
Jin and Bakos BMC Bioinformatics 2013, 14:25
http://www.biomedcentral.com/1471-2105/14/25
SOFTWARE Open Access
Extending the BEAGLE library to a multi-FPGA
platform
Zheming Jin† and Jason D Bakos*†
Abstract

Background: Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein’s pruning algorithm is a
standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence
data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic
Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for
these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by
coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been
developed that includes optimized implementations of Felsenstein’s pruning algorithm for various data parallel
architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based
platform called the Convey HC-1.

Results: The core calculation of our implementation, which includes both the phylogenetic likelihood function
(PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of
I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform’s peak memory
bandwidth and the implementation’s memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our
FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of
approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when
compared with BEAGLE’s CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE’s GPU
implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power
efficiency of 1.7 Gflops per Watt.

Conclusions: The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic
inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency.
To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design
of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and
throughput constraints to match the target platform. We have found that using low-latency floating-point
operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found
that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor.
Background
Different Bayesian and likelihood-based phylogenetic
inference tools use various methods for generating a
sequence of candidate trees, but in general these tools
use the Phylogenetic Likelihood Function (PLF) to evalu-
ate the likelihood of a proposed tree [1]. Equation 1
shows the PLF.
* Correspondence: jbakos@cse.sc.edu
†Equal contributors
Department of Computer Science and Engineering, University of South
Carolina, Columbia, SC, USA

© 2013 Jin and Bakos; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
L ið Þ
k sð Þ

s∈ A;C;G;Tð Þ ¼ �X
x∈ A;C;G;Tð ÞProbðx s; tlj ÞL ið Þ

l xð Þ�

� ð
X

y∈ A;C;G;Tð ÞProbðy s; trj ÞL ið Þ
r yð Þ�

ð1Þ

The computational components described in this paper
target the nucleotide model of evolution, but the design

methodology can be generalized to all discrete-character
models. The PLF computes the conditional likelihood of
each of the four bases being at position i in an ancestral
sequence as a function of the conditional likelihoods of
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:jbakos@cse.sc.edu
http://creativecommons.org/licenses/by/2.0

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 2 of 11
http://www.biomedcentral.com/1471-2105/14/25
each of the bases at the same position in the left and right
descendent nodes. Once all conditional likelihoods are
computed for a candidate tree, the tree likelihood can be
computed as a function of the conditional likelihoods at
the root node, as shown in Equation 2. Though scaling in
the equation is not part of the mathematical algorithm of
the PLF, it is part of a computational algorithm which
implements the PLF as a means to cope with limited nu-
merical precision and large trees.

X
i
ððlogðmax

j L ið Þ
0 jð ÞÞ þ scaleri þ log

� ð
X

s∈ A;C;G;Tð Þπs
L ið Þ
0 sð Þ

max
j L ið Þ

0 jð Þ
ÞÞ � nSitesiÞ ð2Þ

Computing the PLF and tree likelihood for candidate
trees comprises the computational kernel of these tools.
Since multiple tools use a common likelihood computa-
tion, Ayres et al., implemented a finely tuned implementa-
tion of the likelihood computation as a general-purpose
library called BEAGLE [2]. BEAGLE supports CPU and
GPU-based architectures, but does not yet support Field
Programmable Gate Array (FPGA)-based architectures
such as the Convey HC-1 [3]. In this paper, we describe
our effort to add FPGA support to BEAGLE as well as the
resultant performance.

Related work
There has been previous work in accelerating the PLF to
FPGA-based coprocessor architectures. Mak and Lam
were perhaps the first team to implement likelihood-
based phylogeny inference on an FPGA [4]. They used
special-purpose logic in the FPGA fabric to perform the
PLF using fixed-point arithmetic. Alachiotis et al. also
implemented the PLF in special purpose logic and
achieved an average speedup of four relative to software
on a sixteen core processor [5,6].
There has also been recent work in using Graphical

Processor Units (GPUs) as co-processors for ML-based
phylogenetic inference. In recent work, Suchard et al. used
the NVIDIA CUDA framework [7] to implement single
and double precision versions of the PLF [8]. Using three
NVIDIA GTX280 GPUs, they achieved a speedup of 20
for the single precision nucleotide model as compared to
single-threaded software. Zhou et al. developed a GPU im-
plementation and evaluated it on a CPU running four pro-
cesses and two NVIDIA GTX 480 GPUs [9]. They
achieved a speedup of 42.3 relative to MrBayes running
on a CPU with a single thread, and 13.9 when compared
to an optimized CPU version with 4 threads.

