
Zhang et al. BMC Bioinformatics 2013, 14:234
http://www.biomedcentral.com/1471-2105/14/234
RESEARCH ARTICLE Open Access
Automatic extraction of biomolecular interactions:
an empirical approach
Lifeng Zhang1, Daniel Berleant2*, Jing Ding3 and Eve Syrkin Wurtele4
Abstract

Background: We describe a method for extracting data about how biomolecule pairs interact from texts. This
method relies on empirically determined characteristics of sentences. The characteristics are efficient to compute,
making this approach to extraction of biomolecular interactions scalable. The results of such interaction mining can
support interaction network annotation, question answering, database construction, and other applications.

Results: We constructed a software system to search MEDLINE for sentences likely to describe interactions between
given biomolecules. The system extracts a list of the interaction-indicating terms appearing in those sentences, then
ranks those terms based on their likelihood of correctly characterizing how the biomolecules interact. The ranking
process uses a tf-idf (term frequency–inverse document frequency) based technique using empirically derived
knowledge about sentences, and was applied to the MEDLINE literature collection. Software was developed as part
of the MetNet toolkit (http://www.metnetdb.org).

Conclusions: Specific, efficiently computable characteristics of sentences about biomolecular interactions were
analyzed to better understand how to use these characteristics to extract how biomolecules interact.
The text empirics method that was investigated, though arising from a classical tradition, has yet to be fully
explored for the task of extracting biomolecular interactions from the literature. The conclusions we reach about
the sentence characteristics investigated in this work, as well as the technique itself, could be used by other
systems to provide evidence about putative interactions, thus supporting efforts to maximize the ability of hybrid
systems to support such tasks as annotating and constructing interaction networks.
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Background
Data mining the biomedical literature, sometimes called
the biomedical textome, literaturome, or bibliome, has be-
come increasingly important as the vast amount of textual
information now available online promises correspond-
ingly great benefits from automatically processing it. A key
category of this information is interactions. Comprehen-
sive mining of biomolecular interactions requires deter-
mining whether an interaction between entities exists and,
if so, what kind of interaction it is. Typically, the inter-
action is described with an interaction-indicating term
(IIT), often a verb.
Automatic extraction from text of information about in-

teractions among biologically relevant entities can target
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reproduction in any medium, provided the or
processes such as drug interactions [1,2], transcriptomic in-
teractions, protein-protein interactions (PPIs), and others.
To support applications, interaction data extracted by text
mining can be stored in biomolecular interaction data-
bases. Such databases are an important enabling technol-
ogy. For example they facilitate human information seeking
and conceptual understanding, and support biomolecular
network analysis [3].
A considerable variety of interaction databases have been

constructed in recent years. Examples include DIP [4],
BioCyc [5], MIPS [6], and MetNet [7], which is the data-
base and toolbox project associated with the present work.
Such databases can be based on laboratory research results,
like MIPS and KEGG. Alternatively they can be manually
curated from biomedical publications, like DIP and
BioCyc. While manual curation of existing publications
is a quicker way to populate a database than acquiring
wet lab results, automatic methods are much quicker
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still [8]. Thus, researchers have increasingly pursued
automatically extracting interactions described in online
biomedical texts such as the 22 million-plus records in
PubMed.
Methods for automatically extracting interactions from

text passages range across a spectrum of complexity
from basic co-occurrence analysis, to rule-based tem-
plate matching, to natural language processing (NLP),
including growing interest in shallow methods such as
kernel-based approaches. Corpus-based statistical tech-
niques are often used to help leverage automatic extrac-
tion methods.
The most basic methods analyze simple co-occurrence

of biomolecules within a text unit (e.g. [9,10]). However,
much of the information in text is ignored by this ap-
proach, implying a tendency to comparatively low preci-
sion (but correspondingly higher recall) for detecting
interactions compared to more sophisticated approaches
that use more of the available information.
Template matching methods may be useful when an

interaction template like “A activates B” can be matched
to the text [11-13]. Ontologies can be used to match
suitably related words together [14]. Syntactic analysis
methods parse each text unit and try to match the
parsed result with rules (e.g. [15]). These methods can
have relatively high precision because of the specific re-
quirements a passage must meet before it is considered
a match. However recall tends to be correspondingly
lowered because a relevant passage can fail to have the
precise word placement characteristics required and thus
remain undetected.
Thus, new techniques are needed to improve recall

relative to template and closely related methods, while
improving precision relative to basic co-occurrence de-
tection alone. Such techniques can, for example, con-
sider frequencies and other corpus-wide features of
biomolecules [16,17]. While analysis of individual pas-
sages is typically involved, full corpus techniques also
use corpus-wide properties, which are inexpressible by
methods limited to individual passages. The present
work uses this corpus-based strategy.
Ultimately, NLU (computer natural language under-

standing) will achieve very high levels of both recall and
precision to the degree that human language perform-
ance levels can be achieved by computers. Thus full
natural language understanding (NLU) is the grail of in-
formation extraction. NLU is not expected to be feasible
for some time, however, syntactically sensitive ap-
proaches that do shallow or deep parsing of text can be
viewed as steps toward the goal of full NLU, and have
gained attention in the PPI literature [18-20]. These ap-
proaches increasingly rely on kernel functions ([21-26]).
While kernel approaches reduce to feature vector com-
parisons in theory, they do so in a way that can use
implicit rather than explicit features, including features
not strongly localized, in particular syntactic dependency
relations [27]. Yet such methods continue to require
relatively large amounts of computation, making them
cumbersome when applied to large corpora. Such issues
help motivate investigating a wide variety of other ap-
proaches, such as the one described herein.
Crucially, ensembles of techniques used together can

