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Abstract

Background: Candidate disease gene prediction is a rapidly developing area of bioinformatics research with the
potential to deliver great benefits to human health. As experimental studies detecting associations between genetic
intervals and disease proliferate, better bioinformatic techniques that can expand and exploit the data are required.

Description: Gentrepid is a web resource which predicts and prioritizes candidate disease genes for both
Mendelian and complex diseases. The system can take input from linkage analysis of single genetic intervals or
multiple marker loci from genome-wide association studies. The underlying database of the Gentrepid tool sources
data from numerous gene and protein resources, taking advantage of the wealth of biological information
available. Using known disease gene information from OMIM, the system predicts and prioritizes disease gene
candidates that participate in the same protein pathways or share similar protein domains. Alternatively, using an
ab initio approach, the system can detect enrichment of these protein annotations without prior knowledge of the
phenotype.

Conclusions: The system aims to integrate the wealth of protein information currently available with known and
novel phenotype/genotype information to acquire knowledge of biological mechanisms underpinning disease. We
have updated the system to facilitate analysis of GWAS data and the study of complex diseases. Application of the
system to GWAS data on hypertension using the ICBP data is provided as an example. An interesting prediction is a
ZIP transporter additional to the one found by the ICBP analysis. The webserver URL is https://www.gentrepid.org/.

Keywords: Candidate disease gene prediction, Candidate disease genes, Mendelian diseases, Complex diseases,
Genome-wide association studies, Genotype, Phenotype, Candidate gene identification, Genetic-association studies,
Hypertension
Background
The identification of genes implicated in human disease
enables an understanding of disease mechanisms and is
essential for the development of diagnostics and therapeu-
tics. While genetic approaches such as linkage mapping or
genome-wide association studies (GWAS) can successfully
identify genomic regions linked to a particular disease,
identification of the disease-causing genes is still a difficult
task. For linkage analysis, genomic regions are large, as
these analyses look at inheritance over several generations
in a known pedigree which may have few recombination
events. Genetic association studies, which do not focus on
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recent observable ancestry but rather look at historic re-
combination, have shorter disease-associated regions [1].
However, when applied at the genome-wide scale (eg.
GWAS), the large number of markers used requires strin-
gent correction for multiple testing, limiting the number
of reliably identified candidate genes. Lower scoring
markers may still indicate potential disease genes but may
also be false positives. Analysis of this valuable but noisy
data would benefit from a candidate disease gene
prioritization approach [2].
A variety of publicly available systems employ various

methodologies to map phenotype to genotype in order
to predict or rank candidate disease genes [3,4]. Many of
these systems are available as web services. Because
oligogenic diseases are associated with disruption of
genes that have similar functions [5], the most prevalent
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method employed is gene clustering [6]. Genes are clus-
tered based on shared features, such as common do-
mains, similar functional annotation, involvement in
the same protein complex or signaling pathways, co-
expression, or combinations of these [6-11].
Here we present the Gentrepid web server, a public

candidate disease gene prediction system that associates
genes with specified phenotypes using genetic and bio-
molecular data (Figure 1). Gentrepid draws on two gene
clustering methods to make candidate gene predictions;
the Common Pathway Scanning (CPS) and Common
Module Profiling (CMP) approaches [10]. Both methods
identify links between genes in loci associated with a dis-
ease phenotype. CPS is based primarily on protein inter-
action data, whereas CMP is based on sequence data.
Gentrepid can be assisted by phenotype-associated genes
as seeds (seeded mode), or can work in the absence of
disease gene knowledge using only phenotype-associated
loci (ab initio mode). The system can be applied to both
Mendelian and complex diseases [4,6,10].

Construction and content
Underlying databases and data sources
The relational database underlying Gentrepid was cre-
ated using the PostgreSQL database management system
Figure 1 Gentrepid architecture and web interface overview. Users inp
Selected loci and known genes (if applicable) are displayed on the overvie
The interactive Gentrepid web server matches candidate genes against kno
annotation engine and displays the results (4), or uses the ab initio search
with current biological data on human proteins and
genes, including pathways, interaction data and domains.
The core of the database is built on gene annotation and
sequence data of the NCBI reference assembly (build 36)
from RefSeq [12], with corresponding transcript
(mRNA) and protein information. Protein-protein inter-
action (PPI) data are gathered from the Interlogous
Interaction Database (I2D, formerly known as the On-
line Predicted Human Interaction Database, or OPHID
[13]). I2D contains literature-derived data from multiple
databases including BIND [14], MINT [15] and HPRD
[16]. Pathway data are retrieved from BioCarta [17] and
KEGG [18], which contain information on signalling and
metabolic pathways respectively. Single nucleotide poly-
morphisms (SNPs), sequence tagged sites (STSs) and
cytogenic data which are included as marker positions
for input of genetic loci, are pooled from dbSNP (build
131 at the time of the analyses) [19], dbSTS and Map
Viewer from NCBI [12]. Human disease gene informa-
tion is extracted from the Online Mendelian Inheritance
in Man (OMIM) [20] Morbid Map flat file.