Descriptions of PLF kernel
The kernel function of BEAGLE depends on which
options and evolutionary models are used for the analysis.
When using the 4-state nucleotide model, nearly all the
execution time is spent evaluating the log-likelihood score.
This evaluation consists of evaluating the PLF, normaliz-
ing the conditional likelihood tables to avoid numerical
underflow, and updating two log-scaler arrays.
The kernel algorithm is described in C-style pseudo-

code below. Note that although our implementation
produces consistent results with that of BEAGLE, the
pseudocode describes the authors’ implementation and
is not necessarily descriptive of the corresponding kernel
included in BEAGLE.

Pseudocode 1: BEAGLE Kernel
// for each nucleotide in the sequence perform the PLF to

complete the four-column
// conditional likelihood table
h = 0;
for (k = 0; k < nsites; k++) {
State is {AA, AC, AG, AT, CA, CC, CG, CT, GA, GC,
GG, GT, TA, TC, TG, TT};
Base is {A, C, G, T};
State = State.first;
for (i = 0; i < 4; i++) {
Base = Base.first;
sopL = sopR = 0;
for (j = 0; j < 4; j++) {

sopL = sopL + tipL[State] * clL[Base];
sopR = sopR + tipR[State] * clR[Base];
State = State.next;
Base = Base.next;

}
clP[h + i] = sopL * sopR;

}
// find the maximum of the previously computed
values (scaler value)

scaler = 0;
for (i = 0; i < 4; i++)

if (clP[h + i] > scaler) scaler = clP[h + i];
// normalize the previously computed values

for (i = 0; i < 4; i++)
clP[h + i] = clP[h + i] / scaler;

// store the log of the scaler value and store in scP
array

scP[k] = log(scaler);
// update the lnScaler array

lnScaler[k] = scP[k] * lnScaler[k];
// accumulate the log-likelihood value
condLike = 0;
for (i = 0; i < 4; i++)

condLike = condLike + bs[i] * clP[h + i];
lnL = lnL + numSites[k] * (lnScale[k] + log(condLike));
// increment counters

h = h + 4; clL = clL + 4; clR = clR + 4;
}

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 3 of 11
http://www.biomedcentral.com/1471-2105/14/25
double log (double x) {
// initialize binary search
log_comp = −16;
coeff_set = 0;
coeff_incr = 8;
log_comp_incr = 8;
// perform a logarithmic binary search
for (i = 0;i < 4;i++) {
if (x < 10^log_comp) {
log_comp = log_comp - log_comp_incr;

} else {
log_comp = log_comp + log_comp_incr;
coeff_set = coeff_set + coeff_incr;

}
coeff_incr = coeff_incr / 2;
log_comp_incr = log_comp_incr / 2;

}
// compute the polynomial approximation
return_val = 0;
pow_x = 1.0;
for (i = 0; i < 5; i++) {
return_val + = return_val + coeff[coeff_set][i] * pow_x;
pow_x = pow_x * x;

}
return return_val;

}

The natural log approximation is implemented as an
order-5 polynomial where the coefficients are divided
into 16 segments whose range scales logarithmically.
The coefficients are computed using a Chebyshev ap-
proximation [10]. In all of our experiments, we verify
that the results computed from our design, including the
log approximation, are accurate to within 1% of the
results delivered by BEAGLE.

Implementation
Our objective is to implement the PLF and tree likeli-
hood computations on a Convey HC-1 heterogeneous
platform as a hardware/software co-design. This applica-
tion is a good match for the HC-1, which provides high
memory bandwidth and its FPGAs are well-suited for
computing data intensive loops containing no loop-
carried dependences except for the accumulate required
for the final likelihood value. We first briefly describe
the platform then discuss our implementation in detail.

Platform
Figure 1 shows the design of our target platform, the
Convey HC-1. The Convey HC-1 is a reconfigurable com-
puter containing an FPGA-based coprocessor attached to
a host motherboard through a socket-based front-side
bus interface. Unlike socket-based coprocessors from
Nallatech [11], DRC [12], and XtremeData [13], which are
confined to a footprint matching the size of the socket,
Convey uses a mezzanine connector to bring the front
side bus (FSB) interface to a large coprocessor board
(roughly the size of an ATX motherboard).
The coprocessor board contains four user-programmable

Virtex-5 LX 330 FPGAs called “application engines (AEs)”.
The coprocessor board also contains eight memory con-
trollers, each of which is implemented on its own Virtex-5
FPGA. Each of the AEs is connected to each of the eight
memory controllers through a 4x4 crossbar switch on each
memory controller.
Each memory controller allows up to two independent

