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Abstract

of the observation for SNVs prediction.

Background: The rapid development of next generation sequencing (NGS) technology provides a novel avenue for
genomic exploration and research. Single nucleotide variants (SNVs) inferred from next generation sequencing are
expected to reveal gene mutations in cancer. However, NGS has lower sequence coverage and poor SNVs
detection capability in the regulatory regions of the genome. Post probabilistic based methods are efficient for
detection of SNVs in high coverage regions or sequencing data with high depth. However, for data with low
sequencing depth, the efficiency of such algorithms remains poor and needs to be improved.

Results: A new tool SNVHMM basing on a discrete hidden Markov model (HMM) was developed to infer the
genotype for each position on the genome. We incorporated the mapping quality of each read and the
corresponding base quality on the reads into the emission probability of HMM. The context information of the
whole observation as well as its confidence were completely utilized to infer the genotype for each position on the
genome in study. Therefore, more probability power can be gained over the Bayes based methods, which is very
useful for SNVs detection for data with low sequencing depth. Moreover, our model was verified by testing against
two sets of lobular breast tumor and Myelodysplastic Syndromes (MDS) data each. Comparing against a recently
published SNVs calling algorithm SNVMix2, our model improved the performance of SNVMix2 largely when the
sequencing depth is low and also outperformed SNVMix2 when SNVMix2 is well trained by large datasets.

Conclusions: SNVHMM can detect SNVs from NGS cancer data efficiently even if the sequence depth is very low.
The training data size can be very small for SNVHMM to work. SNVHMM incorporated the base quality and
mapping quality of all observed bases and reads, and also provides the option for users to choose the confidence

Background

In recent years, the advent of NGS technology has
largely propelled the genomic research. NGS can gener-
ate millions of reads ranging from 30-350 base pairs
(bp) based on the sequencing platform used. Continuous
improvement in NGS technology brings the increasing
of the throughput to a high extent and also lowers the
cost [1]. With abundant reads aligned, many novel infer-
ences can be made including regulatory element identifi-
cation, mutation detection, gene expression estimation
and detection of RNA splicing and fusion transcripts.
NGS is expected to be a powerful tool for revealing
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genetic variations contributing to various complex dis-
eases by providing sequence of a set of candidate genes,
the whole exome or the whole genome. For example,
whole genome sequencing can help in finding the fre-
quency of tumor-specific point mutations for diseases
such as multiple myeloma [2], while whole exome se-
quencing can be used to discover protein-coding muta-
tion as well as small non-coding RNAs and aberrant
transcriptional regulation that may contribute to dis-
eases such as MDS [3].

The SNV calling algorithms can be divided into two
categories. The first category includes threshold based
commercial software packages such as Roche GSMapper
and Lasergene, and the second category entails posterior
probability based method including Maq [4], SOAPsnp
[5], Varscan [6], Atlas-SNP2 [7] etc. For the threshold
based prediction methods, a good threshold setting is
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difficult to obtain and relies heavily on the user experi-
ence [8].

In transcriptome based data, the number of reads
representing a given transcript is highly variable across
all genes making it difficult to determine a minimum
depth. Moreover, the confidence for the prediction of
each location is unavailable. Compared to the threshold
based methods, posterior probability (Bayes) based
methods achieve flexibility by considering the confidence
of observation of each position on the genome. For the
cancer genome sequencing data, sequencing errors, as
well as the altered ploidy and tumor cellularity, are im-
portant factors affecting the accuracy of SNV calling. Al-
though tools exist for SNVs discovery from NGS data,
few are specifically suited to work with data from tu-
mors. Recently, SNVMix [9] addressed this problem by
incorporating the dependency of near-by genotypes and
the posterior probability to improve the accuracy of
SNVs prediction. However, the performance of SNVMix
for data with low sequencing depth is not satisfactory
compared to its performance with data having high se-
quencing depth. It has been observed that NGS provides
lower sequence coverage in certain areas of genome in-
cluding regulatory regions [10]. It is necessary to im-
prove the performance of SNVs detection for tumor data
with low sequencing depth. Moreover, SNVMix has
achieved a relatively high sensitivity in the Bayesian
framework, but the specificity is some low. The perform-
ance of specificity is needed to be improved further.