Data generation and processing
For all proteins, several sequence features are pre-
calculated including signal peptide cleavage predictions
ut data as a disease locus or loci, and a phenotype, if available (1).
w page (2), from which a CPS or CMP analysis can be initiated (3).
wn disease genes using pre-calculated similarity scores from the
for enrichment of common gene annotations.
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by SignalP [21], coiled-coil domain predictions by
Marcoil [22] and Multicoil [23], and predictions of
transmembrane helices by TMHMM [24]. These data
are used to provide more information about phenotype-
related candidate proteins identified in the analyses. The
OMIM [20] morbid map file is remediated to standardize
phenotype names. In addition, simple phenotype cluster-
ing is implemented using similar text/character strings.
For example, the multiple entries for Alzheimer’s disease
subtypes are merged into one phenotype based on the text
string “Alzheimer”. The purpose of this simple phenotype
clustering is to capture as much relevant genetic informa-
tion on the phenotype as possible [25]. Users have the
ability to deconstruct phenotype clusters during the pre-
diction process if desired. For the CMP algorithm, domain
annotation of the proteome is performed by parsing all
protein sequences against the Pfam library of Hidden Mar-
kov models [26] using HMMer [27]. Pairwise similarity
scores between common domains of proteins are calculated
using the Smith-Waterman algorithm implemented in
SSEARCH [28].
Quality control and updates
Data is sourced from publicly available databases that
are constantly updated. In order to maintain an up-
to-date version of the system, data is updated every
6 months, or when a major release of other data sources
is made available. Once the data is updated, the system
is benchmarked to check for consistency by running val-
idation tests [10].
Algorithms
Prior disease knowledge and the ab initio approach
Gentrepid functions under two input modes, seeded and
ab initio. Seeded mode is assisted by phenotype-
associated genes from OMIM [20] as seeds. These seed
genes help define the phenotype-specific data that
Gentrepid bases its predictions upon. This approach was
shown to work successfully [10]. Gentrepid additionally
allows candidate disease genes to be prioritized across
multiple disease-associated loci in the absence of known
disease genes (ab initio mode). In this mode, common
domains and common pathways linking candidate dis-
ease genes from different loci are determined, and the
degree of overrepresentation of specific domain combi-
nations or pathways across disease-associated loci is
used to make predictions. Candidate genes are then
ranked according to the probability that these overrepre-
sented domain combinations or pathways would occur
randomly. The ab initio approach is especially useful
when little is known about the disease phenotype, and
can potentially discover novel biological mechanisms
underpinning the disease.
Common pathway scanning
The Common Pathway Scanning (CPS) approach is a
Systems Biology method that is based on the finding that
genes for a specific phenotype are more likely to interact
with other phenotype-specific genes. More specifically,
these phenotype-specific proteins are involved in the
same pathway or complex [5,9,29]. Utilising this know-
ledge, potential disease genes are predicted by searching
implicated disease loci for proteins that are part of the
same pathway or complex.
The CPS algorithm in seeded mode uses the phenotype-

specific disease genes to associate pathways with the
phenotype [10]. In seeded mode, genes within the candi-
date locus are checked for their occurrence in pathways
associated with the seed gene. For each disease, pathways
are ranked by the significance of the association, as deter-
mined by the Fisher’s exact test statistic. The p-value is
calculated by partitioning genes in the phenotype-
associated loci based on whether they are associated with
the pathway in question or not [4]. Candidate genes are
filtered and prioritized based on the lowest p-value score
of the pathway they share. The default significance thresh-
old is ppath < 0.05.
The CPS algorithm in ab initio mode requires multiple

associated loci as input. In this mode, the candidate loci
are searched for genes participating in common path-
ways. These common pathways are then ranked
according to the disease-relevance of their associated
pathways in the same manner as in seeded mode.