perform better than individual techniques used alone
[28]. Consequently, it is useful to explore the rich space
of possible techniques because they could be usefully
combined in hybrid system designs that work better than
individual methods, even if some constituent methods
seem to perform better than others when tested in isola-
tion on benchmarks.
From interaction existence to interaction type
Automatic interaction extraction from sentences [29]
requires first finding relevant sentences [30]. Given ap-
propriate sentences, an automatic interaction extraction
method could focus on determining whether two bio-
molecules interact [31,32]. Yet how they interact, when
they do, is also of paramount importance. One approach
to this is to classify interactions into predefined categor-
ies [33]. Bell et al. [28] extended the interaction category
idea to help identify specifics about particular inter-
action terms, in particular the direction of the inter-
action, and showed a way to optimize the categorization
strategy. The need for even more specific determination
of interaction type (e.g. [34]) was a principal motivation
for efforts such as the BioNLP’09 [35] and the GENIA
Event [36].
The present report addresses a similar problem. As an

example, given the pair ‘ATP’ and ‘myosin,’ our method
can detect and return that the interaction between them
is ‘bind’ or ‘hydrolyze.’ This is a more specific objective
than that of our previous report [32], which dealt only
with identifying interacting biomolecules, and not with
extracting the types of the interactions. Our present
method was developed using the MEDLINE corpus,
upon which PubMed is based (http://www.nlm.nih.gov/
pubs/factsheets/medline.html).
We first examined sentences in biomedical texts and

empirically characterized the evidence for interaction
provided by efficiently computable sentence traits. Such
computationally simple methods can be quite effective
in information extraction tasks [37]. More complex and
computationally costly sentence characteristics can also
be effective [38], but are correspondingly less scalable.
Because our method relies on empirically uncovering
how passage characteristics provide evidence about bio-
molecular interactions we refer to the method as text
empirics.
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Text empirics and machine learning
By text empirics we mean, specifically, the use of statis-
tical properties of text passage characteristics that are ef-
ficiently computable for a given passage, and derived by
manually mediated analysis of a corpus. Prior to devel-
opment of the machine learning field this was the only
way to determine statistical properties of natural lan-
guage text. In contrast, machine learning algorithms de-
rive statistical properties more automatically. Machine
learning is thus more labor efficient, although presently
requiring hand tagging or at least manual feedback in
most approaches (e.g. [39-44]). Polajnar et al. [45] de-
scribe a method using unlabeled training data. Despite
its disadvantage of higher labor cost compared to ma-
chine learning (ML), empirical analysis presents some
advantages as well. Firstly, ML-derived rules usually in-
clude some that, due to incidental statistical flukes in
the data, are relatively uninteresting, unlikely to be gen-
erally useful, and seem unconvincing in print. Secondly,
and perhaps for that reason, publications typically
emphasize conclusions about the ML process itself ra-
ther than presenting the specific derived rules them-
selves. Yet specific rules can be readily and directly
applied by designers of new systems, because they are
disseminated in explicit, human-friendly, usable form,
making their identification and dissemination useful.
Empirical text analyses have a classic tradition, includ-

ing for example work of George Zipf [46,47] and earlier
sources he cites. Yet they have been under-represented
in the PPI literature, which instead has focused on ad
hoc manual identification of rules, templates, etc., and
on machine learning-based techniques. A wide range of
disparate methods is useful for the field to investigate
because multiple methods can be used together to give
better results than methods used individually. Thus re-
search contributing to the space of methods such as the
present work, remains relevant and important.
Methods
While our earlier work explored biomolecular pair co-
occurrence to extract interactions from single sentences
[32], it gave no indication of the way they interact. Our
present work is designed to extract information about
how they interact. Here, we apply a text empirics approach
to design an algorithm which extracts which IIT(s) in a
given sentence describes the way a given pair of biomole-
cules in the sentence interact. This single-sentence tech-
nique is then extended to combining evidence from
multiple sentences found throughout MEDLINE to pro-
vide evidence from the experimental literature about how
two biomolecules interact. The method starts with finding
a list of stems of the IITs tri-occurring in sentences with
the biomolecule pair of interest. It concludes by ranking
the list of IIT stems based on their probabilities of cor-
rectly describing the interaction.
The challenge. We consider biomolecular interac-

tions, defined as direct influences (association, regula-
tion, modification, creation, transportation, etc.) between
two organic molecules in a living organism. Protein-
protein interactions (PPIs) are a prominent example. We
used the individual sentence as a unit of analysis [29],
and investigated extracting the IITs (interaction-indicat-
ing terms) that co-occur with and correctly describe the
interaction of a biomolecule pair of interest, while filter-
ing out those IITs that also are present but do not per-
tain. For example, consider sentences S1-S3 that contain
the terms ‘ATP’ and ‘myosin’ (S1 is a title and titles were
treated as sentences).