Hidden Markov model (HMM) is widely used in many
fields such as speech and handwriting recognition, text
classification, as well as DNA and protein classification
[11]. Recently, a HMM based program VARID [12] was
developed for SNVs prediction for data from multiple
sequencing platforms. VARID is mainly focused on color
space sequence and does not fully consider the mapping
and base quality of the aligned reads and corresponding
bases on the aligned reads in the considered model.
Moreover, this method is time consuming for whole
genome analysis and has not been used on RNA-Seq or
whole exome sequence analysis from tumor data so far.

In this paper we developed an algorithm SNVHMM,
for SNVs prediction of tumor data obtained from NGS
basing on a discrete HMM. Since non-SNVs are preva-
lent and continuous in the genome [13], point mutations
in cancer data are relevant to certain genes and are con-
centrated in the corresponding area [14,15], the context-
ual information, especially for the non-SNVs, can be
considered and made full use of in addition to the in-
formation from the overall distribution of traditional
Bayesian framework. So SNVHMM is expected to gain
more probability power from the contextual informa-
tion on the genome compared to traditional Bayesian
framework, and obtain better performance for SNVs
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prediction. Moreover, with the contextual information
added to the whole distribution information, SNVHMM is
also expected to improve the statistical performance
of Bayesian method for tumor data with low sequen-
cing depth.

Implementation

Problem formulation and SNVHMM model specification
We denote the length of the considered genome as L.
Given the aligned reads for the sequence in study, we
can get the depth L, of the stated position ¢ on the gen-
ome. The quality of the reads covering position ¢ and
the quality of corresponding bases on the reads are de-
noted as {rf}f;l and {qf}f;l respectively (Figure 1). We
consider three genotypes for each stated position as {aa,
ab, bb}, where {aa} denotes homozygous for the refer-
ence allele, {ab} denote heterozygous and {bb} denote
homozygous for the non-reference allele. Our aim is to
predict the genotype for each position on the genome,
given the aligned reads.

We denote the number of the hidden states as I
The hidden state and observation for each position
are noted as S={s}(t=1,2,--,L)e{v}i=1,2,-1
and O={oj(¢t=1,2,--,L) respectively, where {v,»}f:1
are all states considered. The underlying genotypes of
the sequenced genome are taken as the hidden states,
which are interpreted as follows: (1) homozygous for
normal; (2) heterozygous; (3) homozygous for muta-
tion (Figure 2). These states are important in detecting
single nucleotide polymorphism or point mutation for
normal sample as well as cancer sample. The last two
states are taken as SNV in our study. For simplicity,
we note state {aa} as state 1, state {ab} as state 2 and
state {bb} as state 3 in the following initial state distri-
bution and state transition matrix.

e Initial state distribution:
= {m,m,n3}, =Pl =wvlt=1)

e State transition matrix:

ail 4z ai3
_ A T T T
A=|an axn an |2(A],A].A]),

asy dzy ds3
a;j = P(St+1 =vjlss = v;)
e Emission probability distribution:

B = {bs,(0,)}

The observation to be considered for each position in-
cludes the coverage, the mapping quality of the covering
reads and the base quality on the covering reads
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Figure 1 Observation of HMM: the illustration for alignment at position t for the sequence in study. The observation sets {rf}; and
{qf}il are considered as the observation of o, in HMM. For the bases on the covered reads, blue color denotes the base is the same as reference
allele, yellow color denotes the base is different from reference allele while purple color denotes the base is undecided on the genome in study.

corresponding to each stated position. The observation
for each position ¢ is taken as o, = {q!, rf}tLil The emis-
sion probability b,,(o;) is calculated as a conditional
probability, given the hidden state:

by (o) = P({at. 1)1, (1)

s =) :f({‘lf‘vrzt‘}iil)

To make full use of the mapping quality and base
quality for each position on the genome, we compute b;,
(0¢) using the whole probability formula by considering

if the covered reads are correctly aligned and if the cor-
responding bases on these reads are correctly called. We
use a formula motivated by (5) in [9] by introducing a
generalized Binomial distribution in addition to the con-
ditional computation of the base calling probability and
aligning probability.