64-bit memory transactions (read or write) per cycle on a
150 MHz clock, giving a peak theoretical bandwidth of 16
bytes * 150 MHz = 2.4 GB/s per memory controller, or 8 *
2.4 GB/s = 19.2 GB/s per AE, or 4 * 19.2 GB/s = 76.8 GB/s
of aggregate bandwidth for the coprocessor board.
Although the HC-1’s coprocessor shares the same

memory space as the host CPU, the coprocessor’s mem-
ory is partitioned into eight disjoint regions correspond-
ing to each of the eight memory controllers. In other
words, each memory region is only accessible by one of
the eight memory interfaces.
Each of the eight memory controllers are connected

to two Convey-designed scatter–gather DIMM (SG-
DIMM) modules. Each of these two DIMMs contains
eight DRAMs, each with eight decoupled DRAM banks
that can be addressed independently. Each of the mem-
ory controllers attempts to maximize bandwidth by
scheduling incoming memory requests to each of the
sixteen banks, routing requests to non-busy banks and
grouping reads and writes into bursts to minimize bus
turns (state change between read and write). A reorder
module, developed by Convey, re-arranges the loaded
data to match the request order before delivering it back
to the user logic.
The effectiveness of their scheduler depends on the

memory access pattern issued by the user logic on the
AEs. Contention for crossbar ports and bank request
FIFOs cause the HC-1’s memory controller to throttle
the AE by asserting a “stall” feedback signal. These stalls
reduce the effective memory bandwidth.
For memory-bound kernels the user logic should

attempt to access memory during every clock cycle of
operation. Any cycle where the logic does not access
memory is either due to inefficiency in the AE’s memory
interface or due to a stall request from Convey’s memory
controller. In order to calculate actual memory band-
width, we define memory efficiency as:

efficiency ¼ ðnumber of memory reads
þnumber of memorywritesÞ
= number of executioncyclesð Þ

Figure 1 The HC-1 coprocessor board. Four application engines connect to eight memory controllers through a full crossbar.

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 4 of 11
http://www.biomedcentral.com/1471-2105/14/25
Actual memory bandwidth can therefore be computed
as:
actual bandwidth ¼ peak bandwidthð Þ � efficiency

Hardware implementation of the kernel
On the coprocessor, each AE has eight processing units
(PEs). To achieve maximum memory efficiency, each
should make full use of the 128-bit per cycle memory
channel. Each PE implements the kernel described in
Pseudocode 1 and thus each consumed 10 inputs per loop
iteration (for each character in the input sequence), per-
forming 130 single precision floating-point operations,
and producing six outputs. Since the memory interface
can only deliver four floating values per cycle, each PE
requires three cycles to read its inputs and one and a half
cycles to write its results for each input character.

Resource and throughput constrained synthesis
The data introduction interval (DII) is the number of
cycles required for the pipeline to read all of its inputs

from the available input ports, i.e. DII ¼ l
p

l m
, where l =

number of logical input ports and p = the number of
physical input ports. In this case, the number of logical
input ports is ten and the number of physical input
ports is four. Given these parameters, our pipeline syn-
thesis tool synthesizes this expression into an arithmetic
pipeline having minimum DII, minimum critical path la-
tency, and using the minimum number of floating-point
functional units.
In conventional scheduling it is sufficient to provide at

least one functional unit of each required functional unit
type to ensure that a schedule exists. However, in order
to achieve maximum throughput, the minimum number
of functional units of an operation type is R≥ M

DII

� �
, where

M is the number of operators of a type in the DFG, and
DII the data introduction interval.
We use the “As Soon As Possible (ASAP)” scheduling

technique for data path synthesis. ASAP repeatedly sche-
dules the ready operations to the time slot in a manner of
first-come-first-served. The start time of each operation is
the minimum allowed by the dependencies of operations.
Our pipeline synthesis tool takes, as input, the number

of input ports of the target platform (physical input ports),
the number of input variables derived from the target ex-
pression (logical input ports), and a data flow graph
(DFG) representing the target expression. Given these

Figure 3 Pipeline circuit generated from DFG in Figure 2.

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 5 of 11
http://www.biomedcentral.com/1471-2105/14/25
parameters, the tool converts the DFG into a pipeline
described in Verilog hardware description language with
minimum number of floating-point functional units.
As an example, consider the high level code below,

which computes one column of the conditional prob-
ability table.

clP[0] = (tipL[AA]*clL[A] + tipL[AC]*clL[C] + tipL
[AG]*clL[G] + tipL[AT]*clL[T]) * (tipR[AA]
*clR[A] + tipR[AC]*clR[C] + tipR[AG]*clR
[G] + tipR[AT]*clR[T]);

The two 4x4 transition likelihood tables tipL and tipR
are invariant across all nodes and are thus treated as
constants. As such, this expression has eight inputs and
one output.
The DFG for this expression is shown in Figure 2. If

this expression is synthesized onto a platform that can
only provide one input value per clock, it can be synthe-
sized as shown in Figure 3 with only one adder and two
multipliers. The multiplexers select different input data
to feed the functional units. The dark-colored registers
save the intermediate results of the functional units.
The DFG of the full PLF kernel is shown in Figure 4.