S1. Measurement of the reversibility of ATP binding
to myosin in calcium-activated skinned fibers from
rabbit skeletal muscle. [48]
S2. A parallel pathway model of regulation simulated
the effects of Ca(2+) and ATP-free myosin binding on
both equilibrium binding of myosin-nucleotide
complexes to actin and the general features of ATPase
activity [49].
S3. In rigor (in the absence of ATP, when all the myosin
heads are rigidly bound to the thin filament), a slight
decay was observed in the first few microseconds,
followed by no change in the anisotropy. [50]

S1-S3 each contain several IITs. Their canonical forms
are: ‘bind,’ ‘activate,’ ‘regulate,’ ‘complex,’ and ‘change.’
‘Bind’ appears more frequently than the others. On this
basis we might hypothesize ‘bind’ as the interaction be-
tween ATP and myosin, and manual inspection shows
this is indeed true.
Note a distinction between the following cases.

� An IIT is used to describe an interaction in a
particular sentence.

� An IIT characterizes an interaction as an
independent fact.

One refers to what is said by a given single sentence,
while the other refers to a general fact about an inter-
action. These cases need to be distinguished because of
examples like S3. S3 contains the terms “bound,” “ATP,”
and “myosin” and, as other sentences establish, binding
is in fact an interaction between ATP and myosin. How-
ever S3 does not describe that interaction because
“bound” is used for a different purpose in that sentence.
The probability that a particular IIT describes an inter-

action of a given biomolecule pair in a given sentence



Table 1 Data on likelihoods that interaction-indicating
terms (IITs) correctly describe an interaction of the given
biomolecule pair, by IIT syntactic form

IIT form # correct IITs # IITs in corpus %

Noun 190 353 (54%)

Adj 10 23 (43%)
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may be determined by a combination of the evidence
contributed by different text characteristics of it. Thus,
we manually analyzed sentences from the literature to
empirically identify useful characteristics that could as-
sist efforts to automatically extract IITs that correctly
describe the interactions of given biomolecule pairs.
Adv 0 0

Verb with -ing ending 42 81 (52%)

Verb with -s or no ending 23 92 (25%)

Past/perfect verb 67 210 (32%)
Sentence characteristics that suggest a pertinent IIT
To analyze how specific passage characteristics support
extracting IITs that describe how a biomolecule pair in-
teracts, the following operational definitions were used.

� Sentence. Either an article title, or a word sequence
beginning with a capital letter and ending with a
period.

� Phrase. A word sequence that occurs inside a
Sentence, and begins and ends with:

, |; | : | . | <beginning of the sentence> |
<end of a sentence> |
<whitespace>-<whitespace> | ( | )
where “|” means “or.”

� IIT. Acronym for “interaction-indicating term.” A
word that can describe an interaction between two
biomolecules, such as ‘activates’ in “A activates B.”

We began by collecting 320 sentences from the results of
10 queries to PubMed. The 10 queries were based on pairs
of biomolecules selected by biologist colleagues to repre-
sent typical interests. Each sentence was required to con-
tain at least one IIT. The queries were: nitrite & xanthine,
pyruvate dehydrogenase & phosphofructokinase, indole
acetic acid & starch, glucose & starch, glucose-6-p & starch,
carotenoid & IPP, cre & cytokinin, acetyl-CoA & leucine,
glucose & pyruvate, and ATP & myosin.
In this data set there were 770 IIT occurrences, of

which 338 correctly described the interaction between
the biomolecule pair, as determined by manual inspec-
tion and verified by a biologist. For each occurrence of
the 770, we manually investigated IIT syntactic form as
evidence that an IIT correctly describes the interaction
of a given biomolecule pair as a general fact (Table 1).
Then we investigated IIT location similarly. Finally we
investigated the effect of the number of words between
IITs and biomolecule names. Each of these is described,
in turn, next.
Syntactic form. Table 1 shows how the syntactic

forms of IITs relate to the likelihood that they describe
how biomolecules interact. The past and perfect verb
forms of IITs are sometimes the same, and the frequency
of the perfect form is relatively low, so these were
lumped together. Noun and present tense forms are also
sometimes the same. We did however manually differen-
tiate these, suggesting that using these results in
automatic analyses would work best in conjunction with
POS tagging to distinguish these forms.
IIT location. The present study focuses on extracting

information about how biomolecules interact based on
the IITs that are textually associated with them. We ana-
lyzed different configurations of terms within sentences
using the following techniques.

1. Compare the case where an IIT is between the two
biomolecule names of interest with the case where
the IIT is elsewhere in the sentence.

2. Compare the case where the IIT and both
biomolecule names tri-occur in the same phrase
with the case where a phrasal boundary within the
sentence intervenes in some way.

These techniques were previously used for the purpose
of distinguishing interacting and non-interacting biomol-
ecules [32], and are applied here for the purpose of iden-
tifying correct IITs.
Table 2 gives the results of tri-occurrence order across

the two cases. As specific examples, here are the two
results (1a and 2a) associated with the comparisons
(1 and 2) just listed.

1a.If an IIT appeared between the two biomolecules, it
had a higher probability of correctly describing the
interaction than if it was not between (50% vs. 39%).
If the IIT is not between the two biomolecule
names, it would be either before or after both of
them.

