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Abstract

Background: Gene Ontology (GO) is a popular standard in the annotation of gene products and provides
information related to genes across all species. The structure of GO is dynamic and is updated on a daily basis.
However, the popular existing methods use outdated versions of GO. Moreover, these tools are slow to process
large datasets consisting of more than 20,000 genes.

Results: We have developed GOParGenPy, a platform independent software tool to generate the binary data
matrix showing the GO class membership, including parental classes, of a set of GO annotated genes. GOParGenPy
is at least an order of magnitude faster than popular tools for Gene Ontology analysis and it can handle larger
datasets than the existing tools. It can use any available version of the GO structure and allows the user to select
the source of GO annotation. GO structure selection is critical for analysis, as we show that GO classes have rapid
turnover between different GO structure releases.

Conclusions: GOParGenPy is an easy to use software tool which can generate sparse or full binary matrices from
GO annotated gene sets. The obtained binary matrix can then be used with any analysis environment and with any
analysis methods.
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Background
Gene Ontology (GO) is a popular standard in the anno-
tation of gene products, providing information related
to genes across all species. It presents a shared, con-
trolled structured vocabulary of terms that describe the
gene products [1]. GO is structured as a Directed Acyc-
lic Graph (DAG) that holds the terms that describe the
molecular function, biological process, and cellular
component for a gene product. GO has a hierarchical
structure that represents the terms from more specific
to general terms.
GO is currently being used for various analysis tasks

like a) over-representation of the GO classes from a se-
lected group of genes [2], b) semantic similarity be-
tween two genes [3], c) threshold free gene set analysis
[4,5], d) machine learning to classify unknown genes to
various GO categories [6,7], and e) explorative analysis
of large-scale datasets [8]. The linking of the reported
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GO categories to the GO DAG structure and their par-
ent nodes is critical for all these tasks. In tasks a, c, d,
and e, the parental nodes of the GO structure provide
different levels of detail allowing simultaneous moni-
toring of very detailed and very broad functional clas-
ses. In the case of task b, the link to the GO hierarchy
is crucial for finding a path between the two genes
across the GO graph.
There are many existing methods [9-13] freely avail-

able for processing (i.e. linking gene products to the
GO hierarchy) and analyzing Gene Ontology terms.
Most of these tools perform well enough to handle
small data sets, but on larger scale, such as in the case
of microarray data, the execution time for these tools
becomes prohibitive. Moreover, most of these methods
use quite old GO structures causing methods to miss a
large proportion of the currently used GO classes (see
Results).
The annotationDbi [10] and GO.db [11] packages in

Bioconductor are the most widely used tools for Gene
Ontology analysis for the R enviroment. GO.db stores
links from GO classes to their parent GO classes,
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storing all the GO classes, their parents, child terms
and ancestor terms in a database for easy retrieval and
processing. Despite the Gene Ontology consortium up-
dating GO class annotations and linkages on daily
basis, these GO related R packages are updated only bi-
annually. Indeed, the best source of GO information is
the annotation files themselves, which are available
from the GO consortium web pages.
Even the GO consortium cannot help with research

carried out with novel species. This is critical as we can
expect a growing number of novel sequenced species
with next-generation sequencing methods. These will
require in-house GO annotation of sequences [7]. Also,
with the analysis of more exotic organisms, there might
be alternative sources for GO annotations, like species
specific databases. Current GO processing tools use
only a pre-fixed annotation source for analysis.
We present a fast python program named GOParGenPy

(GO Parent Generation Python) that can process large an-
notation files, incorporate any version of OBO structure
and can generate GO data matrices. Users of GOParGenPy
will mainly be biologists and bioinformaticians who do
analysis using languages, such as R, Matlab or python. It is
freely available from the project web page (see Availability
and requirements).

Implementation
GOParGenPy has been implemented in Python (version
requirement 2.5/2.6) and it is freely available as a
standalone tool suitable for any downstream analysis
related to GO data across various computing platforms.
GOParGenPy generates the binary data matrix from a
set of genes with GO annotation. It allows the user to
Figure 1 Work flow of GOParGenPy. Matrix parameters are row names (
names are reported), column names (C, column number(s) for the input da
or full matrix format (S/F).
select the GO annotation and the OBO structure file.
The obtained GO binary matrix can then be used
with any available analysis environment and with
any available analysis methods. The main features of
GOParGenPy are:

1. Reading in ‘gene_ontology_edit.obo’ file in standard
format, parsing it and storing all the GO classes and
their attributes.

