
Almeida-de-Macedo et al. BMC Bioinformatics 2013, 14:214
http://www.biomedcentral.com/1471-2105/14/214

RESEARCH ARTICLE Open Access

Comprehensive analysis of correlation
coefficients estimated from pooling
heterogeneous microarray data
Márcia M Almeida-de-Macedo1,2*, Nick Ransom1, Yaping Feng1, Jonathan Hurst1 and Eve Syrkin Wurtele1

Abstract

Background: The synthesis of information across microarray studies has been performed by combining statistical
results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be
analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across
microarray studies, such as differences within and between labs or differences among experimental conditions, could
lead to equivocal results in a melting pot approach.

Results: We applied statistical theory to determine the specific effect of different means and heteroskedasticity
across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients
obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the
biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor
determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they
approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of
correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were
corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2
groups.

Conclusions: The combination of statistical results is best suited for synthesizing the correlation between expression
profiles of a gene pair across several microarray studies.

Background
There is a wealth of information enclosed in the mas-
sive amount of microarray data so far accumulated in
public repositories. The variety of data sets generated
from the assortment of experiments is a major obstacle in
the path leading from these data to information. Specific
issues relating to data heterogeneity across microarray
studies include differences across platforms, differences
within and between labs, and/or differences among exper-
imental factors such as treatments and tissues [1,2]. Fur-
thermore, concerns regarding integration of studies from
multiple sources in general, such as variations in design,
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research goals, or quality of implementation, add to these
issues [3,4].
Inappropriate integration of microarray data from pub-

lic repositories could lead to equivocal results [5]. The
“Simpson’s paradox” [6], which refers to contradictory sta-
tistical results obtained when analysis is performed within
versus across groups of data [7], is an example of mis-
handling of data. Blyth [8] gives an example involving
the analysis of 2x2 contingency tables across two groups,
and Hassler and Thadewald [9] also illustrate Simpson’s
paradox when correlation coefficients are estimated from
a pool of two groups versus within each group. In both
cases, the paradox can be explained as results are further
investigated in light of the specific statistical properties
of each group of data. The “ecological fallacy” happens
when the correlation of aggregated variables results in
a significant relationship that is due only to aggrega-
tion rather than to any real association [10] (p. 285). An
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early example of an ecological fallacy can be found in
Gehlke and Biehl [11], whose study of grouping effects
in census tract data showed that the magnitude of cor-
relation coefficients of two variables tend to increase
as the level of census tract aggregation increases. This
problem was later referred to as the “modifiable areal
unit problem” and further studied by Openshaw and
Taylor [12].
Combining statistical results (e.g., parameter estimates,

p-values) of independent studies that address similar
questions has been a standard procedure in classic meta-
analyses [4,13]. This approach entails analyzing each data
set independently and then combining the results, as
in a mosaic. Meta-analysis of microarray data has been
applied in a broader context, as some works include
data spanning a wide range of purposes and designs.
Parmigiani et al.[14], in a quest for a common gene
signature across multiple cancer types, developed a sta-
tistical method to identify and assess the intersection
of multiple gene expression signatures across 40 pub-
lished cancer-related microarray studies. On the other
hand, Wirapati et al. [15] and Rhodes et al. [16] devel-
oped specific meta-analysis methods to integrate gene
expression signatures of breast and lung cancer, respec-
tively, across independent studies of microarray data.
Hu et al. [17] and Borozan et al. [18] proposed meth-
ods that extend traditional effect-size models to combine
information from different microarray studies as a way
to evaluate or unify lists of genes differentially expressed
across them.
Another approach combines data from multiple

microarray studies (termed “pooled data”) in a melting
pot of data and analyzes them as a single data set. Kim and
Webster [19] used public databases containing microarray
data and biological traits on cytoarchitectural abnormali-
ties from the same samples of patients belonging to three
groups of major mental disorders plus a control group.
Their study used gene expression data measured through
two array types, the Affymetrix Human Genome U133
Set A and the Affymetrix Human Genome 95av2, and the
authors carried out a correlation analysis between each
gene expression and the biological traits of each subject;
although not fully described in the paper, it seems the
correlation analysis was performed on the pooled data
set from independent studies. Subsequent gene ontol-
ogy (GO) [20] enrichment analysis revealed significant
overrepresentation of biological processes, such as cel-
lular metabolism, central nervous system development,
cell motility, and programmed cell death, in groups of
genes that were significantly correlated with biological
traits. Mentzen and Wurtele [21] and Horan et al. [22]
have created co-expression networks for Arabidopsis
thaliana based on parameters of co-expression similar-
ity that were estimated from a large pool of microarray

data downloaded from public repositories. Mentzen and
Wurtele [21] pooled data from 963 Affymetrix gene
chips, distributed across 71 independent studies encom-
passing diverse organs, conditions, and genotypes “to
quest the transcriptome in response to a wide variety
of environmentally, genetically, and developmentally
induced perturbations”. Horan et al. [22] pooled data
corresponding to 1310 Affymetrix microarrays divided
among 41 independent studies. Both works used cluster
analysis based on Pearson correlation coefficients as a
measure of similarity of gene expression profiles from
Arabidopsis. Mentzen and Wurtele [21] analyzed data
from 21,000 gene probes on the gene chip and identi-
fied clusters of co-expressed genes as regulons. Horan
et al. [22] used clusters to identify groups of co-regulated
protein of unknown function and protein of known func-
tion encoding genes from Arabidopsis. In both works,
GO enrichment analysis showed that networks based on
gene-to-gene correlations estimated from pooling data
from multiple microarray studies were not random. A
similar approach has been used to obtain regulon infor-
mation from a human transcriptomic network derived
from almost 20,000 microarrays [23]. This analysis also
showed a non random functional distribution of regulons.
From a statistical standpoint, combining data from inde-

pendent microarray studies into a large pool as a single
set can be acceptable if data homogeneity can be ensured
across studies. Yet, this condition is nearly impossible
to ensure considering that significant data heterogene-
ity is reported even for completely replicated microarray
experiments carried out by the same lab [1]. Never-
theless, it can be argued that GO enrichment implies
meaningful biology and significant GO enrichment has
been shown for networks created from pooled data
[19,21-23]. Moreover, information gathered through a sin-
gle data set analysis has led to gene function knowledge
discovery [24].
The objective of this study was to perform a comprehen-

sive analysis of Pearson correlation coefficients estimated
from pooling heterogeneous groups of data (melting pot
approach) in a large-scale gene expression analysis of pub-
licly available Affymetrix microarrays and compare it to
the analysis (of the same data) that combines statistical
results of individual groups (mosaic approach). Our study
included two specific objectives: (a) to determine the
specific effect of different means and heteroskedasticity
across the many groups comprising a pool of microarray
data on the sign and magnitude of gene-to-gene Pearson
correlation coefficients obtained from the pool of data,
and (b) to quantify the extent of bias in gene-to-gene
Pearson correlation coefficients obtained from a pool of
heterogeneous groups of microarray data.
In the “Methods” section of this article, we describe

the statistical theory that we applied to analyze the
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components of Pearson correlation coefficients obtained
from a pool of heterogeneous microarray groups. The
“Simulation study” section provides results of a study
that further tests the specific effect on Pearson corre-
lation coefficients of only mean differences, and only
heteroskedasticity across N > 2 groups, and the valid-
ity of our methodology when groups have a small number
of elements. In the section “Application to experimen-
tal microarray data” we illustrate the results predicted by
both theory and simulation with data from 10 microar-
ray experiments. At the end of this section, we provide
an assessment of the bias of correlation coefficients esti-
mated across a pool of heterogeneous groups of microar-
ray data. We discuss our results and summarize our
conclusions in the last section.

