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Abstract

considered in primer design.
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Background: Primer design for highly variable DNA sequences is difficult, and experimental success requires
attention to many interacting constraints. The advent of next-generation sequencing methods allows the
investigation of rare variants otherwise hidden deep in large populations, but requires attention to population
diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically

Results: Design constraints include degenerate sites to maximize population coverage, matching of melting
temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream
analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we
created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers
and limitations and give examples of successful designs for the analysis of HIV-1 populations.

Conclusions: PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing
highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-
generation sequencing, and other experimental protocols targeting highly variable DNA samples.
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Background

Proper primer design is essential for projects where PCR
amplification and/or DNA sequencing play an important
role, and a number of algorithms and design recommen-
dations have been proposed. Depending on the goal of a
particular project, criteria for selection of primers (and
probes) include simple parameters like the length of
primers and products, as well as considerations regard-
ing the information the researcher wants to extract. Be-
cause in silico design prior to starting a project may
prevent later problems in experiments and analyses,
many specialized primer design computer programs have
been created. They focus on certain aspects of primer
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design, including multiplexing, degenerate sites, discrim-
inate amplification, nested PCR, SNP protocols, and
hybridization analyses such as micro-arrays and in situ
hybridization, and of course DNA sequencing [1-8].
Partly because design is complicated, even for well-
defined targets with little or no genetic variation, it is
usually performed in discrete, non-communicating steps.
This is unfortunate because limitations in one step may
affect another, and similarly a problem in one step could
possibly have been circumvented by an alternative in an-
other step. Thus, when design is undertaken in a series
of separate steps, it may be difficult or impossible to
optimize the overall design. Therefore, there is a need
for a method that can optimize primers and probes
while considering all design criteria simultaneously.
Deep sequencing, ie., re-sequencing of a known DNA
sample to reveal relative frequencies of individual population

© 2013 Brodin et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:tkl@lanl.gov
http://creativecommons.org/licenses/by/2.0

Brodin et al. BMC Bioinformatics 2013, 14:255
http://www.biomedcentral.com/1471-2105/14/255

variants and to detect rare mutants, has become feasible
thanks to next-generation sequencing (NGS). For ex-
ample, NGS has been used to investigate early immune es-
cape variants in acute HIV-1 infection [9-12], evolution of
distinct phenotypic traits such as transitions in HIV co-
receptor usage [13], virus genetic variation during drug
treatment [14-16], endogenous siRNAs [17], cancer gene
variants [18], and genetic variation in gut microbiota [19].
To accurately amplify and sequence such populations,
genetic variation needs to be considered in the primer de-
sign. Primer design that captures only limited diversity
relative to the sample population diversity, and favors cer-
tain variants, will bias the outcome. Thus, in addition to
the advantages of designing the physical parameters of
primers in parallel rather than in serial steps as discussed
above, it is also valuable to consider a multiple-alignment
representative of the diversity in the sample of interest in
the overall design. It is important to locate primers in rela-
tively conserved regions bounding the region of interest,
and to design primers that will adequately address the
level of variation that cannot be avoided.

Motivated by the scientific goals of analyzing diverse
HIV-1 and SIV populations, and the fact that no general
primer design software existed that included both the
many steps of the design procedure, as well as the rich
diversity information from a multiple-sequence align-
ment, we developed an algorithm that integrates all
these components into a comprehensive tool. This tool
was based on our experience with 454 deep sequencing,
but can also be used for primer design for other NGS
technologies such as IonTorrent, Illumina, SOLiD, PacBio,
as well as general PCR and traditional Sanger sequencing
protocols. We show examples of the use of this algorithm
to successfully analyze diverse HIV-1 populations, both
within and between infected patients. Note that although
these viruses are among the most genetically variable or-
ganisms known [20-24], the tool is not restricted to HIV/
SIV design; it can be used to design primers and probes to
any aligned set of DNA sequences, regardless of diversity
level and organism. To make access easy, guarantee that
the latest version of the tool is used, and make the pro-
gram independent of computer platform, the software is
available as a web tool at the LANL HIV database.

Implementation
Software organization
This software was built using Perl 5 and C programming
languages. The web interface was constructed using the
Catalyst Model-View-Controller framework (http://www.
catalystframework.org) and Moose object-oriented pro-
gramming in Perl (http://moose.iinteractive.com).