Common module profiling
The second approach, Common Module Profiling
(CMP), distinguishes Gentrepid from other candidate
disease gene prediction approaches, as it is based on the
use of sequence-based domain similarity. Predicated on
the principle that similar diseases are often caused by
families of genes with related functions [30], it uses
domain-based comparative sequence analysis to identify
proteins with potential functional similarity. A domain-
based comparison of proteins has several advantages
over comparison of the full-length amino acid sequence
of proteins. Because structure is conserved over se-
quence, domain-based sequence comparison searches
have been shown to be more accurate than full-length
sequence searches [31], improving the sensitivity of the
candidate gene search. Dissection of a protein into do-
mains provides a more fine-grained approach to identify-
ing aspects of protein function affected in the disease.
Using the Pfam library of Hidden Markov models [26],
domains can be assigned to approximately 69% of hu-
man proteins which allows functional inference for
around 54% of human genes. While some other web
tools reference protein domains [7,11], only Gentrepid
uses domain sequence comparison rather than keyword
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matching. As a result, relationships between similar but
differently labelled domains can also be captured.
The CMP algorithm in seeded mode uses pairwise

alignments of Pfam domains common to the candidate
gene and the known disease gene. Candidate genes are
scored based on their domain similarity to a known dis-
ease gene, and prioritized according to this score [10].
In ab initio mode, the CMP algorithm predicts and

prioritises genes in a different manner. In this method,
domain combinations are tested for over-representation
in the associated loci compared to the genome as a
whole through upper and lower significance tests [10].
Results are prioritized based on χ2min which has been
shown to give a better estimate of the significance [4].

Webserver
Data input
Data input is a relatively straightforward step-wise
process. All that is required is at least one phenotype-
associated locus and a known disease gene, or multiple
phenotype-associated loci. Gentrepid allows disease in-
tervals to be specified by STSs, SNPs or cytogenetic
bands in one of two ways: two markers specifying a start
and stop site can be entered; or a central marker and an
interval width can be used (Figure 1, bottom right
panel). Both new diseases and new disease genes not
currently included in the underlying Gentrepid database
can be added by the user and incorporated in the ana-
lysis. New phenotypes may be created by the user if de-
sired, in which case existing OMIM data will not be
accessed. New disease genes are entered into the system
by selecting a HUGO gene name or Entrez ID. Addition-
ally, any of Gentrepid’s pre-loaded phenotype-associated
genes can be deselected for the current project. As some
phenotypes described in Gentrepid reference more than
one OMIM ID, genes that an individual researcher be-
lieves to be anomalous can be removed from the project.
Usage of Gentrepid is outlined in a help page reachable
from the start page.

GWA input upgrade
The system was originally designed for input from
linkage-mapping loci determined for Mendelian diseases.
Such investigations generally involve relatively few loci,
making it feasible to manually enter each locus separ-
ately into the web server. This applies similarly to the in-
vestigation of relatively small numbers of loci associated
with highly significant SNPs in GWAS of complex dis-
eases. However, candidate disease gene prediction tools
such as Gentrepid are particularly useful when applied
to larger numbers of loci. For example, when lower sig-
nificance thresholds are applied to the GWAS SNPs in
order to discover candidates from weaker associations
[4]. To facilitate this, in version 2.0 of the system, users
can enter multiple loci simultaneously by pasting a list
into the text box.

Data retrieval
Once a phenotype and an interval, or multiple intervals,
have been entered, Gentrepid displays the known disease
genes and the genes in the selected regions, both graph-
ically and in tabular format (Figure 1, top left panel).
The graphical display utilizes Flash GViewer, a freely
available flash program developed by the GMOD project
(http://gmod.org/wiki/Flash_GViewer). It shows an over-
view of the genome, highlighting the individual genes
and intervals on the chromosomes that have been se-
lected for the project. From this page, users can choose
to perform a CPS or CMP candidate disease gene
analysis.
For the CPS analysis, the user can select which

preloaded genes and intervals from OMIM to include in
the analysis, as well as which pathway databases to in-
clude. By default all genes, intervals and pathway data-
bases are used. The analysis is performed, and a list of
candidate disease gene predictions is displayed in table
format, along with the interval, the known disease genes
located in the same pathway upon which the prediction
was made, and the pathway source database (Figure 1,
bottom left panel).
For the CMP analysis, users have the option of

selecting genes and intervals to include as for CPS, and
may choose the cut-off scores for the domain compari-
sons. The results page displays a table of predicted can-
didate disease genes and their locations, along with the
disease gene(s) with similar domains.
For both CPS and CMP, further information about