Methods
Dissecting components of the Pearson correlation
coefficient obtained from a pool of microarray data
Hassler and Thadewald [9] developed the asymptotic for-
mulation to quantify and explain differences between the
Pearson correlation coefficient estimated from combining
two heterogeneous groups into one pool and the Pear-
son correlation coefficients estimated within each group.
They illustrated the problem with a set of measurements
on height (cm) and weight (kg) reported by 184 first-year
college students with a roughly even number of males
and females. As the authors emphasized in their work,
male and female groups were not homogeneous because
“male students are taller and heavier than female students,
and variation around the mean also differs between the
groups”.
The generalization of Hassler and Thadewald’s [9]

asymptotic analysis for N heterogeneous groups (refer to
their original work for specifics about the asymptotic anal-
ysis) is provided in Equation 1. For the purpose of applying
their theoretical work to analyze correlation coefficients
obtained from a pool of microarray data, we consider
N heterogeneous groups of gene expression data mea-
sured through microarrays. Each group of data can be
described as a matrix Mi of g genes by ni columns (each
column of the matrixMi corresponds to the expression of
g genes measured through one microarray). We assume
that expression levels of any given gene pair xy within
each group, i.e. x, y ∈ Mi, are bivariate random nor-
mal variables that are identically distributed with means
μxy,i = (μx,i,μy,i) and variance-covariance matrix �xy,i =(

σ 2
x,i σxy,i

σxy,i σ 2
y,i

)
, ∀ i = 1,N . Therefore, heterogeneities across

N groups of microarray data are characterized by μxy,i �=
μxy,j and/or �xy,i �= �xy,i, for i �= j.
The limit in probability of the Pearson correlation

coefficient between expressions of genes x and y, rxy,

obtained from a pool ofN heterogeneous groups, as ni →
∞, is given by the expression in Equation 1:

rxy
p→ τxy

=
∑N

i=1 λiσxy,i + ∑N
i=1

∑N
j=i+1 λiλj(μx,i − μx,j)(μy,i − μy,j)

δxδy
(1)

where λi = ni∑N
i=1 ni

represents the weight of the num-

ber of microarrays of each group and the terms δ2x and
δ2y correspond to the average of expression level vari-
ances weighted by ni plus the weighted average of the
square of mean differences across N groups for genes x
and y, respectively (Equations 2 and 3). Hence, the limit
in probability of gene-to-gene Pearson correlation coeffi-
cients obtained from combining heterogeneous groups of
microarray data is a mixture of the weighted average of all
covariances across N groups plus the weighted average of
the cross product of the mean differences of genes x and y
acrossN groups. Both terms are divided by a combination
of the average of variances of genes x and y and the mean
differences of genes x and y across N groups.

δ2x =
N∑
i=1

λiσ
2
x,i +

N∑
i=1

N∑
j=i+1

λiλj(μx,i − μx,j)
2 (2)

δ2y =
N∑
i=1

λiσ
2
y,i +

N∑
i=1

N∑
j=i+1

λiλj(μy,i − μy,j)
2 (3)

Results
Simulation study
This section presents results of a study using simulated
data that had the purpose of further investigating correla-
tion coefficients obtained from a pool of N groups under
the following specific conditions: (a) occurrence of only
mean differences across N > 2 groups and (b) occur-
rence of only heteroskedasticity acrossN > 2 groups. Our
study also evaluated the validity of using estimates of the
asymptotic expression given in Equation 1 to explain the
components of the pooled correlation coefficient when
groups comprising the pool of data have a small number
of elements ni.
We performed simulations in R [25] for a generic gene

pair xy following the procedure detailed in 1–4:

1. For each simulated group i, i = 1,N , generate ni data
pairs from a multivariate normal distribution with
parameters μxy,i and �xy,i (we used the function
mvrnorm in MASS [26]). Each simulated group is a
matrix of 2 rows (genes) by ni columns (number of
elements ni).
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2. Combine simulated data of N groups into one pool
of 2 rows (genes) by

∑N
i=1 ni columns.

3. Obtain the Pearson correlation coefficient from the
pool of data (we used the function cor in R [25]).

4. Repeat steps 1–3 above 1000 times; results are
presented as averages over 1000 repetitions.

As a control, we first performed an experiment with

parameters μxy,i = (0, 0) and �xy,i =
(
1 0
0 1

)
for all

groups i = 1, 10. This simulation provided nearly zero
correlation coefficients (−0.004 ≤ rxy ≤ 0.003), thus
reassuring us that our simulation procedure worked as
expected.

Simulation of only mean differences across a pool of N
groups
First, we analyzed the case in which heterogeneities across
N groups of simulated data were due only to mean differ-
ences, i.e. μxy,i �= μxy,j for i �= j, but variance-covariances
remained constant, i.e. �xy,i = �xy. We first simulated the
case of zero correlation within each group and the effect
of differing means (by a parameter α) in only two of the
N groups. The simulation results for the set of parame-
ters μxy,1 = (α, 0), μxy,2 = (0,α), −10 ≤ α ≤ 10, and

μxy,i = (2, 2) for i ≥ 3; �xy,i =
(
1 0
0 1

)
, ni = 10, λi = λ,

0.01 ≤ λ ≤ 0.1, ∀ i = 1,N , and 10 ≤ N ≤ 100 are
shown in Figure 1. The pooled correlation coefficients rxy
shown in Figure 1 are positive for α < 2, negative for
α ≥ 2, and nearly zero for α = 2. Even though data pairs
in each group were drawn from populations with zero cor-
relations, rxy ranged from −0.56 to 0.48. Also shown in
Figure 1 is the non-linear relationship between rxy and α

as well as between rxy and λ. Not surprisingly, coefficients
rxy increase as λ increases. The smooth curves observed
in Figure 1 (as well as non-linearity of rxy with α and λ) are
explained by the asymptotic formulation of Equation 1 as
written for the set of population parameters used in this
simulation case study (Equation 4):

τxy = −λ2α2 − 4λ(1 − 2λ)(α − 2)
λ2α2 + λ(1 − 2λ)(α − 2)2 + 4λ(1 − 2λ) + 1

(4)

Through Equation 4 one can see that −4λ2
4λ2+4λ(1−2λ)+1 ≈ 0

for α = 2 and 0.01 ≤ λ ≤ 0.1; τxy > 0 for α < 2 because
the term −4λ(1− 2λ)(α − 2) > 0 and dominates the term
−λ2α2 < 0; τxy < 0 for α > 2 because −4λ(1 − 2λ)(α −
2) < 0 and −λ2α2 < 0.
Secondly, we simulated the case in which the means

of a gene pair xy differ for all N groups but the correla-

Figure 1Mean differences across a pool of N groups causes
spurious correlations. rxy was obtained from combining N groups of
simulated data; simulation parameters: μxy,1 = (α, 0), μxy,2 = (0,α),