The software was built in modules, most of them written
in Perl 5. Modules that are computationally intensive, such
as the dimerization risk estimation, were written in C.
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Other parts, such as the bio-barcode generation and edit
distance filtering have been pre-calculated and are stored
in a database for quick access during PrimerDesign optimi-
zations. The bio-barcodes were calculated on a parallel
computer, using inline C for Perl.

Alignment data

To illustrate PrimerDesign performance, we used se-
quence alignments from one of the most variable organ-
isms known, the human immunodeficiency virus type 1
(HIV-1) [9]. The design is based on a pre-existing mul-
tiple DNA sequence alignment.

PCR and 454 sequencing

PCR pre-amplification was performed as previously de-
scribed [9,11]. These amplifications were performed with
adaptor-tag-primer constructs designed using the methods
described in this paper. The pre-amplification boosts the
template numbers for subsequent 454 analyses while intro-
ducing bio-barcodes for downstream bioinformatic ana-
lyses and universal adaptors for 454 emulsion PCR and
sequencing.

Sequencing reactions were run on a Roche Genome
Sequencer FLX system (Roche, Basel, Switzerland) as
previously described [9,11]. Briefly, all samples were di-
luted and pooled. For emulsion PCR, 2.25 ml of the
pooled sample was added to a reaction mix containing
450,000-600,000 capture beads per reaction. The dilu-
tion corresponded to copies per bead ratios of approxi-
mately 1-10, and the yield was proportional to that
ratio. The PCR products were retrieved by breaking the
emulsion and enriching for beads contain amplified prod-
ucts. Approximately 400,000-750,000 enriched DNA beads
from each reaction were deposited into one of 2 regions of
a 70 x 75 mm Pico Titer Plate for sequencing.

Results and discussion

Multiple-alignment informs primer design

A high-information multiple sequence alignment cover-
ing a region of interest (ROI) must be supplied by the
user (Figure 1). The ROI is the DNA region that con-
tains the de novo DNA information in the samples to be
analyzed. These could be, for example, sites related to drug
resistance, CTL epitopes, or other features. It is important
that the alignment contains examples of the expected gen-
etic variation in the population to be analyzed, for instance,
that sufficient diversity in hyper-variable regions to be rep-
resentative is included. This will allow the design of
primers that both avoid highly variable regions, and that
address the diversity found in the more conserved regions
that are good candidates for primer localization. To allow
localization of the best primer sites, the ROI should be
flanked by sequence on either side. Ideally, such flanking
sequences should be long enough to allow most sequence
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Figure 1 The region of interest (ROI) defines the de novo target
DNA sequence. Ideally a multiple alignment should have ample
space for primers on either side of the ROI, considering desired
primer lengths and sequence read length (which depends on the
sequencing system used).

reads to extend the full length of the ROI, and maximize
the range of possibilities for primer selection. Formally,
therefore, flanking sequence length should equal the max-
imum sequencing read-length minus the ROI-length on ei-
ther side: e.g, if the ROI is 100 bp and maximum
sequencing read length is 500 bp, the alignment should
ideally be (500-100) + (500-100) + 100 =900 bp long.
While this may not always be possible, it is helpful as a
guideline; at minimum, there must always be enough se-
quence on either side of the ROI to identify a suitable place
for a primer. When studies of within-subject viral diversity
are undertaken, having a set of sequences spanning the
ROI from the subject is desirable to inform primer design;
when sequences will be obtained from multiple subjects,
population diversity needs to be considered. While our pri-
mer design methods will work using alignments that come
from any variable organism, however for HIV we provide
many premade alignments that cover different levels of gen-
etic variation or that are made on the fly from database
searches at the HIV database site www.hiv.lanl.gov.