2a.If an IIT and a biomolecule pair all occurred
together within the same phrase, the IIT had a
higher probability of correctly describing the
interaction between the two biomolecules than if the
three terms were not in the same phrase, 50% vs.
37%. If they were not in the same phrase, the IIT
could be in a different phrase from the biomolecule
names, or it could be in the same phrase as one
biomolecule but the other is in a different phrase,
or each of the three terms could be in a
different phrase.



Table 2 Sentence tri-occurrence characteristics

All IITs Between biomolecules Not between biomolecules Tri-occurring in a phrase Not tri-occurring in a phrase

Correct IITs 338 164 174 209 129

Total IITs 770 327 443 417 353

% Correct 44% 50% 39% 50% 37%

Data on phrasal tri-occurrences vs. tri-occurrences which cross phrasal boundaries are shown in columns 5 & 6. Data on interaction-indicating term (IIT) position
relative to biomolecule name position are shown in columns 3 & 4.

Zhang et al. BMC Bioinformatics 2013, 14:234 Page 5 of 13
http://www.biomedcentral.com/1471-2105/14/234
These results are consistent with an earlier finding that
phrasal evidence has higher precision but lower recall
than sentential evidence in descriptions of biomolecular
interactions [29].
The effects of distance. Let the near distance be the

number of words between an IIT and whichever biomol-
ecule in the pair it is nearest to (or either one if equidis-
tant). The far distance is then the number of words
between the IIT and the other biomolecule. We investi-
gated the influence of the near and far distances on the
likelihood that the IIT correctly describes the interaction.
Some data are shown in Tables 3 and 4. These tables

support the intuition that the likelihood that an IIT is
correct is higher for closer distances. They also provide
the quantitative data needed to determine regression
equations.

The regression equations
The relationship between probability that an IIT is cor-
rect and the near or far distance d was modeled as:

p an IIT is correctð Þ ¼ b0 � e−b1�d ð1Þ

where the values of parameters b0 and b1 are determined
from regression analyses on the data synopsized in Ta-
bles 3 and 4. Eq. (1) is a nonlinear regression model in-
stead of the more familiar case of linear regression to
find a straight line graph, because the data appeared
nonlinear. While nonlinear models still more complex
than that of eq. (1) are also possible, overfitting becomes
Table 3 Data for likelihood that an interaction-indicating
term (IIT) is correct for some representative near
distances (see text for details)

Near distance # correct # in data set % correct

0 17 19 89%

1 23 33 70%

2 42 63 67%

3 42 65 65%

4 29 78 37%

5 26 80 33%

6 22 54 41%

… … … …

38 0 1 0%
an increasing concern as the model gets more complex.
We used the JMP software supplied by SAS, which out-
puts the optimal parameter values given the regression
model and the data.
The results are shown graphically in Figures 1 and 2.

The raw data is represented using bubbles. The area of
each bubble is proportional to the number of sample
sentences contributing to, and thus adding to the weight
of, the data point at the bubble’s center. Each y-axis
value is the fraction of instances of a given x-axis dis-
tance in which an IIT correctly characterizes the inter-
action of that biomolecule pair. A distance of zero
means there are zero words between the IIT and a bio-
molecule. This occurs when the IIT and the biomolecule
are adjacent or hyphen-connected. Both cases are illus-
trated by S4.

S4. A rapid equilibration between myosin-bound ATP
and a myosin-products complex can account for the
extra water oxygen incorporation of the product
phosphate [51].

Eq. (2) instantiates the regression curve of eq. (1)
for Figure 1 (near distance) and eq. (3) instantiates it
for Figure 2 (far distance). Some of the data points in the
figures summarize more data than others. In particular,
data for longer distances tend to have fewer instances.
Thus the data points were weighted by the number of
instances they represent. This was to minimize noise
distortion in the resulting curves. It also prevents outliers
in the figures from unduly affecting the curves.
Table 4 Data for likelihood that an interaction-indicating
term (IIT) is correct, for some representative far distances

Far distance # correct # in data set % correct

0 191 302 63%

1 76 168 45%

2 38 99 38%

3 42 106 40%

4 21 73 29%

5 17 57 30%

6 4 38 11%

… … … …

38 0 1 0%



Figure 1 A nonlinear regression curve for the likelihood that an
IIT (interaction-indicating term) is correct (y axis) as a function
of the near distance (x axis). Areas of bubbles are proportional to
numbers of sample sentences (near distance is the minimum
number of words between an IIT and each biomolecule in the pair).
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p an IIT is correctð Þ ¼ 0:588 � e−0:14�d ð2Þ

p an IIT is correctð Þ ¼ 0:605 � e−0:04�d ð3Þ

Combining evidence about a sentence
The sentence attributes described above contribute evi-
dence that an IIT describes an interaction between two
biomolecules of interest. These sources of evidence may
be combined to determine a composite likelihood that
the IIT describes an interaction between the biomolecule
pair in question. The evidence combination approach we
used (eq. 4) is closely related to the naïve Bayes method
and is discussed further in Dickerson et al. ([52] section
2.3.3) and Berleant [53]. For additional discussion see
Zhang et al. [32], Manning et al. ([54], sections 11.1,
11.3) and Davis ([55], pp. 128–130).
Figure 2 Regression curve for the likelihood that an IIT
(interaction-indicating term) is correct as a function of the far
distance, which is the maximum number of words between an
IIT and each biomolecule name in the pair (cf. Figure 1).
The evidence combination formula is