by, (o) = (;ﬁ)n};l{o.% (1—r;> +0.5¢ [q;ui + (1—q§>(1—u,~)]}
(2)

where {u;}._, is the Binomial distribution parameter for
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delelel— allele
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Figure 2 States of HMM: the illustration for three states {aa}, {ab} and {bb} in HMM. The meaning of different colors are defined the same
as in Figure 1.
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each position on the genome and P, is the number of
reads having the same base with reference allele at pos-
ition t. The detailed derivation of (2) is given at the sup-
plementary file. In this study, we only considered two
types of nucleotides covering the stated position, which
have the largest and second largest number at the stated
position. In the case of rare third alleles, these reads are
assumed to be errors. In this study, u#; denotes the prob-
ability of occurrence for the allele having the largest
number at the stated position.

Prior distribution of HMM

We take the initial distribution of 7 as Dirichlet distribution
with hyper-parameter & = (33, 85, 83), u = (11, Uy, u3) is taken
conjugately according to a Beta distribution with hyper-
parameter a = (@, ay, a3) and 8 = (51, 52, f3) as follows:

P(7|8) = Dirichlet(m|5) (3)
= Beta (ur|ax, B;) (4)

where we take & = (1000, 100, 100) by assuming that most
positions will be homozygous for the reference allele. We
also set & =(1000, 500, 1) and S = (1,500, 1000) by assum-
ing the probability of state {aa} occurring at the stated pos-
ition is much larger than that it not occurring, vice versa
for state {bb}. We also assume the probability of state {ab}
occurring at the stated position is the same as that it not
occurring. For the initial distribution of state transition
matrix, we take the initial distribution of A; as follows:

P(A;ly;)

where we take y; = (1000, 100, 100), y, = (100, 1000, 100)
and y3 = (100, 100, 1000). Since the sum of elements in A;
should be equal to probability 1, a normalization for

{A;}._, is performed after each iteration of SNVHMM.

P(”k‘“k’/gk)

= Dirichlet(A;ly;) (5)

Estimation of HMM parameters

For simplicity, we denote the model parameters of HMM
as A 2 (i, u, A) and learn the unknown HMM by using EM
algorithm and computing the maximum likelihood estimation
when the observed data are incomplete [16]. The aim is to
find the model parameter A maximizing the observation prob-
ability i.e. L(o,A) £ P(0Jd) or log P(o|d),where the later one is
usually used when the length of the observation is large. We
use a special case of EM algorithm, Baum-Welch algorithm
[11], to learn the unknown parameters. For the training of
HMM, we use the following auxiliary function Q(1,1) as
the objective function for the optimization of the HMM pa-
rameters.

QA1) =

It is proved that maximizing the following auxiliary
function can lead to the increase of the likelihood

ZyeslogP (0, S|1)P(S|01) (6)
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P(O|2), ie. 2=Q(A,A)—P(0|2) >P(0JA) [11]. Given
model parameter set A, P(O, S|1) can be calculated as:

Hfilastflstbst(ot) (7)

(6) with (7), (6) can be re-

P(0,SA) =

Replacing term P(O, S|1) in
written as:

Q(2,1) =Xyeslogit,,P(O,S|A) + Lyes (Ir, logdy, ,5,)P(O, S|A)
+ Lses (Zf:l logBSt(ot))P(Ov‘SM) (8)

The update of model parameters 7; and a; with con-
straints YN 77; = 1 and Z “,a; = 1 can be obtained by

maximizing the first and second term of (8) with respect
to 7z; and a;; respectively as follows:

- P(0,s9 = i|A)
S ©)
T P
= Zt:lI;(Ovst—l = lft‘_ jlA) (10
Y, 1P(0, 51 =i|2)

The update for {1;}\_, can be obtained by maximizing
the third term with respect to {u;}._,, however, the
close-form expression is not available due to the compli-

. L
cated structure of the observation term f ({qf 7’"5};1)‘

We use a Newton iteration with respect to the first and
second derivation of the third term as follows:

T of P(O se =iA)

t= la f
new __  old_
ne T af P05 =) (11)
Bu, Zt 1 a f

The forward and backward algorithm [11] is used to up-
date 7z; and a;. In the implementation of Baum-Welch,
the update of u; is used for the update of the emission
probability. Finally, we use Viterbi algorithm [11] to infer
the hidden states of the sequence in study.