2. Reading in the GO annotations of the analyzed
genes (various input formats are supported).

3. Links GO annotations to their parent GO classes.
The linking also looks for alternative ids for those
GO classes which have become obsolete.

4. Outputs a list of genes with added parent GO
classes.

5. Outputs a sparse or full matrix with genes as rows
and GO classes as columns. The default format is
the sparse matrix.

Figure 1 shows the workflow of GOParGenPy. It takes
in a tab separated input annotation file that contains a
list of GO annotated genes, the selected OBO file and a
set of parameters. These parameters denote the column
number of gene name and the column number(s) of
linked GO classes. Depending on the input annotation
file type, an intermediate tab-delimited annotation file is
then parsed from the annotation file where one row rep-
resents the gene name and all the collected GO annota-
tions of this gene.
The OBO flat file format stores GO classes and attri-

butes such as id, name, namespaces, definition, etc.
OBO file GO classes and their respective attribute
R, column number(s) for the input data column(s) where the gene
ta column(s) where the GO class associations are reported), and sparse
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values are stored in a hash table using the numeric
part of GO id as keys. Hence, the parent or ancestor
class(es) for any given GO class can be retrieved recur-
sively by looking through the attribute values of GO
classes, namely ‘is_a’, ‘part_of ’ and ‘consider’ links.
Next, the intermediate file obtained in first step is it-

erated over so that for each gene and its respective GO
classes, all shared parent or ancestor GO classes are re-
trieved recursively using the above hash table. Redun-
dant steps are removed by adding another hash table
that is dynamically built as the iteration progresses
through the entire file. The main purpose of this hash
table is to store the GO class and all its parent or an-
cestor classes together so that when the same GO class
is encountered in further iterations the retrieval does
not get referred back to earlier GO hash table. Thus, at
any instance the maximum size this data structure is
the total number of GO classes present in a given OBO
file. Hence, after certain stage the overall processing of
input annotation file becomes independent of number
of genes and the associated GO annotations.
Moreover, the program also does a lookup in the

OBO file of alternate ids for any GO class which has
Figure 2 Generation of sparse matrix with toy data. Figure shows how
entry in the original matrix the sparse matrix stores three values: The row i
reports the column and row names in separate files. Here the name tables
become obsolete in order to retrieve parent/ancestor
classes also in these cases. This functionality is
optional.
Finally, user can specify whether a sparse or full bin-

ary matrix is generated with genes as row names and
GO classes as column names. Reported GO classes are
those occurring in the input annotation file and their
parent nodes. Selection of the sparse matrix option is
highly recommended as the package is intended for
large datasets (>20,000 GO annotated genes). Sparse
matrices are memory efficient representations for matri-
ces where most of the values are zero. This is the case
with GO data matrices as large part of GO classes have
less than one percent of genes as members and the non-
members are given value zero. We use the sparse matrix
representation with three columns. These columns rep-
resent the row number and column number of non-zero
value and the value in the cell. Figure 2 demonstrates
this process.
The obtained sparse matrix can be further processed

with standard analysis pipelines. The sparse matrix for-
mat is supported by many analysis environments, like R
and Matlab.
a normal full matrix is converted to a sparse matrix. For each non-zero
ndex, the column index and the value in the cell. GOParGenPy also
include also indexing values for clarity.



Figure 3 Venn diagram representation of total number of GO classes present in OBO file ‘gene_ontology_edit.obo’ (01.02.2012) and
“GO.db” package version 2.5 (01.03.2011) of R/Bioconductor. Figure 3 A: Venn representation of number of non obsolete GO classes from
OBO file and GO.db package. Figure 3 B: Venn representation of number of obsolete GO classes in OBO file and distinct non obsolete GO classes
in GO.db.
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Methods
We compare GOParGenPy against existing methods
(DAVID [12], agriGO [13], AnnotationDBI and GO.db
from R/Bioconductor and GeneOntology package in
Bioperl Toolkit [14]) using two metrics:

1. Instability of OBO files.
2. Execution time.

Instability of OBO files
OBO files are central to all GO analysis. However, they
vary significantly between GO analysis tools with DA-
VID using version 6.7, agriGO using version 1.2 and
GO.db/AnnotationDBI from R/Bioconductor using a bi-
annually updated version.
Therefore, we highlight the benefits of GOParGenPy’s

ability to allow selection of any OBO structure by show-
ing the information loss when an older OBO structure
is used instead of the latest structure. Here the aim is to
find what percentage of current GO classes is missing
in these older OBO packages. Hence, respective OBO
version corresponding to last update of these packages
is downloaded from the GO website. The versions are:
Figure 4 Venn diagram representation of total number of GO classes
OBO file (01.04.2010) from agriGO. Figure 4 A: Venn representation of n
B: Venn representation of number of obsolete GO classes in OBO file and d
1. For DAVID the corresponding version of OBO file
used is of date 01.12.2009

2. For GO.db the corresponding version of OBO file
used is of date 01.03.2011

3. For agriGO the corresponding version of OBO file
used is of date 01.04.2010

4. The reference version of OBO file with which these
packages are compared is of date 01.02.2012.

These files were parsed for GO classes using GO-
ParGenPy. Next we calculated 1) the number of ac-
tual GO classes with unaltered definitions, 2) the
number of GO classes which became obsolete and 3)
the number of GO classes that have an altered defin-
ition with respect to the reference OBO file. Finally,
we present a Venn diagram to show the percentage
of missing GO classes and actual classes present
(Figures 3, 4, 5 in Results).

Relative execution time
The execution time was compared only between the
most widely used standalone packages. These are
GeneOntology package from Bioperl Toolkit, GO.db
present in OBO file ‘gene_ontology_edit.obo’ (01.02.2012) and
umber of non obsolete GO classes from OBO file and agriGO. Figure 4
istinct non obsolete GO classes in agriGO.



Figure 5 Venn diagram representation of total number of GO classes present in OBO file ‘gene_ontology_edit.obo’ (01.02.2012) and
OBO file (01.12.2009) from DAVID. Figure 5 A: Venn representation of number of non obsolete GO classes from OBO file and DAVID. Figure 5
B: Venn representation of number of obsolete GO classes in OBO file and distinct non obsolete GO classes in DAVID.
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and AnnotationDBI from R/Bioconductor. The aim is
to compare the performance of GOParGenPy with
these packages in processing large datasets. Parent
GO classes were generated by GOParGenPy using the
current version of GO structure (01.03.2013). First,
the methods were tested with a randomly chosen set
of 80975 genes from UNIPROT-GOA [15]. This is 2–3
times the size of the largest genomes in gene expres-
sion analysis. Next, in order to measure the perform-
ance on extremely large file, tools were tested with all
the GO annotated sequences (>21 million sequences)
available from UNIPROT-GOA.

Results
Comparative analysis of GO packages
The comparative analysis details for AnnotationDBI/GO.
db, agriGO, DAVID, are shown in Figures 3, 4, and 5
respectively.
It is evident from above figures that OBO structures

in the evaluated GO web tools GO.db, agriGO and DA-
VID miss a significant number of currently used GO
classes. In Figure 3A, the total number of non-obsolete
Table 1 A comparative view of change in total number of
GO classes per year throughout 9 years of OBO files data

Year Total
GO Classes

Change in number of
GO

Average change in
GO

classes per year classes in 8 years

2004 18219 -

2572

2005 20349 2130

2006 22929 2580

2007 25771 2842

2008 27867 2096

2009 30716 2849

2010 33268 2552

2011 35724 2456

2012 38794 3070
distinct GO classes from OBO file is 2030 and 171 dis-
tinct non-obsolete GO classes in GO.db. Subsequently,
in Figure 3B, 107 of these non-obsolete GO classes
have their definition as obsolete with respect to the ref-
erence version (01.02.2012) of OBO file. Thus, in total
3641 (2030+1611) GO classes has been added or their
definition has been altered with respect to non-
obsolete GO classes of GO.db package (01.03.2011).
This corresponds to 11.30% of GO classes being al-
tered. Similarly, from Figure 4A,B, it can be seen that
the total number of non-obsolete distinct GO classes
from OBO file is 4252 and 349 distinct non-obsolete
GO classes in agriGO. Correspondingly, 157 of these
GO classes in agriGO have their definition altered with
respect to current version of OBO file. Together, it can
be seen that 19.40% of GO classes are altered. Finally,
from Figure 5A,B it can be observed that in DAVID a
total of 25.2% of GO classes have been altered. From
Table 1, it can be found that on average 2572 GO classes
are altered each year. This shows the level of change in
the number of GO classes and clearly indicates the im-
portance of using the current version of OBO structure.