o hjf 1;…; f nð Þ ¼ o h=f 1ð Þo h=f 2ð Þ…o h=f nð Þ
o hð Þn−1 ð4Þ

where o(.) refers to odds. Eq. (4) is stated in terms of
odds instead of probabilities merely for conciseness. A
probability p and its corresponding odds are alternative
measurements of the same thing and are easily intercon-
vertible: odds = p/(1-p) and p = odds/(1 + odds). Thus in
words, eq. (4) expresses the odds of a hypothesis h that
the IIT in the sentence describes the interaction of the
given pair of biomolecules. The formula uses n sources
of evidence and a default odds o(h) modeling the entire
corpus. The n sources, quantified as o(h|fk), k = 1,…, n,
each express the odds of h given sentence attribute k. As
applied here, these odds come from the probabilities
contributed by the different features discussed earlier.
To summarize, these features are:

� Syntactic form of the IIT, with probabilities derived
from Table 1.

� IIT location in the sentence, with probabilities
similarly derived from Table 2.

� Near distance, with probabilities derived from eq. (2).
� Far distance, with probabilities derived from eq. (3).

Identifying the interaction between two biomolecules
Applying eq. (4) to each different IIT in a given sen-
tence, we can calculate the chance for each different IIT
that it correctly describes the interaction of the biomol-
ecule pair. We used this evidence combination method
in an earlier report [32] to investigate whether two co-
occurring biomolecules interact, and use it here to deter-
mine the way they interact.
A given sentence containing a pair of biomolecules of

interest and IIT(s) can be analyzed to compute the likeli-
hood, for each IIT in the sentence, that it describes how
the biomolecule pair interacts. These likelihoods can build
up from multiple sentences found in a collection like
MEDLINE that provide mutually reinforcing evidence.
For example, consider an IIT stem that tri-occurs with

two given biomolecules in the literature more frequently
than another IIT stem. The more frequent IIT stem
might be conjectured to have a higher probability of cor-
rectly describing the interaction of the biomolecule pair.
Confounding this, however, is the different background
frequencies with which different IITs (and thus their
stems) appear in the literature. A commonly appearing
IIT stem may tri-occur more frequently in association
with a given biomolecule pair than another IIT stem, not
because it describes how they interact, but merely be-
cause it is a more common IIT overall.
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To correct for the varied background frequencies of
different IIT stems, we employed the well-known tf-idf
(term frequency – inverse document frequency)
weighting framework.

Applying the tf-idf framework
Tf-idf is most familiar as a document retrieval approach
(e.g. [54]). It provides a flexible conceptual model readily
extended to related problems, such as the present task
of identifying the IIT(s) that are descriptive of the inter-
action between a given biomolecule pair.
We applied the tf-idf model by multiplying tf and idf

values; tf*idf then describes the weight of a term i as a
distinctive characteristic of the document. By using the
IIT as the term and modeling the sentences in the cor-
pus that contain the biomolecule pair as the document,
we can use this adaptation of tf-idf to help identify
which IITs are most distinctively associated with the bio-
molecule pair.
Then, given a pair of biomolecules, we can find all the

different IIT stems tri-occurring with the pair, calculate
tf*idf for each stem, and return them as a list ranked by the
magnitude of tf*idf. IIT stem(s) with higher values of tf*idf
are more closely associated with the biomolecule pair, mo-
tivating the hypothesis that they are also more likely to cor-
rectly describe the interaction. Here are the details of how
the tf-idf model maps to the present problem. First the tf
term is discussed, followed by the idf term.

Calculating term frequency (tf)
In the standard formulation, the term frequency (tf ) of a
term i in a document is:

tf i ¼
ni

∑knk
ð5Þ

where ni is the number of occurrences of term i in a
given document. The denominator thus describes the
number of occurrences of all terms in the document and
normalizes the tf score to be unaffected by document
length.
An IIT stem, viewed as a term in (5), might tri-occur

unexpectedly frequently in the set of sentences mention-
ing a given biomolecule pair, where that set is viewed as
the document described by (5). This frequency suggests
that the IIT stem could describe an interaction of the
pair. As a relatively direct measure of the term frequency
(tf ) for the problem here, we used the fraction of those
sentences that also contain the IIT stem.
To improve the accuracy of the eq. (5) model, in-

stead of merely counting the sentences, each sentence
containing IIT i was weighted, and the weights were
summed. Weights were based on the likelihood com-
puted from sentence characteristics that the IIT stem
correctly describes the interaction of the biomolecule
pair. More specifically, weights were calculated using
(i) the sentence characteristics described earlier (IIT
syntactic form, location, and near and far distances),
and (ii) the evidence combination technique of eq. (4).
For those sentences that contain multiple instances
of the same IIT stem or biomolecule name(s), we
used the instance of the IIT stem and of each bio-
molecule name providing the best likelihood calcu-
lation, under the assumption that this satisfactorily
estimates the degree to which the sentence consti-
tutes evidence that the biomolecules interact as sug-
gested by the IIT stem.
Accounting for weights in this manner makes the nu-

merator of eq. (5) more complex, but because our ob-
jective is to compare different IIT stems tri-occurring
with a given biomolecule pair, the denominator does not
contribute to the comparison since it is therefore the
same for each IIT stem. Therefore the denominator can
simply be deleted. At this point, the tf calculation of eq.
(5) becomes

tf i bð Þ ¼
X

s
wi;s bð Þ ð6Þ

where tfi(b) is the weight-sensitive term frequency of IIT
stem i with respect to biomolecule pair co-occurrence b,
and wi,s(b) is the weight of sentence s as evidence that
IIT stem i describes the interaction of pair b.