User and sequencing method restrictions constrain
primer design

When primers are designed for re-sequencing, including
NGS-based deep sequencing, the user already has infor-
mation about the ROL Based on the alignment, the user
specifies the ROI by its alignment-specific start and end
coordinates. The user also can place constraints on the
primers in terms of minimum and maximum length
(10 <L <40 bp), and maximum allowed differences in
melting temperatures (7,,) in °C to match the primers to
experimental conditions and desired de novo lengths.
Importantly, primers will be designed to include genetic
variation down to a user specified detection limit d,
which, if necessary, will include degenerate nucleotide
states at some primer positions. The user can also re-
strict the design by requiring primer sites to have G/C
characters at 3'- and/or 5-ends.
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In addition to user specified constraints, the sequen-
cing method also puts restrictions upon the design
process. For instance, if the user specifies 454 Titanium
as adaptors, this automatically sets restrictions on the
barcode generation as well as possible primer sites, to
avoid di-nucleotides of the same state at junctions and the
potential for dimerization. Another important method-
specific restriction is the total length of the fragment to be
sequenced: this is set automatically based on published se-
quencing lengths for different sequencing methods, but
the user can change this by specifying “my adaptor” and a
desired de novo length.

All user constraints are input on a simple web form
(Figure 2), and method-specific constraints are automat-
ically enforced based on user information. The resulting
primer-constructs are presented in a table format that
easily can be transferred to a spreadsheet or database.
Up to 5 alternative primer-construct pairs will be
presented. In addition, appropriate barcodes will be
listed for each primer-construct pair. Such DNA-based
barcodes (aka. “tags”) can be used to identify different
sample sources, e.g., different patients, longitudinal sam-
ples, tissue compartments, etc. This table of primer-
construct pairs may become very large, as 1,000's of bar
codes can be generated for use with a primer-construct.
Importantly, this also makes it possible for a user to de-
sign template-specific barcodes [16] and to investigate
and predict problems related to barcode misreading or
loss of sequence fragments due to barcodes acting as al-
ternative primers.

Entropy informs about primer locations

In order to find good locations for the primers within
the alignment, the algorithm first finds the nucleotide
frequencies at each position of the alignment. It then ex-
cludes nucleotides whose frequency at any position falls
below a desired detection limit d (given by the user),
and calculates a multi-state consensus character (IUPAC
code) representative of the remaining nucleotides at
each position. The remaining variability is then esti-
mated by the Shannon entropy for each site [25,26].
Next, the locations of all forward-reverse primer pairs
are found around the region of interest (ROI) with pri-
mer lengths between minimum and maximum primer
length (given by the user) sorted by their entropy scores.
Lower entropies are preferred. These potential primer
pairs are then filtered by T, and dimerization risk.

Estimating T, for matching to experimental conditions

The primer melting temperature 7, is estimated by the
empirical nearest-neighbor model [27,28], assuming a
sodium concentration of 0.15 M and primer concentra-
tion at 30 uM, and dinucleotide entropies and enthalpies
according to published empirical values [27,28]. Because
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Input Query

Title of analysis Example

Paste your alignment >GP2002_5637
[5ample INDUt] | TGGATACGCCCAAAGGTTAAACAATGGCCATTGACA
GAAGAAAAAATAAAAGCATTAACAGTGATTTGTGAAG
AAATGGAAAAGGAAGGAAAAATTACAAAAATTGGGC
| CTCAARATCCATATAACACTCCAGTATTTGCCATAAA .

Or upload your alignment file | choose File | no file selected

Primer Options

Region of Interest: Start 76 Stop 165
Minimum Primer Length: 20 10sX=<40
Maximum Primer Length: 25 10<X<40

Detection Limit: 5 %
Max Difference in Tm: 'C

S

Dimer Window Size: 10

Dimer Max Ratio: 0.9

Forward Primer Options: & G/C on the 3’ end
() G/Con the 5 end
Reverse Primer Options: @ G/C on the 3' end
() G/C on the 5" end

Adaptor Options
Adaptor to Use | Gs Fix Titanium adaptor
Tag Options
Tag/barcode generation | Optimize length of tags  +
Number of tags 30

Edit Distance between tags 5

Use dinucleotides at junctions )

Submit | | Reset

Figure 2 Input web page for PrimerDesign. Alignments can be either pasted into the input window or uploaded as a file from the user's
computer. A ‘sample input’ is provided so users can test run the software and familiarize themselves with the effects of different options. This

example shows the default primer option values that we provide. All options have a hyperlink to a help page that explains how to use them.