The number of floating-point operations in DFG is 38
additions, 55 multiplications, 4 divisions and 11 compar-
isons. Our tool’s resource sharing feature maps these
arithmetic operations into 13, 19, 2 and 4 functional
operators respectively. However, we find that it is infeas-
ible to fit all the single-precision floating-point operators
on one PE without adjusting the latency of each operator
to reduce resource usage for the target device. By care-
fully evaluating the latency and resource usage of each
operator in Xilinx CORE Generator System’s resource
estimation [14], we used low-latency functional units for
adder, multiplier and comparators. Using trial and error,
we determined the latency of the floating-point divider
needs to be around 11 to satisfy the 150 MHz timing con-
straint. Using low-latency operators we were able to re-
duce significantly FPGA’s slice registers for each functional
Figure 2 An arithmetic operation as a DFG.
unit and the entire pipeline, meeting the demanding re-
source requirement for each PE. Table 1 lists the low- and
max-latency and the number of slice registers of each
floating-point operator described in Xilinx Floating-point
Operator Version 5.0 [15].
Since each PE has two independent 64-bit physical

ports, we synthesized the PLF kernel to a deep-pipelined
single-precision floating-point circuit with four input
ports that receive four 32-bit data per cycle. The latency
of the entire pipeline is 125 cycles.

Hardware architecture of PLF kernel
The top level of the system design is shown in Figure 5.
It is composed of a read/write memory interface and an
accelerator. The kernel pipeline has four inputs and six
outputs. Two 64-bit 512-entry input operand FIFOs op1
and op2 receive input data from the memory controller
and feed four 32-bit floating-point input values per cycle
to the pipeline. Six results from the pipeline are written
into twelve FIFOs and from which the results are stored
back to memory through a multiplexer. We chose 2048

*

* * * * * * * *

+ + + +

+ +

*

* * * * * * * *

+ + + +

+ +

*

* * * * * * * *

+ + + +

+ +

*

* * * * * * * *

+ + + +

+ +

*

max max

max

/

* * *

+ +

+

*

c1

* *

+

+

+

c3 c4 c2

+

c0

*

*

c1

* *

+

+

+

c3 c4 c2

+

c0

*

+

lnScaler

+

*

numSites

LA
LC

LG LT

ΠA ΠC ΠG ΠT

PL_AA PL_AC PL_AG PL_AT

/ / /

Single precision
natural log

mux2 mux2 mux2 mux2Norm Norm Norm Norm
10

>

Exp(-16)

Exp(-24)Exp(-8)

>
Exp(-28)Exp(-20)Exp(-12)Exp(-4)

>

Exp(-30)Exp(-26)Exp(-22)Exp(-18) Exp(-14)Exp(-10) Exp(-6)Exp(-2)

x

x

>

x

A3

A2

A1

A0

A0A3 A2 A1

10

10 10

10

10 10

10 10

10 10

10

rom

A3
A2 A1

A0

c2

rom

A3
A2 A1

A0

c3

rom

A3
A2 A1

A0

c0

rom

A3
A2 A1

A0

c1

rom

A2 A1
A0

c4

>

Exp(-16)

Exp(-24)Exp(-8)

>
Exp(-28)Exp(-20)Exp(-12)Exp(-4)

>

Exp(-30)Exp(-26)Exp(-22)Exp(-18) Exp(-14)Exp(-10) Exp(-6)Exp(-2)

x

x

>

x

A3

A2

A1

A0

A0A3 A2 A1

10

10 10

10

10 10

10 10

10 10

10

rom

A3
A2 A1

A0

c2

rom

A3
A2 A1

A0

c3

rom

A3
A2 A1

A0

c0

rom

A3
A2 A1

A0

c1

rom

A2 A1
A0

c4

PR_AA PR_AC PR_AG PR_AT

LA LC LG LT RA RC RG RT
PL_CA PL_CC PL_CG PL_CT PR_CA PR_CC PR_CG PR_CT

LA LC LG LT RA RC RG RT

PL_GA PL_GC PL_GG PL_GT PR_GA PR_GC PR_GG PR_GT

LA LC LG LT RA RC RG RT
PL_TA PL_TC PL_TG PL_TT PR_TA PR_TC PR_TG PR_TT

LA LC LG LT RA RC RG RT

lnScaler

scP

clP0 clP1 clP2 clP3

Input to accumulator

x

x

Single precision
natural log

Figure 4 Full data flow graph of PLF and tree likelihood calculation.