Execution time
Table 2 compares the running time between GO-
ParGenPy, GO.db/AnnotationDbi from Bioconductor
and GeneOntology package from Bioperl toolkit. With
Table 2 Execution time of various available packages

Number
of Genes

AnnotationDbi/GO.db
Package in

GeneOntology
package in

GOParGenPy

R/Bioconductor BIOPERL

80975 >592* sec >300* sec 40 sec

21318390 d.n.f# d.n.f# 3300 sec

Tests were performed on a 2.93GHz Intel Xeon X7350 with 64 GB RAM. Note
that only GOParGenPy created also the output files in these tests, whereas the
other packages only linked the annotations to the parent classes.
* indicates the time taken by these packages only to generate the parent GO
classes for given GO classes associated with these genes. # execution time was
too long. d.n.f: did not finish.
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set of 80975 GO annotated genes GOParGenPy took ap-
proximately 40 seconds to generate data matrices mak-
ing it almost 10 times faster than competing methods.
GeneOntology package from Bioperl was relatively
closer to GOParGenPy’s execution time but BioPerl
only performed the mapping of annotated genes to par-
ent nodes and did not print any output file, whereas
GOParGenPy also generated the output files. With large
data set consisting over 21 million sequences from
UNIPROT-KB the competing methods were unable to
finish in a reasonable time. Although this dataset size is
outside the standard analysis requirements, it gives a
good extreme performance test.

Discussion
We present a new standalone software tool GOParGenPy
for generating high-throughput GO data matrices for any
selected input annotation file and any version of OBO file.
We have shown the importance of OBO structure and
presented an effective way of storing and retrieving GO
classes and their attributes for any downstream analysis
involving GO data. All the existing methods, be it web
based application or standalone offline tools, utilize an
outdated OBO structure from GO consortium. As shown
in the Figures 3 – 5 we can find that at maximum 25% of
GO classes (for DAVID tool) are outdated with respect to
current version of OBO file. Hence, any downstream ana-
lysis methods that incorporate GO data obtained from
these tools may lead to erroneous results.
GOParGenPy outperforms all these existing tools in

terms of incorporating users’ choice of OBO structure and
speed of generating GO data matrices. It is also able to
process extremely large datasets. It incorporates a dy-
namic hash table that stores all GO classes from the input
file with their parent GO classes retrieved from OBO
structure. This unique feature enables generation of data
matrices independent of size of input data as the max-
imum size of this hash table is the total number of GO
classes present in the OBO structure file used. Hence, this
makes GOParGenPy faster in the generation of GO data
matrices for large gene sets. Also, GOParGenPy looks for
alternative ids of those GO classes which have become ob-
solete or have their definition altered.
Although, GOParGenPy does not do any actual data

analysis or visualization steps itself the output files can
be easily imported to environments like Matlab, R or Py-
thon. The output GO data can be used as an input for
various analysis tasks like prediction of new GO annota-
tions with classifiers [6], for visualization tasks [8] or for
correlation analysis between GO data and large-scale
data [3]. Thus, GOParGenPy encourages modular think-
ing in bioinformatics.
GOParGenPy allows the user to select the used GO

annotation file and the used GO structure file. This
allows the usage of latest annotation data files and latest
GO structure. However, it can also be used with older
annotation files. This is useful when an older work needs
to be replicated, or while comparing methods with one
that uses old GO structure.
Additionally, GOParGenPy features and its applica-

tion can be extended to other ontology resources and it
has been already tested with Plant Ontology (PO).
GOParGenPy optional features can incorporate any PO
annotated gene lists and corresponding OBO file to gen-
erate sparse binary matrix representation. (see Project
homepage).

Conclusions
GOParGenPy is a fast python program for generating
GO binary data matrices from annotated set of genes.
GOParGenPy outperforms existing tools by allowing any
available version of the OBO structure and handling
large scale input annotation dataset with over 21 million
annotated sequences. The output files can be easily in-
corporated into various platforms such as MATLAB, R
or Python for further GO related downstream analysis.

Availability and requirements
Project name: GOParGenPy
Project homepage: http://ekhidna.biocenter.helsinki.fi/
users/ajay/private/GOParGenPy.htm
Operating system: Platform independent
Programming language: Python version 2.5/2.6
License: Free for academic use
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