Results

Dataset

Two types of tumor data are used to verify the effective-
ness of our model. The first type is the lobular breast
tumor data with two different sequencing depths, which
includes 497 positions generated using the Illumina GA
II platform and was validated by Sanger. These positions
were sequenced using Sanger capillary-based technology
and were predicted to be non-synonymous protein-
coding. 305 of these positions were confirmed as SNV
and are taken as positive (TP), while 192 were not con-
firmed and are taken as true negative (TN). We take
these positions as ground truth for the computation of
TP, false positive (FP), TN, false negative (FN). These
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data can be obtained from the supplementary dataset 2A
and 2C [9] along with their corresponding ground truth
for SNVs in supplementary dataset 2B and 2D. The
depths of supplementary dataset 2A and 2C are 10X and
40X respectively. Moreover, we use these datasets to
compare between SNVHMM and SNVMix2, which is
more efficient than SNVMix1 [9]. For better training of
SNVMix2, we also use the supplementary dataset 3A
and 3C [9].

The second dataset that came from MDS tumor data
comprises of 7 MDS samples including 5 samples from
RNA-Seq having depth <20 and 2 samples from whole
exome sequencing having depth >150. These data are all
from our lab and 4 mutated MDS genes were validated
by PCR, along with other 23 common mutated MDS
genes [14,15] were also checked by SNVHMM for point
mutation detection on these genes.

Statistical metrics

We take states of ‘ab’ and ‘bb’ as SNV for each location
on the genome. Accuracy, sensitivity, specificity and F-
score are proposed to evaluate the performance of
SNVHMM and SNVMix2, which are defined as follows:

B TP + TN Somsitivit TP
ccuracy = N ensiiivi = — -
YT TIPy P+ TN + FN’ Y= Ip y EN

TN

Specificity = s, _ 2(Precision x Recall)

Precision + Recall

TP _ TP
e and Recall = 755
portion of true SNVs being predicted among the total
predicted positives and the total true positives

respectively.

where Precision = are the pro-

Statistical performance

We compare the sensitivity, specificity, precision and
F-score between SNVHMM and SNVMix2 on one
lobular breast tumor data with sequencing depth 10X
and 40X respectively. To get better classification results
for SNVMix2, we used the supplementary datasets 3A
and 3C [9] for training (SNVMix2_TO) which includes
14649 positions on different chromosomes. To test the
gain of ability for SNVHMM in utilizing contextual in-
formation in addition to the information of whole dis-
tribution in SNVMix2, we train SNVHMM only by the
test dataset itself, which is much smaller than the
datasets 3A and 3C. For comparison purpose, we also
tested SNVMix2 by training it on datasets 2A and 2C
for 10X and 40X lobular breast tumor data respectively
(SNVMix2_TI). The initial parameter for SNVHMM is
set up as described in Section Prior distribution of
HMM. Although we have specified how to encode base
and mapping uncertainty into the emission probability
in SNVHMM, obviating the need for taking thresholds
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for these quantities. However, different threshold set-
ting of mapping quality (MQ) and base quality (BQ) as
well as minimum and valid coverage (MVC) for each
location enable us to achieve better performance. Here,
MVC is the number of the least reads used to support
the prediction of SNV. The results of SNVHMM and
SNVMix2 for 10X and 40X lobular breast tumor data
under different MQ and BQ condition are reported in
Tables 1 and 2 respectively. The results are an average
estimator basing on 20 independent runs for
SNVHMM and SNVMix2 under different threshold set-
tings. For each MQ and BQ condition, we choose the
MVC achieving the best precision result for SNVHMM.
The precision and F-score of SNVHMM with respect
to different MVC for 10X and 40X lobular breast tumor
data are plotted in Figure 3a, b and Figure 4a, b re-
spectively. It is observed from Table 1 that SNVHMM
performs significantly better than SNVMix2_TI and
gains about 10% for precision and 3% for F-score in
average. SNVHMM also outperforms SNVMix2_TO for
nearly all the MQ and BQ conditions except
MQ30_BQ10, although the gain for F-score is not obvi-
ous. It is also observed that SNVHMM decreases the false
positive rate and increases the true negative rate compared
with SNVMix2_TI and SNVMix2_TO, which leads to the
improvement of specificity with a gain of 10% in average
over SNVMix2_ TO and 51% in average over
SNVMix2_TI while maintaining a relatively high sensitiv-
ity. The same trend can also be observed in Table 2.
SNVHMM  outperforms both SNVMix2_TO and
SNVMix2_TT for nearly all threshold conditions. Compar-
ing SNVHMM with SNVMix2_TI, SNVHMM gains about
3.5% for precision and 14% for specificity. Comparing
SNVHMM with SNVMix2_TO, SNVHMM gains about
2.1% for precision and 87% for specificity while
maintaining a relatively high sensitivity. It is also noted
that the performance of SNVHMM attains its peak and
also achieves the best gain over SNVMix2_TI and
SNVMix2_TO at MQ30&BQ10 condition.