Calculating idf
Inverse document frequency (idf ) measures how well a
term separates a small subset of presumably relevant
documents from a large subset of presumably irrelevant
ones. The traditional formula is

idf i ¼ log
Dj j

d∈D : i∈df gj j ð7Þ

where |D| is the total number of documents in the cor-
pus, and the denominator is the number of documents
in which term i appears.
A formulation of the inverse document frequency (idf )

for the present problem that follows naturally from the
tf discussion above is

idf i ¼ log
Bj j

b∈B : trioccur i; bð Þf gj j ð8Þ

where trioccur(i,b) holds if and only if biomolecule pair b
tri-occurs with IIT stem i in at least one sentence in the
corpus, where B is the set of distinctly different biomol-
ecule pairs co-occurring in sentence(s) in the corpus.
Eq. (8) requires finding the number of different biomol-
ecule pairs that an IIT stem appears with, which is tedious
because the number of possible different biomolecule
pairs is essentially the square of the number of different
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biomolecules. Therefore to facilitate computation a proxy
for eq. (8) was formulated:

idf i≈ log
s : j in s; b in sf gj j
s : i in s; b in sf gj j ð9Þ

where s is a sentence in the corpus, j is any IIT stem, b is
any biomolecule pair, and i is a particular given IIT stem.
If we have identified all sentences in a comprehensive cor-
pus containing tri-occurrences (the numerator of eq. (9)),
and the subset of those sentences containing the IIT of
interest (the denominator of eq. (9)), then we can calculate
tf*idf from eqs. (6) and (9) to assess the degree to which
each IIT stem is characteristic of a given biomolecule pair.
Doing the computations based on MEDLINE, a compre-
hensive corpus, enabled this strategy to more accurately
reflect the relationship between IITs and biomolecule pairs
as they appear in the biomedical literature. An IIT stem
that is highly characteristic of a biomolecule pair then sug-
gests that the IIT stem describes how the pair interacts.

System development and data collection
To help analyze how well different IIT stems describe
the interactions of given biomolecule pairs by using
MEDLINE as a source of general facts about biomolecu-
lar interactions, we added a major new functionality to
the PathBinder software [32]. See Figure 3. PathBinder
now applies tf*idf by first querying MetNetDB, the
database of the MetNet (Metabolic Networking, www.
metnetdb.org [7]) project, to get synonyms associated
with biomolecules in the biomolecule pairs of interest.
To get a corpus of IITs we used biologists’ suggestions
to manually construct and store a lexicon of IIT stems
and their inflectional variations. This resulted in 125
IIT stems (App. III of [56]) and 558 distinct IITs.
Next, PathBinder obtained the sentences from MEDLINE

that contained tri-occurrences of biomolecule pairs and
IITs. The idf of each stem was calculated using eq. (9).
These sentences were tagged and stored into PathBinder’s
own database, PathBinderDB, along with the idf for each
IIT, for use in calculating the tf for an IIT stem given a
specified biomolecule pair. PathBinder could then auto-
matically compute the weights of sentences containing the
pair, each weight representing the amount of evidence a
sentence provided for a particular IIT stem it contained,
using eq. (4). This was used in the tf calculation of eq. (6).
Thus, PathBinder applies the tf*idf calculation by com-

bining newly determined tf values with preprocessed idf
values. This is how PathBinder merges evidence from
the sentences about a given biomolecule pair, calculates
a score for each IIT stem appearing in the set of
sentences containing the pair, and ultimately ranks the
corresponding IIT stem(s) for the pair from best to
poorest using their scores.
Results
More than 30 million sentences in which at least one bio-
molecule in our lexicon appeared were extracted from
MEDLINE and stored in MetNetDB. More than 8 million
of these contained at least one tri-occurrence consisting
of a biomolecule pair and an IIT. Earlier analysis showed
that most biomolecule name co-occurrences take part in
tri-occurrences with IIT(s), but less than 22% of tri-
occurrences actually describe an interaction. Appendix A
in Additional file 1 provides details.
To evaluate our method of ranking the IITs associ-

ated with a given biomolecule pair, we randomly chose
200 pairs of biomolecule terms listed in MetNetDB
and found by PathBinder to co-occur in sentences of
MEDLINE records. Of these, 106 of the biomolecule
pairs were both (a) in tri-occurrences, and (b) judged
by biologists to actually interact. A test set was then
defined, based on: those 106 pairs; all the sentences in
MEDLINE in which the pairs co-occurred; and, for
each sentence, the different IIT stems it contained,
resulting in 1,768 IIT stem occurrences across all the
sentences. This test data was used to evaluate how well
correct IIT stems could be identified using their rank-
ings. This task was made more challenging by the
following factors:

http://www.metnetdb.org/
http://www.metnetdb.org/
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(i) numerous sentences typically exist for a given
biomolecule pair,

(ii)many of these sentences contain other biomolecule
names as well as multiple IITs, and

(iii)different sentences can describe the same
interacting pair using different IIT stems.