−10 ≤ α ≤ 10, and μxy,i = (2, 2) for i ≥ 3;�xy,i =
(
1 0
0 1

)
,

ni = 10, λi = λ, 0.01 ≤ λ ≤ 0.1, ∀ i = 1,N, and 10 ≤ N ≤ 100.

tion ρxy �= 0 assumes the same value within each group.
The simulation results for the set of parameters μxy,i =
(i,N − (i − 1)), �xy,i =

(
1 ρxy

ρxy 1

)
, −0.9 ≤ ρxy ≤ 0.9,

ni = 10, λi = λ, 0.01 ≤ λ ≤ 0.1, for i = 1,N , and
10 ≤ N ≤ 100 are shown in Figure 2a. The correlation
coefficients rxy shown in Figure 2a are always negative,
ranging from −0.99 < rxy < −0.80, even when the true
correlation within groups ρxy was positive. The asymp-
totic formulation of Equation 1 as written for the set of
parameters used in this simulation case study is given in
Equation 5:

τxy = ρ − λ2
∑N

i=1
∑N

j=i+1(i − j)2

1 + λ2
∑N

i=1
∑N

j=i+1(i − j)2
(5)

Through Equation 5 one can see that τxy assumes values
of nearly −1 for 10 ≤ N ≤ 100. A visualization of the
problem considered in our second simulation case study is
shown (Figure 2b) through a scatterplot of expression data
of a gene pair xy simulated for 10 groups according to the
parameters μxy,i = (i, (11 − i)), ρxy = 0.9, and ni = 50,
for i = 1, 10. As shown in Figure 2b, even though there
is a positive trend between the expressions of gene x and
gene y within each of the 10 groups, the trend between
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Figure 2Mean differences across a pool of N groups causes Simpson’s paradox. (a) rxy was obtained from combining N groups of simulated

data; simulation parameter ρxy is the true correlation of the pair xy within each group i = 1,N for�xy,i =
(

1 ρxy
ρxy 1

)
. All other simulation

parameters are as follows: μxy,i = (i,N − (i − 1)), −0.9 ≤ ρxy ≤ 0.9, ni = 10, λi = λ, 0.01 ≤ λ ≤ 0.1, for i = 1,N, and 10 ≤ N ≤ 100. (b) Scatterplot
of a pair xy obtained with the simulation parameters: μxy,i = (i, (11 − i)), ρxy = 0.9 and ni = 50 for i = 1, 10 groups. This plot shows clearly that
even though there is a positive trend within each of the 10 groups, the trend across the pool of 10 groups is negative (Simpson’s paradox).

expression of the gene pair xy across the pool of all groups
is negative.

Simulation of only heteroskedasticity across a pool of N
groups
Through simulation, we analyzed the effect of varia-

tions in �xy,i =
(

σ 2
x,i σxy,i

σxy,i σ 2
y,i

)
among N groups, keep-

ing μxy,i = μ constant. Simulation of the case where
σxy,i = 0 but σ 2

x,i �= σ 2
x,j and σ 2

y,i �= σ 2
y,j for i �= j

resulted in nearly zero correlation coefficients from the
pool of N groups (−0.04 ≤ rxy ≤ 0.05). This result
agrees with Equation 1, which predicts zero correlation
if covariances and mean differences of a gene pair across
all groups are zero, even when variances differ across
groups.
We performed a simulation experiment in which the

variance of gene x changes across N groups, but the vari-
ance of gene y and the correlation between genes x and
y remain constant across N groups. Results of this exper-
iment for the set of parameters μxy,i = (2, 2), �xy,i =(

σ 2
x,i ρσx,i

ρσx,i 1

)
, σ 2

x,i = i2, −0.9 ≤ ρ ≤ 0.9, ni = 10, λi = λ,

and 0.01 ≤ λ ≤ 0.1 for i = 1,N and 10 ≤ N ≤ 100 are
shown in Figure 3. The range of the pooled correlations
is −0.8 ≤ rxy ≤ 0.8 (shown on the y-axis of Figure 3),
whereas the range of the true correlations within groups
is −0.9 ≤ ρ ≤ 0.9 (shown on the x-axis of Figure 3).
Figure 3 shows a clear linear relationship between rxy and
ρ, in which |rxy| < |ρ|. The slope between rxy and ρ, esti-
mated through ordinary least squares, is 0.872. Equation 6

gives the asymptotic formulation for the set of parameters
used in this simulation case study:

τxy = ρ
σ̄x√
σ̄ 2
x

(6)

where σ̄x =
∑N

i=1 σx,i
N and σ̄ 2

x =
∑N

i=1 σ 2
x,i

N . Equation 6 also
shows a linear relationship between τxy and ρ with a slope
of σ̄x√

σ̄ 2
x

= 0.872, for σx,i = i2, i = 1,N , and 10 ≤ N ≤ 100.

There is also a linear relationship between the average
of correlation coefficients within each group r̄xy and ρ

(Figure 3), in which −0.889 < r̄xy < +0.889. In addition,
as shown in Figure 3, |r̄xy| > |rxy|. Hence, it can be easily
inferred that the mean squared error between rxy and ρ

(the true correlation within each group) is greater than the
mean squared error between r̄xy and ρ. Therefore, pools
of N simulated groups marked by only heteroskedas-
ticity provide less efficient estimates of the correlation
across groups than combining the N groups’ correlation
coefficients into an average.
We analyzed the mean squared error between τxy and

τ̂xy versus ni, the number of simulated elements in each
group, for 10 ≤ ni ≤ 100 and N = 20 (data shown in
Additional file 1). τxy was obtained from plugging popu-
lation parameters μxy,i and �xy,i into Equation 1, whereas
τ̂xy was based on a combination of parameters of each
group μ̂xy,i and �̂xy,i (see Equation 7). The mean squared
error ranged from 0.0004 for ni = 100 to 0.004 for ni = 10.
The correspondence between τxy and τ̂xy was good even



Almeida-de-Macedo et al. BMC Bioinformatics 2013, 14:214 Page 6 of 16
http://www.biomedcentral.com/1471-2105/14/214

Figure 3 Correlation coefficients obtained from a pool of N
heteroskedastic groups. rxy was obtained from pooling N groups of
simulated data (shown in red), and r̄xy was obtained from averaging
within groups correlation (shown in blue); ρ is the true correlation
within each group. This plot shows that the error between r̄xy and ρ is
smaller than the error between rxy and ρ . Simulation parameters:

μxy,i = (2, 2),�xy,i =
(

1 ρxy
ρxy 1

)
, σ 2

x,i = i2, −0.9 ≤ ρ ≤ 0.9,

ni = 10, λi = λ, and 0.01 ≤ λ ≤ 0.1 for i = 1,N and 10 ≤ N ≤ 100.

for ni = 10, a small number of simulated elements per
group.

Application to experimental microarray data
Our simulation study showed that Pearson correlation
coefficients obtained from a pool of data coming from
groups that have different means are explained solely
by mean differences across groups. Furthermore, we
showed that pooling data marked by only heteroskedas-
ticity provides less efficient estimates of correlation coef-
ficients than does a classical meta-analysis approach
of combining correlation coefficients into an average.
The following analysis of experimental microarray data
illustrates the results predicted by both theory and
simulation.