Comparing Table 1 with Table 2, we can observe the
overall improvement for performance of SNVHMM,
SNVMix2_TI and SNVMix2_TO. It is not surprising
for more information can be used for SNVs prediction
with the increase of sequencing depth. It is also noticed
that the performance gap between SNVMix2_TI and
SNVMix2_TO narrowed with the increase of sequencing
depth while the gain of accuracy for SNVHMM over
SNVMix2_TTI is obvious. From Figures 3 and 4, it is ob-
served that the best MVC value for precision and F-
score is between 2-5 for 10X data and between 6-9 for
40X data respectively at different threshold conditions.
So a moderate MVC ranging from 15% to 25% in pro-
portion to the sequencing depth is needed for efficient
prediction under different threshold settings. It is not
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Table 1 Comparison of statistical performance of SNVHMM with SNVMix2 with different mapping quality (MQ) and
base quality (BQ) threshold for 10X data

Model MQ BQ TP FP TN FN Sensitivity(%) Specificity(%) Accuracy(%) F-score
SNVHMM 50 20 247 59 133 58 80.98 69.27 76 46(MVC = 4) 0.8085
40 20 254 66 126 51 83.28 65.63 7646(MVC =4) 0.8128

30 20 256 70 12 49 83.93 65.54 76.05(MVC = 4) 08114

30 10 236 63 129 69 77.38 67.19 7344(MVC =5) 0.7815

20 10 273 111 81 32 89.51 42.19 71.23(MVC=3) 0.7925

10 5 273 110 82 32 89.51 4271 7143(MVC=2) 0.7936

SNVMix2_TI 50 20 303 160 32 2 99.34 16.67 6740 0.7891
40 20 305 174 18 0 100 9.38 64.99 0.7781

30 20 305 174 18 0 100 938 64.99 0.7781

30 10 305 173 19 0 100 9.89 65.19 0.7791

20 10 305 191 1 0 100 0.52 61.56 0.7615

10 5 305 192 0 0 100 0 61.37 0.7606

SNVMix2_TO 50 20 245 75 117 60 80.32 60.94 72.84 0.7840
40 20 261 88 104 44 85.57 5417 7344 0.7982

30 20 266 90 102 39 87.21 53.13 74.04 0.8048

30 10 274 92 100 31 89.83 52.08 75.25 0.8167

20 10 283 125 67 22 92.78 34.90 7042 0.7938

10 5 290 134 58 15 95.08 30.21 70.02 0.7956

Table 2 Comparison of statistical performance of SNVHMM with SNVMix2 with different mapping quality (MQ) and
base quality (BQ) threshold for 40X data

Model MQ BQ TP FP TN FN Sensitivity(%) Specificity(%) Accuracy(%) F-score
SNVHMM 50 20 281 77 115 24 92.13 59.89 79.68(MVC=7) 0.8477
40 20 283 83 109 22 92.78 56.77 78.87(MVC =6) 0.8435

30 20 273 77 115 32 89.51 59.89 78.07(MVC=9) 0.8336

30 10 289 79 13 16 94.75 58.85 80.88(MVC =9) 0.8588

20 10 279 86 106 26 9147 55.21 7746(MVC = 8) 0.8328

10 5 281 87 105 24 9213 54.69 77.67(MVC=7) 0.8351

SNVMix2_TI 50 20 291 109 83 14 9540 4323 75.25 0.8255
40 20 294 113 79 1 96.39 41.14 75.05 0.8258