For example, one biomolecule pair was ‘chlordecone’ and
‘cytochrome P450.’ Pathbinder returned the ranked list of
IIT stems shown in Table 5, of which ‘induc-’ and ‘increas-’
are informative and correct. On the other hand ‘chang-,’
‘regulat-,’ ‘affect-’ and ‘control-’ are correct, but less inform-
ative because the type of interaction is left vague.
Vague IITs, though correct, are much less useful for

the motivating task of automatically extracting modes of
interaction of biomolecule pairs than more specific IITs,
because vague affirmations of interaction, like “affect”
and “influence,” do not specify the type of interaction.
Therefore in addition to analyzing the data for the class
of correct IITs (which includes vague ones), we also ana-
lyzed the data after removing vague IITs from the lists,
leaving lists of informative IIT stems for each of the
biomolecule pairs in the test set. In both analyses,
PathBinder ranked the IIT stems tri-occurring with the
pair by tf-idf score. Some tri-occurring IIT stems de-
scribe the interaction of a nearby biomolecule pair, while
others do not. A good ranking strategy will tend to sep-
arate these two categories of IITs. Thus from a data set
of ranked lists we can test how well rank predicts cor-
rectness of an IIT stem. This was our approach to ex-
ploring how to distinguish correct IIT stems from
incorrect ones.
Although in some cases a pair had only one informative

IIT stem in its list, the pair ‘glutathione peroxidase’ and
‘glutathione’ returned 87 correct IIT stems, 74 informative
ones and 13 vague ones (Appendix C in Additional file 1).
We manually investigated the set of lists of IIT stems and,
Table 5 List of interaction-indicating term (IIT) stems
tri-occurring with biomolecule pair chlordecone and
cytochrome P450, ranked by tf-idf score, i.e.,
hypothesized likelihood of correctly describing their
interaction

1. induc- 9. (affect-)

2. (chang-) 10. (control-)

3. potentiat- 11. produc-

4. reduc- 12. decreas-

5. (regulat-) 13. bind-

6. increase- 14. lower-

7. (alter-) 15. (metaboliz-)

8. amplif- 16. derive-

Parenthesized IIT stems were classified as vague, thus relatively uninformative.
for each, noted which IIT stem(s) tri-occurring with the
associated biomolecule pair correctly characterized the
interaction and which did not.
Figure 4 (lower curve) indicates that 80% of the pairs

tri-occurred in at least one sentence with a correct and
non-vague (i.e. informative) IIT stem from our IIT lexi-
con, making it potentially possible to automatically iden-
tify how the pair interacts. On the other hand, the
remaining 20% of the pairs did not. Since vague IIT
stems are correct (despite minimal informativeness), in-
cluding them in the analysis gave an improved curve
(shown with diamond-shaped plot points).
The shape of the curve indicates how well the rank de-

termined by the tf-idf calculation predicted IIT stem cor-
rectness. The curve with square plot points in Figure 4
normalizes the bottom curve, showing the situation for
the 80% of the biomolecule pairs for which correct IIT
extraction was possible in principle. It shows that in 76%
of these a correct IIT stem was ranked first in its associ-
ated IIT stem list, in 84% at least one correct IIT stem
was ranked first or second, in 88% at least one was in
the top-ranked three IIT stems, and in 91% at least one
was in the top four. These sub-100% results exemplify
an important consequence of applying automatic extrac-
tion methods to natural language texts. Since these
methods are not at present capable of full understanding
of texts, their results cannot be certain, instead provid-
ing only some degree of evidence. Highly reliable results
thus require a human curation step, until future systems
become available that are capable of full NLU, when
and if that happens. One possible step in this direction
that will be interesting to watch for in the years ahead
is the application of IBM’s Watson system or an
equivalent to the problem.
We next determined the information retrieval metrics

of recall and precision as follows. For each pair of bio-
molecules, let N be the number of IIT stems returned, of
which C are correct.

� Define the IIT precision p(n) as the fraction of the
top-ranked n IIT stems that are in C.

� Define the IIT recall r(n), n = 1…N, as the fraction
of the C correct IIT stems that are present in the
top-ranked n IIT stems.

Thus for the various values of n, the top ranked n in-
formative IIT stems in the IIT stem list of each biomol-
ecule pair have associated IIT recall and precision
values r(n) and p(n). We computed recall and precision
as functions of n for each of the test set biomolecule
pairs. Figure 5 shows the average precision for different
values of recall, using the standard eleven-point inter-
polated average precision method ([54], p. 146–7). Pairs
which tri-occurred only with incorrect IIT stem(s) were
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excluded since it is impossible to retrieve a correct IIT
from a list not containing any.
To place Figure 5 in context, it is based on 231 correct

IIT stems out of 1,580 non-vague IIT stems, for a ratio
of 0.17 correct IIT stems per incorrect stem, or a preci-
sion of just 0.146 for random retrieval. Thus the figure
displays significant success in concentrating correct IIT
stems into better ranks.