Example data set
The example data set of this work includes the raw
expression data from 522 Affymetrix ATH1 gene chips
(cel files) from AtGenExpress [27]. Cel files are also avail-
able from The Arabidopsis Information Resourse (TAIR)
[27,28]; see Table 1 for the experiment’s ID on TAIR and
Additional file 2 for detailed information about treatment
conditions and number of biological replicates. These
data come from 10 experiments that explored the effect of

10 types of abiotic stress on RNA accumulation in shoot
and root of 16 day-old Arabidopsis thaliana seedlings (see
Table 1 for details). Experiments followed a 3-factorial
design with treatment (abiotic stress, control), plant mate-
rial (root, shoot or seedling), and time post-treatment
as factors [27]. Seven different research groups located
at different institutions across Germany performed
experiments; microarray data were generated at the
German Resource Center for Genome Research (RZPD)
(according to experiment’s description in TAIR [28]).

Experimental data analysis
We imported data from cel files into the R environ-
ment [25] and processed the data with MAS5 from the
open-source Bioconductor R package affy [29,30]. Fol-
lowing the methodology described in Horan et al. [22],
we did not screen our example data set for quality
of biological replicates, and therefore no outliers were
removed. We followed this procedure because the same
data from the 10 experiments of AtGenExpress [27] were
also part of the larger data set used in the work by
Horan et al. [22]. As described in the methodology of
Mentzen and Wurtele [21], all data were subsequently
normalized using the median absolute deviation method
as performed by the function normalizeBetweenArrays
(with the option “scale”) from the open-source Biocon-
ductor R package Limma [30,31]. We obtained mean
values of biological replicates after a log transformation
(base 2) of the normalized expression data. Because the
two treatment conditions “genotoxic stress applied to root
1 hour post-treatment” and “heat control applied to shoot
24 hours post-treatment” had data for only one biologi-
cal replicate, their expression measurements were used as
mean values (refer to Additional file 2 for more details).
Thereafter, mean values of biological replicates were com-
bined into one large expression matrix (pooled data)
encompassing 254 columns and 22,810 rows (correspond-
ing to probe ids/genes). All but two columns of the large
expression matrix resulted from averaging data of two or
three biological replicates (refer to Additional file 2 for
exact number of biological replicates per treatment condi-
tion). Gene-to-gene Pearson product-moment correlation
coefficients (rxy) were obtained from the large expression
matrix (pooled data) with the R function cor. [25].

Mean differences across a pool of microarray data
We used estimates of the asymptotic expression given in
Equation 1 to examine the makeup of Pearson correlation
coefficients obtained from pooling the means of biolog-
ical replicates of different experimental conditions into
one large expression matrix. In order to accomplish this
task, we classified data in columns of the large expression
matrix into 19 groups. Each group had gene expression
values from either root or shoot in each of nine types
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Table 1 Description of the the example data set

TAIR ID Abiotic stress Cel files Plant material ni n∗
i

ME00325 Cold 48
Root 12 24

Shoot 12 24

ME00326 Genotoxic 47
Root 12 22

Shoot 12 24

ME00327 Osmotic 48
Root 12 24

Shoot 12 24

ME00328 Salt 48
Root 12 24

Shoot 12 24

ME00329 UVB 56
Root 14 28

Shoot 14 28

ME00330 Wound 56
Root 14 28

Shoot 14 28

ME00338 Drought 56
Root 14 28

Shoot 14 28

ME00339 Heat 67
Root 18 36

Shoot 16 30

ME00340 Oxidative 48
Root 12 24

Shoot 12 24

ME00345 Light 48 Seedlings 16 48

Each microarray experiment is described by its TAIR [28] id and type of abiotic stress; cel files of each experiment can be located on TAIR [28] through its id. Total
number of downloaded cel files from each experiment is shown on column Cel files. The combination Abiotic stress/Plant part gives the 19 groups used for the
asymptotic analysis of Pearson correlation coefficients. The column ni shows number of elements in each of 19 groups comprising the large expression matrix. The
column n∗

i shows number of elements in each of 19 groups comprising the large matrix of residuals.

of abiotic stress treatments (see Table 1 for details). We
adopted this procedure because an exploratory analysis
showed clear mean differences in gene levels expressed in
root or shoot. The light stress experiment was for entire
seedlings, and our analysis did not show mean differ-
ences that would justify further division of the data from
this experiment. Each group’s name and its correspond-
ing number of elements ni, for groups i = 1, 19, are
given in Table 1 (number of elements ni correspond to
the number of mean expression values of a gene within
group i).
Data across 19 groups were obviously not homogeneous

because each group corresponds to a combination of the
type of abiotic stress and the plant material, which surely
would have an effect on the total group mean of a gene
expression. In addition, data within groups cannot strictly
be considered homogeneous either because gene mean
expression values within groups correspond to differ-
ent time points post application of abiotic stress/control
treatments (further details about treatment conditions
inside and across groups is given in Additional file 2).
Because our exploratory analysis indicated that the grand
mean expression level of genes within groups seemed
to dominate over means of all other treatment effects

(data not shown), we considered data within groups as
roughly homogeneous.
We used the procedure described in steps 1 through 4

below to make a diagnostic of rxy obtained from a pool
of gene expression data coming from 19 heterogeneous
groups, where μxy,i �= μxy,j and/or �xy,i �= �xy,j, for i �= j.

1. For a given gene pair xy, obtain estimates

μ̂xy,i = (x̄i, ȳi) and �̂xy,i =
(
s2x,i sxy,i
sxy,i s2y,i

)
for all groups

i = 1, 19. Here x̄i and ȳi are, respectively, group
means of expression levels of genes x and y, and s2x,i,
s2y,i, and sxy,i are group variances and covariances of
expression levels of genes x and y, respectively.

2. Estimate asymptotic coefficients τ̂xy as

τ̂xy = s̄xy + dxy
dxdy

(7)

where

s̄xy =
19∑
i=1

λisxy,i (8)
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dxy =
19∑
i=1

19∑
j>i

λiλj(x̄i − x̄j)(ȳi − ȳj) (9)

d2x = s̄2x +
19∑
i=1

19∑
j>i

λiλj(x̄i − x̄j)2 (10)

d2y = s̄2y +
19∑
i=1

19∑
j>i

λiλj(ȳi − ȳj)2 (11)

s̄2x =
19∑
i=1

λis2x,i (12)

s̄2y =
19∑
i=1

λis2y,i (13)

3. Use the residual error (rxy − τ̂xy) to compare Pearson
correlation coefficients as obtained from the large
expression matrix and coefficients as estimated
through Equation 7, which are based on parameter
estimates of 19 groups of data.

4. Small residual errors indicate good agreement
between rxy and τ̂xy. As a result, the two components
of Equation 7 (i.e. the weighted average of all
covariances across 19 groups and the weighted
average of the cross product of mean differences of a
gene pair xy across 19 groups) can explain the signs
and magnitudes of rxy, the Pearson correlation
coefficient obtained from the large expression matrix.