30 20 294 115 77 1 96.39 40.10 74.65 0.8235

30 10 295 113 79 10 96.72 41.15 75.25 0.8275

20 10 294 17 75 " 96.39 39.06 74.25 0.8212

10 5 295 118 74 10 96.72 38.54 74.25 0.8217

SNVMix2_TO 50 20 283 86 106 22 92.79 55.21 7827 0.8398
40 20 287 93 99 18 94.10 51.56 7767 0.8380

30 20 287 96 9 18 94.10 50.00 77.06 0.8343

30 10 284 105 87 21 93.11 4531 74.65 0.8184

20 10 291 105 87 14 9540 4531 76.06 0.8302

10 5 291 104 88 14 9541 45.83 76.26 08314
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surprising as a small MVC value can result in estimating
some locations with low confidence and a large MVC
value can cause some locations with high confidence be-
ing excluded from prediction. The performance of
SNVHMM with respect to different MQ and BQ thresh-
old and MVC condition is presented in Additional file 1:
Table S1 and Table S2 for 10X and 40X data respect-
ively. We also compute the p-value of accuracy and
F-score for SNVHMM against SNVMix2_TI and
SNVMix2_TO for different MQ and BQ threshold set-
tings. For SNVMix2_TI and SNVHMM with sequencing
depth 10X, the p-values for accuracy and F-score are less

than 1.8e-23 and 3.2e-4 respectively (ANOVA, t-test),
while the p-values for accuracy and F-score are less than
1.5e-12 and 9.9e-3 respectively (ANOVA, t-test) for
SNVMix2_TI and SNVHMM with sequencing depth
40X. For SNVMix2_TO and SNVHMM with sequencing
depth 10X, the p-values for accuracy and F-score are less
than 1.3e-23 and 8.8e-12 respectively (ANOVA, t-test),
while the p-values for accuracy and F-score are less
than 1.9e-7 and 4.1e-5 respectively (ANOVA, t-test) for
SNVMix2_TI and SNVHMM with sequencing depth
40X. So the gain of SNVHMM over SNVMix2_TI
is statistical significant for both 10X and 40X data
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while SNVHMM is also significantly better than
SNVMix2_TO, although the absolute gain of SNVHMM
over SNVMix2_TO is limited. The ROC of SNVHMM
and SNVMix2_TO for 20 independent runs over different
MQ and BQ threshold are plotted in Figure 5, which
show an obvious improvement for SNVHMM against
SNVMix2_TO. Since the performance of SNVMix2_TO
is better than SNVMix2_TI, the plot of ROC for
SNVMix2_TT is not presented here.

Implementation and robust analysis
The proposed algorithm is implemented in C and sup-
ports both Maq [4] and SAMtools [17] pileup format.

Running SNVHMM on the lobular breast cancer data
with sequencing depth 40X takes 1 ~2 seconds and it
needs ~20 seconds for the lobular breast cancer data in-
cluding 14649 locations with sequencing depth 40X on
64 bit Linux Ubuntu 3.0.0. SNVHMM is robust under
different MQ and BQ threshold settings. The standard
deviations of accuracy and F-score are between 0.001
and 0.003 respectively for both 10X and 40X lobular
breast cancer data.

The software is available online at https://sites.google.
com/site/snvhmmd4/. The initial setting and trained pa-
rameters are also available for the lobular breast cancer
data and MDS data.
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Performance of SNVHMM on MDS sample

To test the effectiveness of SNVHMM on large-size tumor
data, we use SNVHMM on two groups of MDS samples
to explore some common mutated genes for MDS. The
two groups of data include 5 RNA-Seq samples and 2
whole exome samples. We take MQ =50, BQ =20 and
MVC =4 for RNA_Seq data and take MQ =50, BQ=
20 and MVC=7 for the whole exome data. We use
ANNOVAR [18] for the annotation of point mutations.
The number of point mutations detected by SNVHMM is
reported in Table 3 and the corresponding annotated
genes are reported in Additional file 1: Table S3. 18 com-
mon MDS mutated genes from [14] and 5 common MDS
mutated genes from [15] are checked. Moreover, 4
MDS genes are validated by our lab. The validated in-
formation is presented in Additional file 1: Table S4. It
can be seen that majority of the 27 genes in Additional
file 1: Table S3 were detected in either RNA-Seq data
or whole exome data. Some MDS mutated genes are
detected in only few samples or not detected such as
IDH1, IDH2 and PTPN11, which are proved to be rare
in MDS [19]. Finally, 4 new mutated MDS genes:
MLL3, IQGAP2, DIDO1 and EIF4G2 are all detected
by SNVHMM to be non-synonymous, which coincides
with our validated result.