\

the consensus sequence may contain multistate characters
(aka. degenerate sites), each such site is deconvoluted into
possible A, C, G, and T characters and all possible primer
sequences are generated. The complexity measures how
many individual primers composed of only A, C, G,
and T characters exist for a given primer (and across
the entire alignment). For each of the deconvoluted
primers the T, is calculated, and the average is presented
for each potential multistate-containing primer. If the dif-
ference in T, between a forward and a reverse primer is
within the maximum allowable limit (given by the user),
then that primer-pair is appended to the list of potential
constructs and sent to the dimerization risk estimation.

Bio-barcode tags label sequences

The user can optimize the bio-barcode tags based on 1)
a desired number of unique tags, 2) a certain length of
the tags, or 3) a minimum edit distance. Currently, we
have restricted the number of tags to 200,000 and a tag
length of 18 nucleotides. The edit distance (Levenshtein
distance), i.e., the possible minimum number of “muta-
tions” required to modify one tag into another depends
on tag length, can be selected to be up to 10 for long

tags. A higher edit distance makes downstream bio-
informatic sorting more robust, translating into fewer
lost sequences due to ambigious reads, and also fewer
misclassifications of barcodes. Figure 3 shows the
current limitations on the number of possible tags for
different lengths and edit distances. Tag numbers grow
exponentially as a function of length, and at lower
numbers stochastic limitations due to starting values
influence the actual number of possible tags.

To avoid time-consuming generation of barcodes every
time the software is run we have constructed prior lists
that PrimerDesign accesses during the primer-tag-adaptor
design. There are two sets of potential barcodes. The first
set contains all tags of lengths between 3 and 18 nucleo-
tides. This list was generated recursively. Thus, for tag
length 7, nucleotides were appended to the tags of length
n-1. During the generation of the tags, no tags with re-
peated nucleotides at adjacent sites were allowed as this is
known to cause potential misreading in pyrosequencing
[29,30]. The second set of tags was derived from the first
set where tags were filtered out when the edit distance
was less than a user-specified minimum. All sets with
minimum edit distances of 3—10 were pre-calculated. In
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Figure 3 Current limitations in the number of possible bio-
barcode tags for different lengths and edit distances. These
bio-barcodes are stored in a database for fast selection according
to user-specified criteria. Two examples (dashed lines) are
indicated, representing user requests for 100 bio-barcodes and a
length of 10 bp.

detail, to effectively generate the second set the algorithm
checks for the longest common substring of two tags. If
the difference between the tag length and the common-
substring length was less than the specified edit distance,
then the Levenshtein distance between the two tags must
also be less than the edit distance. Because the lists are re-
cursive, this procedure led to a great reduction of the
number of calculations for longer tag lengths.

Automated dimerization risk filters design constructs

Because primer-dimers may cause serious problems in ex-
periments, we search for potential dimerization risk be-
tween all primer constructs (primer-tag-adaptor oligomers)
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that will be in the same reaction. Both potential homo-
dimer (e.g., hairpins) and hetero-dimer structures are
investigated. This algorithmic step can become very
computationally intensive, especially if large numbers
of tags and/or a high degree of complexity are included
in the design. Dimerization risk is evaluated in two
ways (Figure 4): 1) in a user-defined window moved
along all potential primer-primer interactions, and 2)
as a user-specified fraction of bonds in an interaction.
To reduce the software running time we have removed
redundant calculations by hierarchically dividing and
testing the different parts of the primer-tag-adaptor
constructs. Specifically, the first step is to check for di-
mers amongst only the adaptors, since all constructs in
one reaction have the same adaptors. The second step in-
volves estimating dimer risk in the additional adaptor-
primer parts since each primer set will have the same
forward-reverse primers. Finally, the third step involves
the remaining adaptor-primer-tag parts, as each construct
in each primer set will have a different tag. This allows es-
timating the dimerization risk early, thus reducing the
number of calculations and potentially long algorithmic
loops that otherwise would slow down the design process.
Potential primer-dimers detected during the design are
logged in a file that can be downloaded for quality control
analyses.

Hence, all unique primer constructs are checked against
each other, and if an interaction shows more than the
user-specified number or ratio of matches, then that set is
discarded. The default values (window = 10; ratio = 0.9)
are conservative values based on recently published esti-
mates of dimerization risk [31].