Pearson correlation coefficients obtained from the pooled
expression data
We first obtained Pearson correlation coefficients for pair-
wise combinations of all 22,810 genes present in the
large expression matrix, which resulted in more than 260
million coefficients. The Pearson correlation coefficients
ranged from−0.992 to 0.998 with 0.008 as themean value,
and coefficients showed a symmetric distribution around
zero; roughly 10% of these coefficients were greater than
0.7 or less than −0.7 (data shown in Additional file 1).
Because all genes present in the large expression matrix

provide more than 260 million pairwise correlation coef-
ficients, we used a subset of 500 randomly selected genes
and all their 124,750 pairwise correlation coefficients to
illustrate potential problems with gene pairwise corre-
lation coefficients estimated from a pool of microarray
data. Pearson correlation coefficients from the pooled
expression data (rxy) ranged from −0.979 to 0.990 with
0.007 as the mean value, and coefficients showed a sym-
metric distribution around zero; roughly 10% of these
coefficients were greater than 0.7 or less than −0.7, as
shown in the histogram of Figure 4. The asymptotic

Figure 4 Histogram of 124,750 Pearson correlation coefficients
obtained from the large expression matrix.

coefficients τ̂xy, estimated according to Equation 7, ranged
from −0.978 to 0.989 with 0.007 as the mean value (τ̂xy
values were obtained through the R function given in
Additional file 3). The histogram of residual errors (rxy −
τ̂xy) (Figure 5a) shows a bimodal distribution in which
the mean value of negative residual errors is −0.008 and
the mean value of positive residual errors is 0.008. The
bimodality of the residual errors implies that |rxy| > |τ̂xy|.
In addition, the plot of (rxy − τ̂xy)2 versus rxy (Figure 5b)
shows that residual errors are smaller closer to extreme
values and reach a maximum around±0.45. The bimodal-
ity observed in Figure 5a and the shape observed in
Figure 5b closely follow the bimodality and shape of the
bias between the Pearson estimator and the true corre-
lation of a population ρ, which is approximately ρ(1 −
ρ2)/(2n) [32,33]. The bias ρ(1−ρ2)/(2n) is maximized as
ρ assumes a value around ±0.58.
The analysis of all 124,750 pairwise correlations of

500 randomly selected genes revealed good agreement
between rxy and τ̂xy, despite the approximations we made
about homogeneity of data within groups and the rel-
atively low number of elements in each group; in our
example data set 12 ≤ ni ≤ 18, whereas Hassler and
Thadewald’s example data set had around 90 elements
in each of two groups [9]. Therefore, our analysis reas-
sured us that the Pearson correlation coefficients obtained
from the large expression matrix can be explained by
heterogeneities due to different means and variances-
covariances across the 19 groups we used to classify our
example data set.
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Figure 5 Residual errors between rxy and τ̂xy . (a) Histogram of residual errors (rxy − τ̂xy); (b) squared-residual errors (rxy − τ̂xy)
2 vs. rxy .

Next, we show the influence of each term of Equation 7
on signs and magnitudes of rxy, the Pearson correlation
coefficients obtained from the large expression matrix.
The plot of rxy versus s̄xy (Figure 6a) shows that rxy ranges
from −1 to +1 for negative and positive values of s̄xy.
Therefore, positive or negative covariances of a gene pair
within each of the 19 groups have no effect on positive or
negative correlations estimated from the large expression
matrix. Conversely, the “S” shape observed in plot of rxy
versus dxy (Figure 6b) indicates that positive or negative
mean-differences dxy (Equation 9) of a gene pair across the
19 groups are the sole determinant of the sign of rxy, i.e.
dxy > 0 ⇒ rxy > 0 and dxy < 0 ⇒ rxy < 0. The magni-
tude of rxy is due mostly to mean differences because the
correlation between rxy and

dxy
dxdy is 0.98 (the second term

of Equation 7), whereas the correlation between rxy and
s̄xy
dxdy is 0.31 (the first term of Equation 7).
Because |rxy| > 0.7 obtained from pools of microar-

ray data has been used as the cut-off value representing
a strong association between gene pairs [21-23], we com-
puted the percentage contribution of the covariance and
mean differences terms on the magnitude of |rxy| ≥ 0.7,
i.e. s̄xy

rxydxdy + dxy
rxydxdy ≈ 1. There were 10, 567 correla-

tion coefficients with roughly equal numbers distributed
in the rxy < −0.7 and rxy > 0.7 categories. The median
of s̄xy

rxydxdy% was 1.98% with 50% of the data showing val-
ues between 0.04% and 5.32%. Conversely, the median of

dxy
rxydxdy% was 96.93% with 50% of the data showing values
between 93.51% and 98.98%.

Figure 6 Influence of covariances andmeans of 19 groups on signs of the Pearson correlation coefficients obtained from the pooled
expression data. (a) s̄xy = ∑19

i λisxy,i ; (b) dxy = ∑19
i=1

∑19
j=i+1 λiλj(x̄i − x̄j)(ȳi − ȳj).
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A combination of correlation coefficients between
expression profiles within each group, given by r̄xy =∑19

i=1 λirxy,i, ranged from −0.6 < r̄xy < 0.89 with 0.132 as
the mean value. A direct comparison between rxy and r̄xy
showed a correlation coefficient of 0.3.
By applying the asymptotic theory developed by Hassler

and Thadewald [9] to the Pearson correlation coefficients
obtained from the large expression matrix, we showed
that differences in means across 19 heterogeneous groups
of data is the main factor determining the magnitude
and sign of coefficients of 124,750 gene pairs. As previ-
ously shown by Hassler and Thadewald [9], this result
corroborates that gene pairwise correlation coefficients
estimated from a pool of microarray data do not mea-
sure “the closeness of linear relationship” [34] (p. 177)
between expressions of a gene pair. Instead, they mea-
sure the extent of mean differences of a gene pair across
different groups comprising the pool of data.

Heteroskedasticity across a pool of microarray data
Here, we examine the case in which Pearson correlation
coefficients are obtained from a pool of microarray data
in which only gene pairwise variances-covariances differ
across groups of data, i.e. �xy,i �= �xy,j for i �= j. In this
case, Equation 1 can be written as

r∗xy
p→ τ ∗

xy =
∑N

i=1 λiσxy,i√∑N
i=1 λiσ

2
x,i

∑2
i=1 λiσ

2
y,i

(14)

For instance, heteroskedasticity could occur in a situa-
tion in which data from completely replicated microarray
experiments are pooled to be examined as one data set.
As was reported in the work of Goldstein et al. [1],
data variability could differ substantially across replicated
microarray experiments.
In order to attain only heteroskedasticity across the 19

groups of our example data set, we removed the effect of
varied experimental conditions on expressions of genes
within each group. For this purpose, we fitted linear mod-
els to genes (within each group i = 1, 19) and obtained
their residuals. Following the methodology for differential
expression of genes proposed by Smith [35], we modeled
the expression level of all genes in group i, here repre-
sented by a matrix Yi, with a systematic treatment effect
(a linear model represented by Ziβi) plus error, i.e.