Discussion
It is instructive to compare the text empirics approach
used here with template matching. Existing work focusing
on IIT extraction has often used template matching to re-
turn a conclusion like “A activates B.” Templates however
are inherently restrictive in that some passages will not
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Figure 5 Precision vs. recall of interaction-indicating term (IIT)
stems for the test set.
match any template in a template set. This “falling through
the cracks” phenomenon tends to reduce recall.
To help compare template matching and text empirics,

it is useful to note the close connection between the two
techniques. Whether a passage matches a template is a
passage characteristic, and thus can be used as evidence
in eq. (4) like other passage characteristics investigated
in this report. Thus template sets are well suited to be
used as text passage attributes within a text empirics
framework. Viewed this way, it is not surprising that
some passage characteristics we have considered are
somewhat template-like in character. An example is the
pattern “a sentence with two biomolecules for which the
intervening words contain an IIT.”
Since templates are a subset of the passage character-

istics that the text empirics approach can consider, text
empirics in general must logically have the potential for
higher recall than the template-based approach by itself.
Additionally, since an evidence combination strategy like
eq. (4) makes incorporating new sources of evidence
straightforward, conclusions produced by other tech-
niques can readily be used to improve results.

A more complex interaction scenario
The discussion so far has not considered cases in which
the interaction between two biomolecules as provided
by the sentence under consideration is too complex to
be described by a single IIT. However, such cases occur.
For example consider sentence S5.

S5. Glutathione peroxidase (Se-GPx) is a
selenoenzyme which catalyzes the reduction of
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hydroperoxides by glutathione (GSH), in most
mammalian cells. [57]

The biomolecule pair of interest in this sentence is
glutathione peroxidase and glutathione. The interaction
between these biomolecules as described here is not
named by a single IIT. Instead, the sentence follows the
pattern “A catalyzes the reduction of B by C.” Regarding
the interaction between A and C, such sentences imply
that an interaction exists, but do not describe it expli-
citly and directly using an IIT.
In the case of sentence S5, chemical A (Se-GPx) cataly-

ses a reduction process and C (glutathione) is involved in
this process. A trained human can infer that Se-GPx
causes oxidation of glutathione, but because the sentence
does not actually say this, it would be challenging to de-
sign an algorithm to extract the oxidation interaction from
the sentence. For our purposes, if we merely want to know
whether or not Se-GPx and glutathione interact, this sen-
tence is evidence that they do. But if we want to determine
through software what the interaction is then this sen-
tence is likely to mislead the algorithm, because neither of
the IIT stems present, ‘catalyz-’ and ‘reduc-,’ describes the
interaction of interest, which is oxidation. Therefore, in S5
we cannot count ‘catalyze’ and ‘reduce’ as correct IITs for
the biomolecule pair of interest.
We might seek to avoid the “oxidation dilemma” by

saying that Se-GPx in S5 catalyzes, with the affected en-
tity being not a biomolecule but rather a biomolecular
process (Figure 6). However, in this work we have aimed
at showing how a system could extract a single useful
IIT stem describing the interaction between two biomol-
ecules, a model that does not apply in this example.
Alternatively, one might consider sentences such as S5

as indicating an interaction relation among three bio-
molecules. Then, when searching for the interaction
between A and C the third term B would need to be
extracted in addition to the two IITs. This would be
harder to do automatically. However it is useful to con-
sider the benefits. There are a number of IITs that
Figure 6 Interaction between a chemical and a process.
sometimes act analogously to ‘catalyze’, such as ‘inhibit’
and ‘stimulate.’ Like other IITs, their stems can appear
early in the ranked result lists that are derived and
analyzed in the present work, and indeed they can be
helpful to biologists as partial characterizations of bio-
molecular interactions.

Conclusion
We have described a text empirics approach to
mining the biomedical literature for interaction-
indicating terms that describe how biomolecule pairs
interact. This approach relies on statistical evidence
provided by efficiently computable text passage
characteristics.
IIT stems that tri-occurred with a given biomolecule

pair in a sentence were ranked based on their calculated
likelihoods of correctly describing how the biomolecules
interact. The precisions of the ranked IIT stem lists
returned by the system were at a useful level when the
returned lists contained at least one correct IIT. Import-
antly, while the text empirics approach, like various
other techniques, can be applied alone it also has the po-
tential to complement other techniques by being used in
conjunction with them. This can improve performance
compared to a single technique used alone [28,58], in
turn highlighting the importance to the field of investi-
gating the wide space of possible techniques rather than
focusing overwhelmingly on finding a single best tech-
nique, a task made more challenging in any case because
of the difficulty of reliably comparing different PPI ex-
traction methods [26].
As one of many possible ways to combine techniques,

template matching and text empirics could be merged
in a single system by using empirically derived statistics
on the semantics of passages that match a given tem-
plate compared to the semantics of passages that do
not match. Another possibility is to use evidence pro-
vided by text empirics to adjust quantitative conclu-
sions about the meanings of passages returned by
SVMs on parsed graphs. Alternatively, as in Liu et al.
[22], a useful kernel matching function could be de-
fined and then used as a feature, the effectiveness of
which would be determined empirically, analogously to
the empirical attributes we have discussed in depth in
the present work.
The general approach of text empirics we have de-

scribed could be readily applied in other domains. For
example we are currently applying it to extracting
neurodevelopmental and ocular development event
times from texts. Also the specific empirically deter-
mined statistical results described above could be dir-
ectly applied by others working on protein-protein
interaction (PPI) or other biomolecular interaction ex-
traction problems.
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