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 6 of 11
http://www.biomedcentral.com/1471-2105/14/25
and 512 for the output FIFO depth N and M respect-
ively. The choice is determined by the constraint of the
number of Xilinx BRAMs in a single FPGA [16] and
BRAM usage of other modules and components.
In the write portion of the memory interface there are

four FIFOs for clP, scP and lnScaler pipeline outputs.
Four clP outputs (clP0, clP1, clP2, and clP3) correspond
to four consecutive locations of clP array. By writing
data into four FIFOs of scP and lnScaler in a round-
robin manner, the memory interface can store 128
Table 1 Xilinx IEEE-754 single-precision floating-point
operator’s latency and slice register usage

Floating-point
operator

Low-
latency

Slice
registers

Max-
latency

Slice
registers

fadd 3 139 12 547

fmul 3 87 8 361

fdiv 11 499 28 1377

fcomp 1 2 2 8
bits per cycle into the memory, increasing the output
throughput.
Figure 6 shows a finite state machine (FSM) that coor-

dinates memory read and write requests with Convey’s
memory controller interface. In the LD1 state, the con-
troller requests two 64-bit words from the clL array,
which comprises four 32-bit input values from the clL
array. It then transitions to state LD2 where it requests
two 64-bit words from the clR array, which comprises
the four 32-bit input values from the clL array. Next it
transitions to the LD3 where its requests a 32-bit word
from the lnScaler array and the numSites array.
Until the output FIFOs have not reached full state, the

controller repeats this sequence. When the output FIFOs
become almost full, the current load request is inter-
rupted and the machine state jumps to its store result
state. The output results in the twelve FIFOs are then
stored back to memory. When stores are finished, the
interrupted load request will be resumed. Note that the
pipeline can continue consuming input data if the input

Kernel
Pipeline

FIFO Mx32

clP0 FIFO Nx32

clP1 FIFO Nx32

clP2 FIFO Nx32

clP3 FIFO Nx32

FIFO Mx32

FIFO Mx32

FIFO Mx32

FIFO Mx32

FIFO Mx32

FIFO Mx32

FIFO Mx32

M
U
X

Memory
Load data

128

MCMemory Interface Accelerator Memory Interface

lnS

scP

clP

op1 FIFO 512x64

op2 FIFO 512x64

MC

Memory
store data

Figure 5 Hardware architecture of PLF accelerator.

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 7 of 11
http://www.biomedcentral.com/1471-2105/14/25
and output FIFOs are not full. After all load requests are
satisfied the machine goes to the store state to store the
remaining data in the FIFOs. When it is complete, the
machine returns to the initial state IDLE.

Steps of calculating root log likelihood
BEAGLE provides a set of interface functions needed for
the user to describe a candidate tree and request that its
likelihood be computed. Specifically, these include func-
tions that:

� initialize input arrays and scalars, including the
transition probability tables and leaf node (tip)
conditional likelihood tables, and all other necessary
scalars and arrays,

� describe the topology of the proposed tree,
� request that the BEAGLE runtime library traverse

the tree and update the conditional likelihood tables
of all internal nodes, and

� request that BEAGLE compute the likelihood of the
tree.
Figure 6 Memory access FSM.
Figure 7 and Table 2 show how our driver program
initializes all input data using a sequence of BEAGLE
function calls.

Data organization
In order to utilize eight processing elements (PEs) on
each FPGA we distribute the input data among four
FPGAs evenly. We copy the host data arrays to the
coprocessor’s memory space based on the organization
and partition of coprocessor’s memory.
Convey’s memory mapping scheme requires that

memory addressing of each PE be aligned to the MC
controller number. Because of this, the data is arranged
using a stride of 64 bytes for each PE in an AE and 512
bytes for the same PE space between two consecutive
AEs. (e.g. AE0 and AE1).
Figure 8 shows the memory mapping of the host array

clL and numSites (nS). Each PE in an AE addresses 16 ele-
ments of clL array (64 bytes), which correspond to input
data of four consecutive sites. Since there is only one input
data of numSites for each site, we need to pack the next

Beagle
CreateInstance()

Beagle
SetEigenDecomposition()

Beagle
UpdateTransitionMatrix()

Beagle
GetTransitionMatrix()

Beagle
SetTipPartials()

Beagle
SetStateFrequencies()

Beagle
SetPatternWeights()

Beagle
ResetScaleFactors()

Beagle
UpdatePartials()

Beagle
CalculateRootLogLike()

Setup
Eigen/Inverse
Eigen vectors

Generate
random

TipPartials array

Create
state frequency

array

Create
PatternWeight

array

Beagle
AccumulateScaleFactors()

Coprocessor Memory
allocation, map and copy

Invoke coprocessor
copcall()

Create
lnScaler

array

sbRlc&LlcRpit&Lpit numSites lnScaler

Beagle
FinalizeInstance()

Figure 7 Mapping between BEAGLE API and coprocessor communication.