PrimerDesign suggests primer pairs

Based on user specifications, minimization of sequence
entropy and complexity, T),,-matching, and checking for
potential dimerization risks, the five best primer pair

Overlap # 1
Primer A I I
Primer B <+

|
\
|
I
Dimer window test \
|
I
\
|

Dimer ratio test

Figure 4 Prediction of dimerization risk. The dimerization risk is assessed by virtually sliding one primer (A) across another (B), reversed. Each
potential overlap (1...n...N) is examined by i) a sliding window that tests if the two primers have an exact match within the window (user-
specified parameter), and ii) a calculation of whether the fraction of matches in the overlap exceeds a certain ratio (user-specified). If either test
indicates a potential dimer, the set is discarded. Primer-primer tests occur for all possible homo- and hetero-dimers.
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constructs are identified graphically in a plot that corre-
sponds to the user-provided alignment on which the de-
sign was based (Figure 5). The ROI is marked (in grey)
and the five best forward and reverse primer pairs are
indicated on either side as arrows. The graph also shows
the Shannon entropy (in this example for a hypothetical
primer 20 bp long), the complexity as defined by the
number of degenerate sites (informed by d), and the esti-
mated mean T,,. These curves allow the user to interact
with the design, e.g., to identify primer sites with less com-
plexity that would be created if the restriction of G/C in
the 3’-end were relaxed. If desired, the user can go back
and reevaluate the original design. For instance, [llumina’s
error rate rises along the length of its reads; therefore, it
may not be desirable to place the region of interest at the
end of the sequencing read, which experiences the highest
error rate. Of course, this can be controlled by the user, by
simply reducing the expected read length, therefore pla-
cing the primers closer to the ROL.

In addition to the graphical output, we also provide a
simple table with the primer constructs and T,,, which
can be used for primer synthesis and experimental setup,
and a log file with additional quality control and iter-
ation data.

The execution speed of the program depends on a
number of factors, particularly the size of the input mul-
tiple alignment, the level of genetic variation, and the
number of barcodes requested. The level of genetic
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variation affects several steps; as the variability increases,
the number of degenerate sites may also increase, which
adds to 1) the complexity and the number of primers to
average T, over, and 2) the number of potential primer-
dimers. The level of complexity to consider is adjusted
by the user-specified detection limit 4. It is noteworthy
in this context that adjusting target 7,,, and the allow-
able matching intervals can make primers designed with
less complexity/lower detection limit still be sufficiently
promiscuous to amplify all genetic variants in the target
population. At the web site we provide a “sample input”;
this imports an alignment and several parameter values,
with no adaptors, de novo length of 200 bp, and no
barcodes; it finds optimal primers in about 25 seconds,
depending on server load and internet speed. When cal-
culations take long times, i.e, when web browsers may
time out before the design is completed, we provide an
email notification option. This sends an email to the
user with a link to the results.

Primers used in successful 454 sequencing of HIV-1
populations

This PrimerDesign algorithm was used to design primers
to investigate CD8 T-cell driven HIV-1 immune escape
over time, starting with acute infection samples from 3
human patients [9]. We were also interested in using
454 pyrosequencing to better estimate the number of
HIV-1 strains that established the primary infection in

Primer
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Figure 5 Example output web page from PrimerDesign. The output includes a list of the design parameters specified by the user, a graphical
illustration showing primer locations (arrows), the ROI (in grey), and curves for entropy, complexity and T,,, followed by a table of the primer
constructs. The output also includes buttons to download the graph in different formats, the primer constructs in tab-delimited format, and the
dimerization risk-testing log. This figure shows only the primer graph component, because the table may be very long (depending mainly on
how many bio-barcodes were requested).