Yi = Ziβi + εi

for i = 1, 19. We assumed that εi ∼ N(0,�i), where �i is
the variance-covariance matrix of all genes in each group
i = 1, 19. We obtained residuals as

ε̂i = Yi − Ziβ̂i

where β̂i was estimated using the open-source Bioconduc-
tor R package Limma [30,31]. This approach is equivalent

to subtracting expression levels of each biological replicate
from their mean values. We used linear models because
they are well known by the community who works with
differential expression of microarrays measurements and
the process of obtaining their residuals is easy and auto-
matic through the use of the Limma package [30,31].
We combined all gene expression residuals from the 19

groups into one pool of residuals (a large matrix of resid-
uals including 520 columns and 22,810 rows). Expression
levels of the two treatment conditions “genotoxic stress
applied to root 1 hour post-treatment” and “heat control
applied to shoot 24 hours post-treatment” could not be
used in the analysis of residuals because they had only
one biological replicate (refer to Additional file 2 for more
details). This explains why the matrix of residuals has 520
columns instead of 522 columns. We repeated the analy-
sis described in steps 1–4 from the section “Application
to experimental microarray data” for the data in the large
matrix of residuals.

Pearson correlation coefficients estimated from the pooled
residuals
Here we show results of the analysis involving the large
matrix of residuals (pooled residuals) for the same subset
of 500 genes used in the analysis of the large expression
matrix. Pearson correlation coefficients (r∗xy) of all 124,
750 pairwise combinations of 500 genes obtained from
the large matrix of residuals ranged from −0.553 to 0.849
with 0.01 as the mean value. Their asymptotic counter-
parts (τ̂ ∗

xy), estimated according to Equation 7, ranged
from −0.554 to 0.849 with 0.01 as the mean value. The
combination of covariances within each of the 19 groups,
i.e.

∑19
i=1 λisxy,i, determined the sign of r∗xy because all

pairwise mean differences among groups were zero (data
shown in Additional file 1).
We then compared r∗xy ≈

∑19
i=1 λisxy,i√∑19

i=1 λis2x,i
∑19

i=1 λis2y,i
to the

weighted average of correlations obtained within each of
the 19 groups of residuals, i.e. r̄∗xy = ∑19

i=1 λir∗xy,i; r̄∗xy
ranged from −0.631 to 0.847 with 0.011 as the mean
value. In addition, we observed a strong linear relationship
between r∗xy estimated from the large matrix of residuals
and r̄∗xy, with a correlation equal to 0.93. Therefore, the
Pearson correlation coefficients obtained from the large
matrix of residuals (whose heterogeneities result from dif-
ferent variances-covariances across the 19 groups) also
measure a linear relationship between the expression
residuals of a gene pair.

Bias of correlation coefficients obtained across 19 groups
of microarray data
We provide here a performance metric for the correlation
coefficients estimated across the 19 groups of microarray
data by assessing their bias with respect to coefficients



Almeida-de-Macedo et al. BMC Bioinformatics 2013, 14:214 Page 11 of 16
http://www.biomedcentral.com/1471-2105/14/214

within each of the 19 groups. We quantified bias as in
Equation 15:

B(ρ̂xy) =
√∑19

i=1 λi(ρ̂xy − ρ̂xy,i)2

19
(15)

where ρ̂xy represents the correlation point estimate of a
gene pair xy across the 19 groups of microarray data and
ρ̂xy,i represents its counterparts within each group.
We evaluated the bias (as defined in Equation 15) of

each of the 124,750 gene pairs’ correlation coefficients that
were obtained according to: (a) ρ̂xy = rxy, the Pearson
correlation coefficients obtained directly from the large
expression matrix (pooled data); (b) ρ̂xy = r̄xy, the aver-
age of correlations between expression profiles within i =
1, 19 groups comprising the large expression matrix; (c)
ρ̂xy = r∗xy, the Pearson correlation coefficients estimated
directly from the large matrix of residuals (pooled residu-
als); and (d) ρ̂xy = r̄∗xy, the average of correlations between
expression residuals within i = 1, 19 groups compris-
ing the large matrix of residuals. For the large expression
matrix, ρ̂xy,i = rxy,i is the Pearson correlation coeffi-
cient between expression profiles within each of 19 groups
comprising the large expression matrix, whereas for the
large matrix of residuals, ρ̂xy,i = r∗xy,i is the Pearson cor-
relation coefficient between expression residuals within
each of 19 groups comprising the large matrix of residu-
als. Table 2 gives the statistical summaries of the values
obtained for B(rxy), B(r̄xy), B(r∗xy), and B(r̄∗xy).
The analysis involving the data in the large expres-

sion matrix (whose heterogeneities were due to means
and variances-covariances differences across 19 groups)
resulted in consistently larger statistical summaries of
B(rxy) than did those of B(r̄xy). In addition, the maximum
value of B(rxy) is twice as much the maximum value of
B(r̄xy) (Table 2). For the large matrix of residuals (whose
heterogeneities were due only to heteroskedasticity), the
values of B(r∗xy) shown in Table 2 are slightly larger than
are the values of B(r̄∗xy).
Moreover, more information can be grasped through

the visualization of biases versus coefficients, as shown

in Figures 7a and 7b. The trend shown in the plot of
B(rxy) versus rxy (Figure 7a), where B(rxy) increases as |rxy|
approaches±1, is very distinct from that shown in the plot
of B(rxy) versus r̄xy (Figure 7b), where B(rxy) decreases
as r̄xy approaches ±1. Indeed, the mean value B(rxy) for
|rxy| > 0.7 is 0.18, whereas the mean value of B(r̄xy) for
|r̄xy| > 0.7 is 0.045. The visualization of biases involv-
ing the large matrix of residuals showed a roughly random
pattern between B(r∗xy) and |r∗xy|, as |r∗xy| decreases to zero
(data shown in Additional file 1). The plot of B(r̄∗xy) ver-
sus r̄∗xy showed a pattern similar to the one observed in
Figure 7b, where B(r̄∗xy) decreases as r̄∗xy approaches ±1
and both B(r̄∗xy), B(r̄xy) show maximum values around
zero (data shown in Additional file 1).
The plot of B(r̄∗xy) versus B(r∗xy) (Figure 8) reveals

all data points lying below the diagonal, thus imply-
ing that B(r̄∗xy) < B(r∗xy), ∀ r̄∗xy, r∗xy. This result cor-
roborates that, in the case of only heteroskedasticity
across the 19 groups of microarray data, the combination
of correlation coefficients performs better than pooling
data.

Discussion and conclusion
Discussion
In this study, we performed a comprehensive analysis of
Pearson correlation coefficients obtained from combining
data of 19 heterogeneous groups of experimental microar-
ray data into one large pool. By applying the theory devel-
oped by Hassler and Thadewald [9] to our example data
set, we determined the specific effect of mean differences
and heteroskedasticity across the 19 groups on the sign
and magnitude of the pooled coefficients. In addition, we
provided a performancemetric for correlation coefficients
by quantifying their biases.
We quantified the bias of the correlation coefficient

of a gene pair through the mean squared error between
its estimate across a pool of groups and its estimates
within groups. A similar method has been used by Hunter
and Schmidt to assess the variance of their meta-analysis
estimator of the Pearson correlation coefficient across
independent studies [36]. We evaluated the bias of gene-
to-gene correlations estimated according to the following