Discussion
We introduced a new algorithm SNVHMM for SN'Vs pre-
diction of tumor data from next generation sequencing,
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which generally yield data with low sequencing depth due
to sequencing errors, as well as the altered ploidy and
tumor cellularity. SNVHMM was conceived to circumvent
the shortcomings of existing algorithms that cannot effi-
ciently predict SNVs for data with low sequencing cover-
age. In this algorithm, we considered three genotypes
concerned as the hidden states of HMM, and incorporated
the confidence of the observation into the emission prob-
ability in HMM. The performance of SNVHMM was
compared with a recently published method SNVMix2.
Compared to SNVMix2, SNVHMM considered the rela-
tion of state from near-by locations in addition to their
distribution. Moreover, SNVHMM predicted the hidden
states by maximizing the posterior probability in condition
of the whole observation while SNVMix2 predicted the
genotype basing on maximizing the posterior probability
in condition of the observation from single location. So
SNVHMM gained more probability power for prediction
from the same dataset. It was shown by experiment from
the lobular breast cancer data sequenced with lower depth
that SNVHMM improved the performance of SNVMix2
by only using much smaller size of training data. It
was also observed that SNVHMM even exceeded the
performance of SNVMix2 trained by much larger datasets.
If looking into the performance of SNVHMM and
SNVMix2_TI for lobular cancer data, we found that
SNVHMM corrected 42% ~75% and 26% ~ 33% false
positives to true negatives for sequencing depth 10X and
40X respectively, with more than 85% of them to have
coverage less than 20. For SNVHMM and SNVMix2_TO,
SNVHMM also corrected 10% ~ 17% and 2% ~ 8% false
positives to true negatives for sequencing depth 10X and
40X respectively, with more than 80% of them to have
coverage less than 20. So SNVHMM improved the per-
formance of SNVMix2 for low-coverage sequencing data
or at the low depth area of genome by improving the true
negative rate largely. This verified the effectiveness of
SNVHMM in utilizing the contextual information of non-
SNVs by improving the specificity largely while remaining
a relatively high sensitivity.

For experiments on MDS samples, SNVHMM could
detect the point mutations efficiently. More than 95% of
the point mutations detected by both SNVHMM and
SNVMix2 are obvious mutation as most of the covered
reads have the same non-reference base. From the com-
mon mutated 27 genes list of MDS, most of the mutated
genes can be found in majority of the samples by
SNVHMM. We also examined the region of the genes

Table 3 Number of point mutations found in 5 MDS RNA-Seq data and 2 whole exome data for SNVHMM

Type RNA-Seq Whole exome
Sample RS_1 RS_2 RS_3 RS_4 RS_5 WE_1 WE_2
Number' 10645(91.6%) 33354(93.3%) 13881(91.5%) 4777(94.2%) 6951(92.6%) 58803(94.8%) 61344(93.7%)

'"The proportion that both SNVHMM and SNVMix2 predicted is reported in the parenthesis.
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Table 4 Comparison of the parameters of SNVHMM before and after training on lobular breast cancer (LBC) data and
MDS RNA_seq data for threshold of mapping quality 50 and base quality 20

Parameter LBC_10X

LBC_40X MDS_RNA_Seq

m initial 0.904233 0499051 0.090499

( ) (0.904233 0499051 0.090499) ( )
trained (0.001199 0.984717 0.014086) (0.000001 0.999831 0.000170) (0.988258 0.011743 0.000001)
( ) ( ) ( )