Brodin et al. BMC Bioinformatics 2013, 14:255
http://www.biomedcentral.com/1471-2105/14/255

these subjects [9]. The env V3 region is a highly variable
region of the HIV-1 genome, and was therefore, as in a
previous HIV-1 deep-sequencing study of long-term in-
fections [14], sequenced as a reference region in all study
subjects to examine non-T-cell-selected diversification.
Thus for each patient the ROIs were chosen to encom-
pass the env V3 region, along with additional regions
spanning one or two verified CD8+ T cell epitope(s) rec-
ognized early in infection. These regions were located in
nef in one subject, rev and tat in the second, and env in
the third [9]. We were interested in detecting the emer-
gence of low frequency variants in each patient, and
tracking the progression of immune escape over time. In
addition to the 3 acutely infected patients, we had ac-
cess to one sample from a chronically infected donor
who was expected to have a very diverse virus popula-
tion. Based on alignments of previous Sanger sequences
from these 4 patients [32], the previous 454 study of
chronic patients [14], and additional sequences from the
HIV database (www.hiv.lanl.gov), we designed 30 unique
adaptor-tag-primer constructs: 2 patients x 2 regions (a
T-cell epitope region and the V3 variable region) x 4
samples per patient (3 longitudinal samples + 1 control) = 16,
plus 1 patient x 3 regions (2 T-cell epitope region and the
V3 variable region) x 4 samples per patient (3 longitudinal
samples + 1 control) =12, plus 2 regions for the single
time-point for the chronically infected donor. Each of
these constructs successfully revealed accumulating gen-
etic variation in the investigated regions over time, and ex-
tensive within-epitope diversity. The number of sequences
retrieved varied in the patients, but was generally similar
between regions within the same patient [9]. Furthermore,
the variation found in the HIV-1 sequencing experiments
agrees very well with results from Sanger sequencing by
single-genome amplification (SGA), with 95% confidence
intervals for variant frequency detected by SGA overlap-
ping frequencies from 454, and increased sensitivity to de-
tect rare variants [12].
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To further investigate PrimerDesign’s performance in
identifying effective primers for revealing genetic variation
in different regions of the HIV-1 genome, we designed pri-
mer sets to provide overlapping short amplicons across
the HIV-1 genome of the HIV-infected subject CH40. We
aimed at finding 454 sequencing primers every 250 bp
that would work in both directions, using full-length gen-
ome sequences obtained from this subject as the an input
alignment for primer design [12]. As the expected read-
length was about 500 bp, this resulted in a tiled primer
design of 30 + 30 primers. Figure 6 shows the aligned
454 sequences covering the entire HIV-1 genome. Crit-
ically, most primers generated similar numbers of de
novo sequences, hence displaying comparable levels of
genetic detail across the genome. A few primers around
genome positions 6500-7000 gave more data, interest-
ingly in both directions, and none of the primers failed.
Because the genetic variation of HIV-1 is highly non-
uniform across the genome, this shows that our
PrimerDesign algorithm can find good primers regard-
less of whether a highly variable gene (such as env) or
a less variable gene (such as pol) was the ROI, and that
the actual sequencing depth was comparable across
the genome.

The generation of primers across the entire HIV-1
genome was done with an in-house semi-automated ver-
sion of PrimerDesign, but it could be easily done manu-
ally using multiple ROIs in separate runs. We may add
this as an automatic feature in the future if requested by
users, which is customary for LANL HIV database bio-
informatic tools. Similarly, we welcome other user re-
quests for further improvements, and we will implement
such requests if feasible.

PrimerDesign compared to other software

The biggest strength of PrimerDesign compared to the ma-
jority of previous primer design programs is PrimerDesign’s
comprehensive approach. Specifically, PrimerDesign uses a

Read Counts (Forward)

Read Counts (Reverse)

DNA base position (from start of first amplicon)