genes of interest can be found on the gene information
pages, which can be accessed by clicking on the
hyperlinked gene names on the results page. Gene pages
are compilations of in-house bioinformatic analyses of
gene products, with protein isoforms displayed under in-
dividual tabs. Protein domains, coils, and transmem-
brane helices are all displayed as an image, with links to
the text-based results of the Pfam [27], SignalP [21],
Marcoil [22], Multicoil [23], and TMHMM [24] output.
The mRNA sequence can also be accessed, and if applic-
able, current protein isoform sequences. Both are in
FASTA format. The gene page links to relevant entries
in the Entrez Gene [12] and GeneCards [32] webservers,
as well as the UCSC Genome Browser [33].

User account-based project management
Gentrepid can be accessed in two ways: immediately
through Quicksearch or via login after registering for an
account. Both are accessible via the homepage. With
Quicksearches, results are generated and immediately
displayed. Quicksearch results can be saved locally by

http://gmod.org/wiki/Flash_GViewer
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the user, but they are not stored on the webserver. In
order to save results on the webserver for future use, a
login account is required. Login accounts are available
free of charge to users from academic institutions or
non-profit research institutes. They allow users to save
their input and access their project at a later date or
from a different client, enabling user mobility and col-
laboration. With an account, users can also create, edit
or delete multiple projects. User data are kept in individ-
ual password-protected PostgreSQL databases and are
not accessible by other accounts. Data transfer to and
from the website is also encrypted and protected by a se-
curity certificate. Projects remain available until expli-
citly removed by the user, and can be accessed through
tabs along the top panel. Data input and retrieval are
analogous to the Quicksearch version.

Utility and discussion
The system can be used on both linkage and genome-wide
association data. Linkage data from family studies associ-
ates much larger regions of the genome with the disease or
phenotype. Similar but not identical to an enrichment ana-
lysis, Gentrepid’s modules can be employed to sift through
these regions and select genes that warrant further study.
In the case of GWAS data, the tool can be used to search
the genetic data holistically for affected pathways or mo-
lecular mechanisms. GWAS use SNPs in linkage disequi-
librium (LD) to pinpoint phenotype-associated areas of the
genome. When employing Gentrepid, genes within the
vicinity of the associated SNP, not necessarily in LD, are
analysed. The associated SNPs may be identifying haplo-
type blocks which contain control regions affecting the dis-
tal protein coding gene in cis. Other systems such as
GRAIL [34] allow users a similar flexibility by requesting
either an interval, a gene list or a set of SNPs.
The usefulness of each module for candidate gene pre-

diction seems to depend on the heritability of the
phenotype. For Mendelian diseases, CPS is the more ef-
fective of the two modules. Because of the small number
of loci typically involved in Mendelian disease, it works
best when there is some prior knowledge of the genes
underlying the phenotype. For complex diseases, where
it is believed multiple genes are involved, both modules,
common pathways and common functional domains, ap-
pear to be effective. Provided enough significant loci are
supplied, significant predictions can be made for com-
plex diseases either with or without prior knowledge [4].

Previous validation
Validation studies of the Gentrepid approach have been
published previously for both Mendelian diseases [10] as
well as complex diseases [6]. To summarize, for Mendel-
ian diseases benchmark tests on a set of 170 disease
genes for 29 diseases showed that the CMP and CPS
methods have a combined sensitivity of 0.52 and a speci-
ficity of 0.97, and reduce the candidate list by 13-fold
[10]. These tests were performed using artificially
constructed loci of 50, 100 or 150 genes around the tar-
get disease genes, numbers which are typical of linkage-
based disease loci.
Complex diseases are more difficult to benchmark due

to limited knowledge of the underlying genetics. In a
comparison using loci previously determined by linkage
analysis against 11 highly significant Type 2 Diabetes
GWAS SNPs, Gentrepid had a sensitivity of 0.18 and a
specificity of 0.96 while reducing the candidate list by
19-fold [6]. In a second benchmark on seven complex
diseases using GWAS SNP data, Gentrepid was capable
of extracting known disease genes and predicting plaus-
ible novel disease genes in known and novel loci. De-
pending on the size of the search space used, the system
had a sensitivity that ranged between 0.09 and 1, specifi-
city between 0.55 and 1, and enrichment ratios up to 25-
fold [4].
In addition to these benchmark tests, we have used

Gentrepid in-house to successfully predict a novel gene
for autosomal recessive spondylocostal dysostosis [35] and
analyse mutations in MESP2, LNFG and HES7 [36]. An
advantage of Gentrepid’s biological clustering approach is
that, as it does not use machine learning algorithms, it
does not rely on training data sets and thus avoids con-
comitant problems such as model overfitting [37].

