_SIGNALING_PATHWAY 46 0.032 0.038 0.036 0.036
NFATPATHWAY 47 0.034 0.041 0.065 0.053
HYPOXIA_REVIEW 75 0.035 0.055 0.098 0.095
HSA04614_RENIN_ANGIOTENSIN_SYSTEM 16 0.04 0.108 0.087 0.076
CPR_NULL_LIVER_DN 16 0.041 0.047 0.038 0.036
HSA00380_TRYPTOPHAN_METABOLISM 49 0.043 0.055 0.1 0.1
HSA04630_JAK_STAT_SIGNALING_PATHWAY 135 0.045 0.065 0.173 0.167
DIAB_NEPH_UP 58 0.046 0.051 0.196 0.194
TRYPTOPHAN_METABOLISM 57 0.049 0.064 0.089 0.09
INSULIN_SIGNALING 93 0.049 0.068 0.187 0.18
PASSERINI_GROWTH 32 0.049 0.12 0.31 0319
TNFA_NFKB_DEP_UP 18 0.05 0.07 0.152 0.169
FRUCTOSE_AND_MANNOSE_METABOLISM 24 0.055 0.02 0.039 0.041
ANDROGEN_AND_ESTROGEN_METABOLISM 21 0.058 0.028 0.046 0.042
POMEROY_DESMOPLASIC_VS_CLASSIC_MD_DN 38 0.091 0.048 0.13 0.116
TCA 15 0.101 0.058 0.042 0.037
HSA03050_PROTEASOME 21 0.103 0.113 0.051 0.048
PROTEASOME_DEGRADATION 27 0.122 0.082 0.028 0.029

The p-values from the four GSA methods, LCT, LCT,, SAM-GS and Global Test, are shown.

several important technical issues. First, they provide a
rigorous and computationally efficient approach to ex-
tend the enrichment test of a given gene set against a
continuous phenotype. This will be of great help in
studying a variety of informative measurements that can-
not always be easily or meaningfully reduced to binary
or categorical phenotypes. Second, because a pathway
often consists of genes that are together involved in a
biological mechanism or disease, gene expression levels
within a pathway are expected to be correlated. Yet most
traditional GSA methods fail to accommodate this

important characteristic feature of gene expression da-
tasets. While permutation methods using a valid test
statistic can result in appropriate Type I error, the in-
corporation of a covariance matrix estimator into the
test statistic is highly desirable because it often results in
better power. Furthermore, we noted that when the gene
set to be tested is larger than the sample size, the
covariance matrix is ill-conditioned. To address this
problem, a shrinkage method for covariance matrix es-
timation can provide a useful solution; however, shrin-
kage methods are rarely used in GSA, in spite of their
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implementation as an R-package which is free for
download [7]. The computational cost of including a
shrinkage covariance matrix estimator, especially for
permutation-based hypothesis testing, can be very high.
Notably in our LCT algorithm, we overcame this diffi-
culty by using an orthogonal transformation of the
gene expression matrix. In the LCT algorithm, there-
fore, the eigenvalue decomposition of the shrinkage
covariance matrix is performed only for the original
data, and not for the permuted versions.

We focused here on self-contained approaches and be-
cause competitive and self-contained methods test dif-
ferent hypotheses, it is important for the user to make
an informed choice based on the hypothesis of interest
and their understanding of the limitations of the two
approaches (see reviews by Nam and Kim [2] and Dinu
et. al. [4]). An important limitation of the self-contained
approaches is that only a few genes can drive the associ-
ation between the gene set and the phenotype. In such
cases, post-hoc analysis can be used to reduce the gene
set to a core sub-set associated with the phenotype. Such
an analysis has been reported in simulations and in a
real example for a binary phenotype [4].

The improvements that we have incorporated into our
new GSA tests have given these tests a variety of advan-
tages over the existing methods. We hope that they will
be used for the rigorous testing of associations between
different molecular pathways and gene signatures. At
least of the measured clinic-pathological phenotypes are
continuous. They include tissue features such as tumor
size, staining based readouts; cellular characteristics such
as the amount of lymphocytic infiltration in a tumor en-
vironment; and subject-specific measurements such as
diagnostic or prognostic marker protein or metabolite
concentrations. The LCT algorithm can adjust for con-
tinuous or categorical covariates following a regression
framework. The LEP levels in the prostate tumor ex-
ample that we considered may also have been influenced
by patient-specific covariates such as body mass index
(BMI), age, and/or smoking status. Smoking status did
not show a significant association with LEP expression
levels (p-value =0.36), and BMI and age data were not
available for our analysis.

To check the linearity assumption, exploratory data
analysis should be used prior to running a formal infer-
ence. However, we noted that the small sample sizes that
are common in microarray studies, would limit a thor-
ough check for non-linearities. We also noted that the
LCT method could be extended to accommodate non-
linearities; however, a larger sample size would be nee-
ded. The simulations and real microarray studies which
we conducted indicated that the LCT and LCT, methods
both performed very well for small sample sizes. The
question of how small is small is debatable and depends
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largely on the study design. In the case of a binary/cat-
egorical phenotype, at least five samples per group are
desirable. In the case of a continuous phenotype, as-
sessing significance based on less than 10 samples is
dangerous; an alternative would be to rely upon repre-
sentations that are more descriptive/exploratory in na-
ture. While LCT tests only linear associations between
sets of genes and a continuous phenotype, SAM-GS and
Global Test have been extended in a generalized linear
model (GLM) framework and can accommodate multi-
class, continuous, count, rate, and censored survival
phenotypes. SAM-GS uses the sum of squares of the
Wald statistic for individual genes constituting the path-
way as the test statistic. Wald statistics are calculated as
the ratio between the regression coefficient for an indi-
vidual gene and its corresponding standard error. Global
Test reduces the GLM to a random effects model, as-
suming the regression coefficients corresponding to the
genes constituting the set are sampled from a common
distribution with mean zero and constant variance. A
score test statistic is used to test the null hypothesis of
no association between the set and the phenotype. The
SAM-GS and Global Test algorithms can both adjust for
covariates, an attractive feature when accounting for
other known prognostic factors in the screening of asso-
ciations between gene sets and a phenotype.

Conclusions

Our proposed LCT method for gene set analysis effi-
ciently incorporates the gene expression covariance
matrix into the test statistic. This approach has resulted
in a powerful and computationally attractive method for
testing the association of a given gene set with a con-
tinuous phenotype. Additional file 1.

Availability and requirements

Project name: Linear Combination Test for Gene-Set
Analysis of a Continuous Phenotype

Project home page: http://www.ualberta.ca/~yyasui/
homepage.html

Operating system: Microsoft Windows XP.
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Additional file

Additional file 1: R code for the linear combination test (LCT)
method for gene set analysis of a continuous phenotype.
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