Figure 6 A visual representation of a portion of a 1.4-gigabase, 4.5-million-sequence nucleotide alignment, derived from overlapping
454 reads covering nearly the complete HIV-1 genome, from 35 individual PCR amplicons from a single patient at 5 time-points
during infection. The “fin-like” structures reflect the length distributions of reads that begin at each primer site (left-to-right for forward reads,
above midline; right-to-left for reverse reads, below midline). In the original image, which has been reduced for printing, each pixel corresponds
to a single nucleotide (A, red; C, blue; G, black; T, green). Each vertical grid line represents 5,000 sequence reads; each horizontal grid line, 50 base
pairs. The overall number of reads across the genome was fairly constant, indicating similar primer design success and data richness for genetic
variability assessments.
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multiple alignment to address deep-sequencing needs of
primer localization in relatively conserved regions of highly
variable DNA targets, allows the integrated design of
bio-barcode tags and adaptors, and allows primer-
dimer evaluation based on experimental data. Most
primer design software tools base their design on a sin-
gle sequence (e.g., Primer3 [1]), which could result in
selective or biased amplification from a diverse popula-
tion by inadequate coverage of variants, or inadvertent
selection of primers in relatively diverse regions, when
conserved regions could be used instead, thereby risking
missed coverage due to biological variability in primer
regions. Other programs that use multiple alignments
(e.g., GeneFisher [5]) lack the ability to simultaneously
evaluate primers appropriately, for instance, by matching
T,,5 and checking for dimerization risk. In these compari-
sons, it is important to point out that many previous pri-
mer design programs have focused on specific needs of
certain experimental protocols, and therefore comparisons
are difficult. Another advantage with PrimerDesign is its
automatic and flexible tag generation, which is becoming
more important with the increasing usage of multiplexed
and next-generation sequencing. Tag generation, together
with the possibility of adding DNA adaptors, and testing
the entire construct’s dimerization risks, are to our know-
ledge unique features of PrimerDesign. Primers designed
using PrimerDesign could readily be used in conjunction
with the Primer ID strategy, where a random sequence tag
is introduced so that each template receives a unique
primer ID [16]. The goal of the primer ID is to
minimize errors in estimating sequence frequencies
resulting from initial sequence resampling and ampli-
fication biases, and template consensus sequences,
and to minimize the impact of recombination during
amplification and misincorporation/sequencing errors
[16]. The introduction of such tags may introduce
some primer issues, as these tags are by definition ran-
dom, and added at the DNA synthesis stage, and so
will not be designed to avoid homopolymer strings,
dimerization issues, and some bias may be introduced
by the chemistry of synthesis.

Conclusions

We have created a novel primer design tool, PrimerDesign,
which suggests primer pairs according to a comprehensive
algorithm and user requirements. The overall software
workflow proceeds through inter-connected steps: 1) the
target locations for primers are determined, guided by se-
quence entropy estimates’ and complexity, 2) primer melt-
ing temperatures are optimized, 3) bio-barcodes and
adaptors are added, and finally 4) dimerization risks are
estimated. Each inter-connected step informs the subse-
quent steps; if previous steps have to be re-optimized, this
occurs automatically. Thus, each step considers both user
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requirements and automatic parameters used within the
algorithm.

PrimerDesign was originally designed for HIV studies;
however it should be equally useful for designing primers
for other biological systems that have high levels of gen-
etic variation. Thus, we have presented a novel computer
program for designing primers for highly variable DNA
targets. The design takes into account genetic variation,
and several user-specified as well automatic design fea-
tures related to the goal of a particular study and the
intended experimental setting. In particular, we demon-
strate that our method effectively designs PCR and se-
quencing primers for the 454 system.

Availability and requirements

The software is available as a web application at http://
www.hiv.lanl.gov/tools/primer/main. As a web tool, it is
platform independent. Like other bioinformatic tools at
the HIV database, the tool will be maintained in the long
term, and users can suggest new features as well as re-
port problems to seq-info@lanl.gov. Running it as a web
tool therefore also guarantees that a user always will use
the latest version.

Project name: HIV databases; PrimerDesign

Project home page: http://www.hiv.lanl.gov/tools/pri-
mer/main

Operating system(s): Platform independent
Programming language: Perl, C, Catalyst, Moose
Other requirements: web browser

License: Copyright 2012. Los Alamos National Security,
LLC. This material was produced under U.S. Govern-
ment contract DE-AC52-06NA25396 for Los Alamos
National Laboratory (LANL), which is operated by Los
Alamos National Security, LLC for the U.S. Department
of Energy. The U.S. Government has rights to use, re-
produce, and distribute this software. NEITHER THE
GOVERNMENT NOR LOS ALAMOS NATIONAL SE-
CURITY, LLC MAKES ANY WARRANTY, EXPRESS
OR IMPLIED, OR ASSUMES ANY LIABILITY FOR
THE USE OF THIS SOFTWARE. If software is modified
to produce derivative works, such modified software
should be clearly marked, so as not to confuse it with
the version available from LANL. Additionally, this pro-
gram is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
version 2.0 of the License. Accordingly, this program is
distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public
License for more details.

Any restrictions to use by non-academics: see license
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