Case study: hypertension and blood pressure
Hypertension (HTN) is a medical condition where blood
pressure in the arteries is significantly elevated resulting
in increased risk for cardiovascular disease, kidney dis-
ease or stroke. To demonstrate the application of the
Gentrepid system in the analysis of GWAS data, we ran
our analyses on a set of 29 significantly associated loci
from a meta-GWAS performed by the International
Consortium for Blood Pressure (ICBP) [38-40] where
the phenotypes investigated were hypertension (HTN),
systolic blood pressure (SBP), and diastolic blood pres-
sure (DBP). The study reported 45 likely candidate and
confirmed disease genes (Additional file 1: Table S1).
We collated a set of 23 HTN-implicated genes from
OMIM as seeds (Additional file 1: Table S2), using only
genes known prior to the publication of GWAS so as
not to skew our results. The seed genes are involved in
pathways that regulate blood pressure and blood volume
such as: calcium signalling, the renin-angiotensin sys-
tem, and hormone metabolism [41-43]. Using the 29 sig-
nificant loci reported, we generated a gene search space
based on SNP-gene proximity labelled the adjacent ap-
proach where we pool genes adjacent to the associated
SNP both upstream and downstream on the + and -
strands [4]. We also generated a second gene search
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space based on SNP-gene distance, labelled the by-
stander approach. We used a 1Mbp window centred on
each SNP and pooled genes within that interval. We
then ran Gentrepid in seeded mode, with the 23 seed
genes; and in ab initio mode, where no additional geno-
type/phenotype information is used. We report the pre-
dictions made by Gentrepid. We compared these
predictions to the reported candidates from the study;
which themselves, may or may not be the causal gene.
Predictions different to the reported genes in the ICBP
study [38] are annotated as alternate predictions.
Table 1 Comparison of reported genes and candidate disease
space from the adjacent mapping

Reported
SNP

Reported gene(s) by
study

Predicted candidate
gene(s)

Method C

rs419076 MDS1, EVI1 EVI1 CMP-ab

rs13107325 SLC39A8 SLC39A8 CMP-ab

NFKB1 CPS-s

rs13139571 GUCY1A3, GUCY1A3, CPS-ab

GUCY1B3 GUCY1B3

CPS-s

rs4373814 CACNB2 SLC39A12 CMP-ab

rs932764 PLCE1 PLCE1 CPS-ab

CPS-s

rs7129220 ADM AMPD3 CPS-ab

rs2521501 FURIN, FES FES CMP-ab

rs17608766 GOSR2 WNT9B CPS-ab

rs6015450 GNAS, EDN3, ZNF831,
MRPS16P

C20orf174 CMP-ab

rs3774372 ULK4 CTNNB1 CPS-ab Ce

rs1458038 FGF5 FGF5 CPS-ab

PRDM8 CMP-ab

rs1813353 CACNB2 CACNB2 CPS-ab

rs17249754 ATP2B1 ATP2B1 CPS-ab

CPS-s

rs1378942 CYP1A2, CSK CYP1A2 CMP-s

CSK CPS-s

rs12940887 ZNF652 ZNF652 CMP-ab

All predictions are reported. CMP/CPS s: seeded. ab :ab initio. Score (S) or p-value (P
an *. A dash (−) indicates no prediction. Relative rank is the rank of the gene in the
From the 29 loci implicated by the ICBP study [38],
the adjacent mapping generated a search space of 77
genes, as some loci mapped to fewer than 4 genes. From
these 77 genes, Gentrepid returned 19 gene predictions
for 15 of the 29 loci (Table 1). Of these 19 predictions,
12 were gene candidates reported by the ICBP study to
be the likely disease genes. Gentrepid thus made 7 alter-
nate gene predictions in 7 loci. Of these alternate predic-
tions, many are in generic signalling pathways (eg.
MAPK signalling, p = 0.08). Although the mitogen-
activated protein kinase (MAPK) cascade is involved in
genes predicted by Gentrepid using the gene search