0.904233 0499051 0.090499

u initial 0.999023 0.508543 0.000123 0.999023 0.508543 0.000123 0.999023 0.508543 0.000123
trained (0.904833 0466663 0.151255) (0.897743 0.509801 0.165214) (0.904233 0.544121 0.090499)
0.848400 0.072800 0.078800 0.848400 0.072800 0.078800 0.848400 0.072800 0.078800
A initial 0.087570 0.838210 0.074300 0.087570 0.838210 0.074300 0.087570 0.838210 0.074300
0.085100 0.075600 0.839300 0.085100 0.075600 0.839300 0.085100 0.075600 0.839300
0.567581 0.325414  0.107006 0.412955  0.476467 0.110580 0.999064 0.000271  0.000377
trained 0.061140 0.864239 0.074624 0.159858  0.723625 0.116519 0.986557 0.013444  0.000001
0.044694 0.257290  0.698019 0.112374  0.323298 0.564329 1.000000 0.000001  0.000001

not detected to find no non-reference bases covered or
insufficient non-reference bases covered with low
quality.

For the training of the HMM parameters, we give the
parameters before and after training for the lobular
breast cancer data and MDS data in Table 4. The thresh-
old of mapping quality and base quality are taken as 50
and 20 respectively and the initial setting of the parame-
ters are taken from the distribution as defined in the
“Prior distribution of HMM” Section. For the lobular
breast cancer data, we both considered the 10X and 40X
conditions. It is observed that majority of the parameters
changed significantly while only a few did not change
much. The trained 7 differs largely from the initial value
for the lobular breast cancer data. It is not surprising as
7 indicates the proportion of three kinds of bases on the
genome, and it is observed from the ground truth of the
lobular breast cancer data that majority of the bases have
the state “ab”. It is also observed that majority parame-
ters of the trained u and A changed significantly. The
initial setting of # and A seems to be some close to the
true parameters of these data. For the MDS data, the
trained 7 and A changed largely compared with the ini-
tial setting while y also changed but not as much as =
and A. We check the raw data to find that the SNVs are
sparse and state “aa” dominates the whole distribution,
so it is reasonable that the first value in 7 increased
largely while the second and the third value in 7 de-
creased. It is also not surprising that all the states have a
large transition probability to state “aa”. All the trained
parameters for different thresholds of lobular breast can-
cer data and MDS data are provided at https://sites.goo-
gle.com/site/snvhmm4/.

Conclusions

We have proposed a new SNVs prediction tool
SNVHMM for cancer data from NGS. SNVHMM
can gain more probability power from the transition
probability in additional to the posterior probability

computation for the genotype distribution of whole
observation. So SNVHMM is very efficient when the
depth of NGS data is very low. Since NGS has lower
sequence coverage and poor SNV detection capability
in the regulatory regions of the genome, it is very
helpful for SNV prediction for the low-depth area on
the genome. SNVHMM outperformed an existing SNV
prediction tool SNVMix by reducing its false positives
and increasing its true negative. Moreover, SNVHMM
needs much less data for training while obtaining a
better performance than SNVMix. Finally, two types of
MDS data with different coverage are tested, which
shows the effectiveness of SNVHMM.

Availability and requirements
Project name: SNVHMM: predicting single nucleo
tide variants from next generation sequencing
Project home page: https://sites.google.com/site/snvhmm4/
Operating system: 64-bit Linux
Programming language: C
Other requirements: Linux Ubuntu 3.0.0 or higher
License: GNU GPL
Any restrictions to use by non-academics: license
needed.

Additional file

Additional file 1: Table S1. Statistical performance of SNVHMM for
different minimum and valid coverage (d), as well as for different MQ and
BQ value when the sequencing depth of lobular breast cancer data is
10X. Table S2: Statistical performance of SNVHMM for different minimum
and valid coverage (d), as well as for different MQ and BQ value when
the sequencing depth of lobular breast cancer data is 40X. Table S3: 23
reported mutated genes in Bejar,R. et al. (2011) and TholF. et al. (2012)
are checked by SNVHMM. 4 new genes that are found in 5 MDS RNA-Seq
sample and 2 MDS whole exome samples are found by SNVHMM and
validated by our lab. Table S4: description of 4 MDS-related mutated
genes found by SNVHMM and validated by our lab in 5 RNA-Seq and 2
whole exome samples.
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