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 8 of 11
http://www.biomedcentral.com/1471-2105/14/25
four numSites input data into PE0’s addressing space in
AE0. This is shown in Figure 6 with an arrow from host
array indexed at byte address 2048 to PE0 at byte address
0. The mapping of host array clR is the same as that of
clL. We initialize the elements of lnScaler with zero.
Table 2 Descriptions of BEAGLE API implementation

BEAGLE API call Arrays initialize

beagleSetEigenDecomposition
beagleUpdateTransitionMatrix
beagleGetTransitionMatrix

4x4 transition pr
Pseudocode 1)

beagleSetTipPartials Copy an array of
Pseudocode 1)

beagleSetStateFrequencies Copy a state freq

beagleSetPatternWeights Set the vector of

beagleResetScaleFactor Reset a cumulati

beagleUpdatePartials Calculate partials

beagleCalculateRootLogLike Calculate log-like
calculate lnL in P
Results and discussion
We implemented the kernel on a multi-FPGA platform
Convey HC-1. The platform has four Xilinx Virtex5
LX330 FPGAs. The design is described using our pipe-
line synthesis tool which generates deep floating-point
d and coprocessor action

obability matrices for each node (initialize arrays tipL and tipR in

partials into an instance buffer (initialize arrays clL and clR in

uency array into an instance buffer (initialize array bs in Pseudocode 1)

pattern weights for an instance (initialize array numSites in Pseudocode 1)

ve scale buffer

for all internal nodes (compute array clP in Pseudocode 1)

lihood of root node. (compute arrays lnScaler and scP in Pseudocode 1,
seudocode 1)

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 9 of 11
http://www.biomedcentral.com/1471-2105/14/25
pipeline in Verilog HDL. Xilinx ISE 13.2 [17] is used to
synthesize, map, place and route the design, and gener-
ate the final bitstream. A single bitstream file is used to
configure all the FPGAs. Each FPGA works on different
input data based on the FPGA numbers and processing
elements in each FPGA.

Performance results of our implementations
In the software implementation using BEAGLE APIs, we
timed the elapsed time of function beagleUpdatePartials(),
beagleAccumulateScaleFactors() and beagleCalculateRoo-
tLogLike() since they comprise the computation kernel. In
the hardware implementation, we timed the kernel execu-
tion on multi-FPGA. We assume the number of sites is a
multiple of 128 to allow each PE to process the same
amount of input data.
The performance results are shown in Table 3. When

the number of sites is small, CPU implementation per-
forms faster than both FPGA-based and GPU-based
implementations. When the number of sites is larger
than 512, both FPGA and GPU implementations outper-
form the CPU. For a large number of sites, we obtain
around a 40X speedup compared to a single-threaded
CPU implementation (Xeon E5520) and around 3X
speedup compared to a many-core GPU implementation
(Tesla S1070/T10). Note the GPU results are not avail-
able when the number of sites exceeds 260 K, since the
BEAGLE GPU implementation is not capable of proces-
sing this data size.
We achieved a memory efficiency of around 50% for

large data sizes. This is competitive with similar imple-
mentations in the literature. For example, Cong et al.
reported their implementation of a bandwidth-bounded
application that has 32 PEs and utilizes all the memory
access ports on Convey HC-1 [18] having 30% efficiency.
In general, the factors that contribute to the efficiency
are external memory access order, memory buffer size,
and frequency of memory bus turns (alternating between
read and write operations).
Convey’s unique interleaved memory addressing attempts

to maximize memory system utilization by distributing
Figure 8 Memory allocation.
memory accesses across all memory banks. Memory stalls
occur when the number of pending memory load requests
reaches the size of memory request queue in the memory
controller. In order to avoid this, the size of the custom
memory buffer in the user design must be close to the size
of the request queue. A smaller memory buffer cannot
overcome the long latency of DDR2 memory access while a
larger one increases memory stalls.
Frequently alternating between memory read and mem-

ory write will reduce the effectiveness of the Convey
memory scheduler and reduce memory bandwidth. The
use of deep output FIFOs and writing the entire contents
of the output FIFOs when they fill will reduce the fre-
quency of read-write transitions and improve bandwidth.

FPGA resource usage
The resource utilization of each FPGA is listed in
Table 4. In each PE all floating-point multipliers are
implemented using DSP48E modules [19] while other
floating-point operators are implemented using LUTs.
Due to the large number of floating-point operators and
deep pipeline circuit in each PE we utilize nearly all the
slices in a single FPGA. The design runs at 150 MHz
and the memory controller at 300 MHz.

Power consumption
The Xilinx power analyzer xpa reports that each FPGA
design consumes about 23 W, or 92 W for all four
FPGAs. The thermal design power of the Tesla GPU
card is around 200 W. The FPGA implementation deli-
vers a better performance while consuming less than half
of the power of the Tesla GPU.