ommon property used in
prediction

Seed
gene

Score Relative
rank

zf-C2H2 - S = 5.17 3

Zip - S = 150.96* 1

Corticosteroids &
cardioprotection

NOS3 P = 0.09 1

Purine metabolism - P = 0.23 7

Long-term depression NOS2A, P = 0.39 7

NOS3

Zip - S = 150.96* 1

Calcium signaling pathway - P = 0.31 11

Calcium signaling pathway AGTR1, P = 0.31 5

NOS2A,

NOS3

Purine metabolism - P = 0.23 9

Pkinase_Tyr - S = 13.97 2

Basal cell carcinoma - P = 0.05* 3

zf-C2H2 - S = 5.17 3

ll to Cell Adhesion Signaling - P = 0.01* 1

MAPK signaling pathway - P = 0.08 5

zf-C2H2 - S = 5.17 3

MAPK signaling pathway - P = 0.08 5

Calcium signaling pathway - P = 0.31 11

Calcium signaling pathway AGTR1, P = 0.31 5

NOS2A,

NOS3

p450 CYP3A5 S = 0.15 1

PPIN ACSM3, - -

ADD1

zf-C2H2 - S = 5.17 3

) reported for genes predicted. Significant scores or p-values are marked with
method used. For PPIN, no rank has been assigned.
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various cellular functions including vascular oxidative
stress, it is debated whether this is solely a symptom of
hypertension [44]. The study suggests that variant alleles
of the MAPK signalling pathway predispose individuals
to hypertension.
The 1Mbp bystander approach generated a search

space of 386 genes. Gentrepid returned predictions for
25 of the 29 implicated loci, with a total of 108 gene pre-
dictions (results not shown). Of the 25 loci with predic-
tions, 15 gene predictions were congruent with those
reported by the ICBP study. Alternate predictions of
note include the nuclear factor NF-kappa-B (NFKB1),
predicted via the “Corticosteroids and cardioprotection”
pathway (p = 9.99e-5). Corticosteroids exert a variety of
actions by binding to the glucocorticoid receptor and
may play a role in increased water excretion in the kid-
neys to reduce blood volume and atrial pressure [45]. In
addition to the ZIP domain ion transporter SLC39A8
reported by the ICBP, Gentrepid CMP predicted the sol-
ute carrier SLC39A12 that, like SLC39A8, has a Zinc
transporter domain (Zip, Pfam PF02535). The ICBP
study postulated that SLC39A8 may play a role in dis-
ease through its transport of cadmium [46,47].
As demonstrated, both SNP/gene mapping approaches

are useful to obtain likely candidates. We recommend
the adjacent approach as a first step, and then the 1Mbp
bystander approach can be used to generate possible
candidates further from the associated locus.

Limitations and future directions
Gentrepid, as with all tools in the field, is limited by the
current knowledge database. In an effort to compensate
for the missing data, Gentrepid uses multiple modules
(CPS, CMP) which gather data from multiple sources
(protein-protein interactions, pathways, protein do-
mains). Other protein function data that has been
employed include tissue-specific expression levels
[48-50], post-translational modifications [51], phylogen-
etic lineage [52], and other ontological classifications
[53]. With the publication of regulatory annotation data
such as those from the ENCODE project [54], a future
direction for the tool would be to use such regulatory in-
formation as a likely candidate disease gene prediction
module. Genes targeted by common transcription fac-
tors, or miRNAs, amongst other elements that affect
gene expression, have also been disease associated and
would be a useful update to the system [55,56].

Conclusions
The Gentrepid web server facilitates the prediction and
prioritization of candidate disease genes for both Men-
delian and complex diseases using two complementary
approaches, namely Common Pathway Scanning and
Common Module Profiling. The ability to apply different
approaches separately enables the application of different
prioritization strategies to different categories of dis-
ease—for instance, the optimal approach for the
prioritization of candidate disease genes for Mendelian
diseases might differ from that for complex diseases, or
for cancer. The alternate predictions made by Gentrepid
for hypertension and blood pressure traits are interesting
candidates that require further validation. The system
has shown to be capable of both replicating known or
reported candidates and also making novel plausible pre-
dictions, demonstrating the usefulness of Gentrepid in
de novo analysis and reanalysis of GWAS data. In the fu-
ture, the addition and integration of yet more data types
will further increase the utility of Gentrepid in candidate
disease gene prediction and prioritization, for all types of
diseases.

Availability and requirements
Gentrepid is available at https://www.gentrepid.org. It re-
quires no special or additional data sources, other than
the input data (genetic loci) from the user.

Additional file

Additional file 1: Table S1. Novel implicated loci, and reported
candidate genes from the ICBP study. Table S2. OMIM hypertension
associated genes used as seeds for the seeded disease gene approach.
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