Table 2 Statistical summaries of biases of correlation coefficients

Min. 1st Qu. Median 3rdQu. Max.
B(rxy) 0.022 0.078 0.099 0.132 0.308

B(r̄xy) 0.021 0.062 0.072 0.083 0.153

B(r∗xy) 0.019 0.049 0.057 0.067 0.141

B(r̄∗xy) 0.018 0.049 0.057 0.065 0.132

B(rxy) – bias of the Pearson correlation coefficients estimated directly from the large expression matrix;
B(r̄xy) – bias of the average of correlations between expression profiles within i = 1, 19 groups;
B(r∗

xy) – bias of the Pearson correlation coefficients estimated directly from the pooled residuals; B(r̄∗
xy) – bias of the average of correlations between expression

residuals within i = 1, 19 groups.
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Figure 7 Assessment of biases of the correlation coefficients estimated from 19 groups of expression data. B(ρ̂xy) =

√
19∑
i=1

λi(ρ̂xy−ρ̂xy,i)2

19 for (a)
ρ̂xy = rxy , the Pearson correlation coefficients estimated directly from the large expression matrix; (b) ρ̂xy = r̄xy , the average of correlations between
expression profiles within i = 1, 19 groups; ρ̂xy,i is the correlation between expression profiles within each group.

two methods: (a) by combining 19 groups of microar-
ray data into a large pool to be analyzed as a single data
set (pooled data) and (b) by combining correlation coef-
ficients of each of 19 groups of microarray data into
an average weighted by the number of elements in each
group, which corresponds to the Hunter-Schmidt meta-
analysis estimator of the Pearson correlation coefficient
across independent studies [36].
The data used in this study came from 10 microarray

experiments (AtGenExpress Project [27]) carried out by
seven different laboratories distributed across Germany

that followed the same experimental protocol; these are
a subset of the large pool of microarray data found in
the study of Horan et al. [22]. Experiments followed a 3-
factorial design with treatment (abiotic stress, control),
tissue (root, shoot, or seedlings in general), and time post-
treatment as factors [27]. Mean differences within and
across experiments were a matter-of-fact because statis-
tically significant differences in gene expression of sev-
eral types of abiotic stress versus control treatment were
reported in Kilian et al.’s study [27]. We expected dif-
ferences due to variability across experiments to remain

Figure 8 Comparison between B(r∗xy) and B(r̄∗xy). B(r∗xy) is the bias of the Pearson correlation coefficients estimated directly from the pooled
residuals; B(r̄∗xy) is the bias of the average of correlations between expression residuals within i = 1, 19 groups.
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after removing mean differences because of reported dif-
ficulties in the reproduction of microarray studies [1].
Therefore, homogeneity cannot be ensured across experi-
ments, and combining the means or residuals of biological
replicates of the 10 experiments into a large pool as a
single set is not sound from a statistical viewpoint.
The analysis of the components of the correlation

coefficients obtained from the large expression matrix
corroborated the results predicted by both theory and
simulation that variances-covariances within the 19
groups had negligible impact on correlation coefficients,
but different means across the 19 groups had a deci-
sive effect on the sign as well as on the magnitude of
coefficients. Coefficients that were greater than 0.7 or
less than −0.7 showed the largest range of bias (Table 2).
Therefore, large values of the pooled coefficients were an
artifact in the sense that they did not communicate a real
linear association between the expression profiles of two
genes; rather, they appeared because the data were com-
bined into a large pool. For this reason, large values of the
pooled coefficients are in fact an ecological fallacy [10].
We also showed through Monte Carlo simulation that

the structure of different means across a pool of 10 ≤
N ≤ 100 groups could generate Simpson’s paradox. In
our case study simulation shown in Figure 2, we showed
that even though the correlation within each group
was +0.9, a pool of N (10 ≤ N ≤ 100) groups provided
negative correlation coefficients because the combination
of all pairwise mean differences had a negative sign and
greater magnitude than the positive covariance of the data
within groups. Hassler and Thadewald [9] studied Simp-
son’s paradox through the analytical solution of Equation 1
forN = 2, and showed that the occurrence of mean differ-
ences with opposite signs in both correlated variables is a
condition for contradictory results between a correlation
coefficient that is estimated across or within each of two
groups.
We combined residuals from fitting linear models of

every gene into a large matrix of residuals (22,810 rows
x 520 columns). Here we departed from the assumption
of independence (common to the analysis of differentially
expressed genes [35,37]) and considered a multivariate
normal distribution for residuals within groups, with a
mean of zero and variance-covariance �xy,i, i = 1, 19.
The large matrix of residuals gave us the opportunity
to evaluate gene pair correlations estimated from a pool
of data marked by only heteroskedasticity. Our results
showed that correlation coefficients estimated across the
19 groups of residuals were closely related to the variance-
covariances within groups. We also found a strong linear
relationship between the Pearson correlation coefficients
obtained from the large matrix of residuals and the coef-
ficients resulting from averaging correlation estimates
within groups. However, the heteroskedasticity of the

data in the large matrix of residuals resulted in less effi-
cient estimations of the correlation between a gene pair
than did the classical meta-analysis approach of combin-
ing correlation coefficients into an average. These results
were corroborated by Monte Carlo simulations of only
heteroskedasticity across N > 2 groups of data.
The results shown in this study indicate that the com-

bination of statistical results is best suited for estimating
correlations of a gene pair across several microarray stud-
ies. Nevertheless, further studies are necessary to assess
various methods of combining within-groups gene-to-
gene correlation coefficients.

Conclusion
This study demonstrates three aspects of the importance
of statistical methods in the synthesis of information
across microarray experiments:

(A) Large values of gene-to-gene Pearson correlation
coefficients estimated from a pool of 19 groups of
microarray data were an ecological fallacy; the effect
of heterogeneous means across a pool of data
overpowers the covariance structure of the data.

(B) The effect of heterogeneous variance-covariances
across a pool of data causes less efficient estimates of
Pearson correlation coefficients across groups of
microarray data than does the approach of combining
correlation coefficients of individual groups.

(C) The combination of statistical results is best suited
for synthesizing the correlation between expression
profiles of a gene pair across several microarray
studies.

Additional files

Additional file 1: This file contains additional figures detailing results.

Additional file 2: This file gives detailed information about treatment
conditions and number of biological replicates in each of the 10
microarray experiments of our example data set.

Additional file 3: This file gives the R function that estimates τ̂xy , s̄xy ,
dxy , dx and dy .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MMAM elaborated the project idea, compiled the example data set,
performed the statistical analysis, and wrote major parts of the paper. NR
downloaded the cel files from TAIR. YF and JH contributed to the project idea
and editing of the manuscript. ESW wrote parts of the paper and provided the
biological input. All authors read and approved the final manuscript.

Acknowledgements
Many thanks to Ron Mowers for helpful discussions and support. Many thanks
to Di Cook for suggestions on the statistical analysis, design of the simulation
experiment, and data visualization with the R package ggplot2. We thank two
anonymous reviewers for their insightful comments.

http://www.biomedcentral.com/content/supplementary/1471-2105-14-214-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-214-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2105-14-214-S3.rtf


Almeida-de-Macedo et al. BMC Bioinformatics 2013, 14:214 Page 14 of 16
http://www.biomedcentral.com/1471-2105/14/214

Received: 28 August 2012 Accepted: 21 June 2013
Published: 4 July 2013

References
1. Goldstein DR, Delorenzi M, Luthi-Carter R, Sengstag T: Comparison of

meta-analysis to combined analysis of a replicated microarray
study. InMeta-Analysis and Combining Information in Genetics and
Genomics, Volume 1. 1st edition. Edited by Guerra R, Goldstein DR. Boca
Raton: Chapman and Hall; 2010:135–156.

2. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E,
Garcia JGN, Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E,
Jedlicka AE, Kawasaki E, Martínez-Murillo F, Morsberger L, Lee H, Petersen
D, Quackenbush J, Scott A, Wilson M, Yang Y, Qing SY, Yu W:
Multiple-laboratory comparison of microarray platforms. Nat
Methods 2005, 2:345–349.

3. Goldstein DR, Guerra R: A brief introduction tometa-analysis, genetics
and genomics. InMeta-Analysis and Combining Information in Genetics
and Genomics, Volume 1. Goldstein, DR. Edited by Guerra R. Boca Raton:
Chapman and Hall; 2010:3–20.

4. Hedges LV, Olkin I: Statistical Methods for Meta-Analysis. Orlando:
Academic Press; 1985.

5. De Veaux RD, Hand DJ: How to lie with bad data. Stat Sci 2005,
20:231–238.

6. Simpson EH: The interpretation of interaction in contingency tables.
J Roy Stat Soc Ser B 1951, 13:238–241.

7. Ooi YH: Simpson’s paradox - a survey of past, present and future
research. InWharton Research Scholars Journal. Edited by Scholarly
Commons; 2004. University of Pennsylvania.

8. Blyth CR: On Simpson’s paradox and the sure thing principle. JASA
1972, 67:364–366.

9. Hassler U, Thadewald T: Nonsensical and biased correlation due to
pooling heterogeneous samples. Statistician 2003, 52:367–379.

10. Cressie NAC: Statistics for Spatial Data. New York: John Wiley & Sons; 1993.
11. Gehlke CE, Biehl K: Certain effects of grouping upon the size of the

correlation coefficient in census tract material. JASA 1934,
29:169–170. [http://www.jstor.org/stable/2277827]

12. Openshaw S, Taylor PJ: Amillion or so correlation coefficients: three
experiments on the modifiable areal unit problem. In Statistical
Applications in the Spatial Sciences. Edited by Wrigley N. London: Pion
Limited; 1979:127–144.

13. Brockwell SE, Gordon IR: A comparison of statistical methods for
meta-analysis. Stat Med 2001, 20:825–840.

14. Parmigiani G, S E, Garrett-Mayer ES, Anbazhagan R, Gabrielson E: A cross-
study comparison of gene expression studies for the molecular
classification of lung cancer. Clin Cancer Res 2004, 10:2922–2927.

15. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B,
Desmedt C, Ignatiadis M, Sengstag T, Schütz F, Goldstein DR, Piccart M,
Delorenzi M:Meta-analysis of gene expression profiles in breast
cancer: towards a unified understanding of breast cancer subtyping
and prognosis signatures. Breast Cancer Res 2008, 10:R65.

16. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,
Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis of
cancer microarray data identifies common transcriptional profiles
of neoplastic transformation and progression. PNAS 2004,
101:9309–9314.

17. Hu P, Greenwood CMT, Beyene J: Integrative analysis of multiple gene
expression profiles with quality-adjusted effect size models. BMC
Bioinformatics 2005, 6:128.

18. Borozan I, Chen L, Paeper B, Heathcote JE, Edwards AM, Katze M, Zhang Z,
McGilvray ID:MAID : An effect size based model for microarray data
integration across laboratories and platforms. BMC Bioinformatics
2008, 9:305.

19. Kim S, Webster MJ: Correlation analysis between genome-wide
expression profiles and cytoarchitectural abnormalities in the
prefrontal cortex of psychiatric disorders.Mol Psychiatr 2010,
15:326–336.

20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:
Gene ontology: tool for the unification of biology. Nat Genet 2000,
25:25–29.

21. Mentzen WI, Wurtele ES: Regulon organization of Arabidopsis. BMC
Plant Biol 2008, 8:99.

22. Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu JK,
Cushman JC, Gollery M, Girke T: Annotating genes of known and
unknown function by large-scale coexpression analysis. Plant Physiol
2008, 147:41–57.

23. Feng YP, Hurst J, Almeida-de Macedo M, Chen X, Li L, Ransom N, Wurtele
ES: Amassive human co-expression-network and its medical
applications. Summit Syst Biol, Chem Biodivers. in press.

24. Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowman ME, Li L,
Larsen E, Wurtele ES, Noel JP: Evolution of the chalcone-isomerase fold
from fatty-acid binding to stereospecific catalysis. Nature 2012.

25. The R project for statistical computing. [www.r-project.org/]
26. Venables WN, Ripley BD:Modern Applied Statistics with S, fourth edition.

New York: Springer; 2002. [http://www.stats.ox.ac.uk/pub/MASS4] [ISBN
0-387-95457-0].

27. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C,
Bornberg-Bauer E, Kudla J, Harter K: The AtGenExpress global stress
expression data set: protocols, evaluation andmodel data analysis
of UV-B light, drought and cold stress responses. Plant J 2007,
50:347–363.

28. The Arabidopsis Information Resource. [www.arabidopsis.org/]
29. Gautier L, Cope L, Bolstad BM, Irizarry RA: affy—analysis of Affymetrix

GeneChip data at the probe level. Bioinformatics 2004, 20(3):307–315.
30. Bioconductor – open source software for bioinformatics. [http://

www.bioconductor.org/]
31. Smyth GK: Limma: linear models for microarray data. In Bioinformatics

and Computational Biology Solutions using R and Bioconductor. Edited by
Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer;
2005:397–420.

32. Soper HE: On the probable error of the correlation coefficient to a
second approximation. Biometrika 1913, 9:91–115.

33. Fisher RA: On the probable error of the correlation coefficient to a
second approximation. Biometrika 1915, 10:507–521.

34. Snedecor GW, Cochran WG: Statistical Methods. Ames: Iowa State
University Press; 1989.

35. Smyth GK: Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mo
B 2004, 3(1). [www.bepress.com/sagmb/vol3/iss1/art3]

36. Field AP:Meta-analysis of correlation coefficients: a Monte-Carlo
comparison of fixed- and random-effects methods. Psychol Methods
2001, 6:161–180.

37. Smyth GK, Yang YH, Speed TP: Statistical issues in microarray data
analysis.MethodMol Biol 2003, 224:111–136.

doi:10.1186/1471-2105-14-214
Cite this article as: Almeida-de-Macedo et al.: Comprehensive analysis of
correlation coefficients estimated frompooling heterogeneousmicroarray
data. BMC Bioinformatics 2013 14:214.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.jstor.org/stable/2277827
www.r-project.org/
http://www.stats.ox.ac.uk/pub/MASS4
www.arabidopsis.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
www.bepress.com/sagmb/vol3/iss1/art3

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Dissecting components of the Pearson correlation coefficient obtained from a pool of microarray data

	Results
	Simulation study
	Simulation of only mean differences across a pool of N groups
	Simulation of only heteroskedasticity across a pool of N groups

	Application to experimental microarray data
	Example data set
	Experimental data analysis
	Mean differences across a pool of microarray data
	Pearson correlation coefficients obtained from the pooled expression data
	Heteroskedasticity across a pool of microarray data
	Pearson correlation coefficients estimated from the pooled residuals
	Bias of correlation coefficients obtained across 19 groups of microarray data

	Discussion and conclusion
	Discussion
	Conclusion

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	References