Discussion
Design motivation
This work is based on the “MrBayes accelerator” design,
previously developed in the author’s lab [8]. The original
design performed the same basic computations as
described in this paper, but its pipeline was designed by
hand and did not incorporate any functional unit reuse.
As such, the original design instanced one functional

Table 3 Performance results of our design

nsites CPU(us) GPU(us) FPGA(us) Memory efficiency (%) Speedup FPGA vs. CPU Speedup FPGA vs. GPU

128 27 93 96 2 0.28 0.97

256 41 93 101 4 0.41 0.92

512 69 94 103 7 0.67 0.91

1024 133 99 106 13 1.25 0.93

2048 225 107 107 20 2.10 1.00

4096 462 130 115 30 4.02 1.13

8192 944 167 125 28 7.55 1.34

16384 1894 240 148 28 12.80 1.62

32768 3873 385 207 28 18.71 1.86

65536 7922 672 304 29 26.06 2.21

131072 15898 1247 415 38 38.31 3.00

262144 31774 n/a 764 40 41.59 n/a

524288 63696 n/a 1240 44 51.37 n/a

1048576 127957 n/a 2280 46 56.12 n/a

8192000 1028649 n/a 15750 49 65.31 n/a

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 10 of 11
http://www.biomedcentral.com/1471-2105/14/25
unit for each operator in the DFG. The resulting design
was large, allowing only one PE to fit on a single FPGA.
In order to automate the design process and improve
the resource efficiency, the authors developed a high-
level synthesis tool that generates a pipeline from a
data-flow graph description of the kernel, and exploits
functional unit reuse in such a way as to achieve the
maximum throughput as bounded by the available mem-
ory bandwidth on the target platform. This synthesis
tool was developed specifically for this application, but
can be also used for any data-intensive kernel that has
no loop-carried dependencies.
In addition, we implemented the new version of the

design on the Convey HC-1 reconfigurable computer,
which has 13.2 times the amount of FPGA resources, 28.4
times the memory bandwidth, and over 1000 times the
memory capacity of the original platform, an Annapolis
Micro Systems WildStar II Pro. In order to make the
design more general purpose, we integrated our design
with the BEAGLE library instead of integrating it only into
MrBayes 3 as in the original work.

Performance results
Our design achieves the highest possible level of perform-
ance as allowed by the memory system of the HC-1.
Table 4 Area results of our design

Resource Utilized Total available Utilization ratio

LUT 193,518 207,360 93%

FF 200,833 207,360 97%

Slice 51,629 51,840 99%

BRAM 235 288 82%

DSP48E 152 192 79%
Memory efficiency was relatively low, and can be poten-
tially improved by rearranging the order in which inputs
are requested from the memory. Specifically, this can be
performed by buffering a set of consecutive values from
each input array before streaming the values into the
pipeline in the order implied by the outermost loop in
Pseudocode 1. This would require that the input values be
read from memory in a different order than read by the
pipeline. While we expect this to improve memory effi-
ciency, the buffer would need to be designed in a way that
doesn’t itself contain inefficiencies that negate its benefit.
This is part of the authors’ future work.

Conclusions
In this paper we described an FPGA-based implementa-
tion of the core computations in the BEAGLE library
that perform the phylogenetic likelihood function and
tree likelihood computations. With this design we
achieve 3X the performance of BEAGLE’s GPU-based
implementation for large datasets.
The kernel implemented in this work is characterized

by having a relatively low arithmetic intensity, making
its performance dependent on the effective memory
bandwidth achievable by the target platform. In order to
achieve high performance under this condition, we
developed a design automation tool that synthesizes the
kernel’s data flow graph in a way that matches the pipe-
line’s throughput to the platform’s memory bandwidth
while minimizing hardware requirements.

Availability and requirements
Project name: BEAGLE_HC1
Project home page: http://www.cse.sc.edu/~jbakos/
software.shtml

http://www.cse.sc.edu/~jbakos/software.shtml
http://www.cse.sc.edu/~jbakos/software.shtml

Jin and Bakos BMC Bioinformatics 2013, 14:25 Page 11 of 11
http://www.biomedcentral.com/1471-2105/14/25
Operating system(s): Linux
Programming language: C and Verilog
Other requirements: Must be run on a Convey HC-1
License: GNU GPL v4
Any restrictions to use by non-academics: None

Competing interests
Both authors declared that they have no competing interests.

Authors’ contributions
JZ implemented the high level synthesis tool used to synthesize the BEAGLE
kernel onto the Convey HC-1 platform. JZ verified the design and performed
performance testing. This work was performed under the direction of JB (JZ’s
research advisor), whose original design, implemented on another FPGA
platform [8], was the motivation and starting point for this improved design
and design methodology. The manuscript was written jointly by JZ and JB.
Both authors read and approved the final manuscript.

Acknowledgements
The authors wish to thank Glen Edwards of Convey Computer Corporation
for his assistance in this work. The authors would also like to thank the
anonymous reviewers for their insightful comments that allowed us to
improve the quality of this paper.
This material is based upon work supported by the National Science
Foundation under Grant No. 0844951.

Received: 29 May 2012 Accepted: 4 January 2013
Published: 19 January 2013

References
1. Felsenstein J: Inferring Phylogenies. Sunderland, MA: Sinarer Associates, Inc.

Publishers; 2004.
2. Ayres DL, Aaron D, Zwick DJ, Peter B, Holder MT, Lewis PO, Huelsenbeck JP,

Fredrik R, Swofford DL, Cummings MP, Andrew R, Suchard MA: BEAGLE: an
Application Programming Interface and High-Performance Computing
Library for Statistical Phylogenetics. Syst Biol 2012, 61(1):170–173.

3. Convey HC-1 family; http://www.conveycomputer.com.
4. Mak TST, Lam KP: Embedded Computation of Maximum-Likelihood

Phylogeny Inference Using Platform FPGA. Proc. IEEE Computational
Systems Bioinformatics Conference table of contents 2004, :512–514.

5. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A: Exploring FPGAs for
accelerating the Phylogenetic Likelihood Function. Proc. Eighth IEEE
International Workshop on High Performance Computational Biology 2009, :1–8.

6. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A: A Reconfigurable
Architecture for the Phylogenetic Likelihood Function. Proc. International
Conference on Field Programmable Logic and Applications 2009, :674–678.

7. Nvidia CUDA Framework; http://www.nvidia.com/object/cuda_
home_new.html.

8. Suchard MA, Rambaut A: Many-Core Algorithms for Statistical
Phylogenetics. Bioinformatics 2009, 25(11):1370–1376.

9. Zhou J, Liu X, Stones DS, Xie Q, Wang G: MrBayes on a Graphics
Processing Unit. Bioinformatics 2011, 27(No. 9):1255–1261.

10. Stephanie Z, Bakos JD: FPGA acceleration of the phylogenetic likelihood
function for Bayesian MCMC inference methods. BMC Bioinforma 2010,
11:184.

11. Nallatech, Intel Xeon FSB FPGA Accelerator Module; http://www.nallatech.
com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html.

12. DRC Computer, DRC Reconfigurable Processor Units (RPU); http://www.
drccomputer.com/drc/modules.html.

13. XtremeData Inc., XD2000i™ FPGA In-Socket Accelerator for Intel FSB; http://
www.xtremedata.com/products/accelerators/in-socket-accelerator/xd2000i.

14. Xilinx Core Generator; http://www.xilinx.com/ise/products/coregen_
overview.pdf.

15. Xilinx Floating Operator Data Sheet; 2009. http://www.xilinx.com/support/
documentation/ip_documentation/floating_point_ds335.pdf.

16. Virtex-5 FPGA User Guide; http://www.xilinx.com/support/documentation/
user_guides/ug190.pdf.

17. Xilinx ISE Design Suite 13; http://www.xilinx.com/support/documentation/
dt_ise13-2.htm.
18. Cong J, Huang M, Zou Y: 3D Recursive Gaussian IIR on GPU and FPGAs, A
Case Study for Accelerating Bandwidth-Bounded Applications, Proceedings of
the 9th IEEE Symposium on Application Specific Processors (SASP 2011).
San Diego, CA:; 2011:70–73.

19. Xilinx UG193 Virtex-5 XtreameDSP Design Considerations; http://www.xilinx.
com/support/documentation/user_guides/ug193.pdf.

doi:10.1186/1471-2105-14-25
Cite this article as: Jin and Bakos: Extending the BEAGLE library to a
multi-FPGA platform. BMC Bioinformatics 2013 14:25.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.conveycomputer.com
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html
http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html
http://www.drccomputer.com/drc/modules.html
http://www.drccomputer.com/drc/modules.html
http://www.xtremedata.com/products/accelerators/in-socket-accelerator/xd2000i
http://www.xtremedata.com/products/accelerators/in-socket-accelerator/xd2000i
http://www.xilinx.com/ise/products/coregen_overview.pdf
http://www.xilinx.com/ise/products/coregen_overview.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/dt_ise13-2.htm
http://www.xilinx.com/support/documentation/dt_ise13-2.htm
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Descriptions of PLF kernel
	Pseudocode 1: BEAGLE Kernel

	Implementation
	Platform
	Hardware implementation of the kernel
	Resource and throughput constrained synthesis
	Hardware architecture of PLF kernel
	Steps of calculating root log likelihood
	Data organization

	Results and discussion
	Performance results of our implementations
	FPGA resource usage
	Power consumption

	Discussion
	Design motivation
	Performance results

	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

