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Abstract

Background: New technologies are focusing on characterizing cell types to better understand their heterogeneity.
With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data
analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel
cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds
molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and
navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is
core to a particular cell type’s identity.

Results: We illustrate this ontological approach by evaluating expression data available from the Immunological
Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS,
candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular.
Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order
to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in
silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in
germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types.

Conclusions: This work demonstrates the utility of incorporating structured ontological knowledge into biological
data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new
biological insights.
Background
Development of new technologies for genomic research
has produced an exponentially increasing amount of
cell-specific data [1,2]. These technologies and applications
include microarrays, next-generation sequencing, epigen-
etic analyses, multi-color flow cytometry, next generation
mass cytometry, and large scale in situ histological studies.
Sequencing output alone is currently doubling every nine
months with efforts now underway to sequence mRNA
from all major cell types, and even from single cells
[3]. Elucidation of the molecular profiles of cells can help
inform hypotheses and experimental designs to confirm
cell functions in normal and pathological processes.
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Dissemination of this cellular data is largely uncoordinated,
due in part to a insufficient use of a shared, structured,
controlled vocabulary for cell types as core metadata across
multiple resource sites. To address these issues data-
base repositories are increasingly using ontologies to define
and classify data including the use of the Cell Ontology
(CL) [4].
The Cell Ontology
The Cell Ontology is in the OBO Foundry library and
represents in vivo cell types and currently containing
over 2,000 classes [4,5]. The CL has relationships to clas-
ses from other ontologies through the use of computable
definitions (i.e. “logical definitions” or “cross-products”)
[6,7]. These definitions have a genus-differentia structure
wherein the defined class is refined from a more general
class by some differentiating characteristics. For ex-
ample, a “B-1a B cell” is a type of B-1 B cell that has the
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CD5 glycoprotein on its cell surface. As the differentia
“CD5” is represented in the Protein Ontology (PR)
[8], a computable definition can then be created that
states “a ‘B-1a B cell; is_a [type of] ‘B-1 B cell’ that
has_plasma_membrane_part ‘T-cell surface glycoprotein
CD5 (PR:000001839)’”. The CL also makes extensive use
of the Gene Ontology (GO) [9] in its computable defini-
tions, thus linking cell types to the biological processes
represented in the GO. Automated reasoners use the
logic of these referenced ontologies to find errors in
graph structure and to automatically build a class hier-
archy. Critical to this approach is to restrict the definition
of a cell type to only the logically necessary and sufficient
conditions needed to uniquely describe the specific cell
type. If too many constraints are added, inferred relation-
ships of interest will be missed. If too few constraints are
used, then mistaken associations will be included in the
automatically built hierarchy. By careful construction of
these computable definitions, biological insights may be
gained through the integration of findings from different
areas of research as we recently demonstrated with mu-
cosal invariant T cells [7].
Generation of computable definitions for immune cells

is complicated by the variety of ways in which immune
cells have been previously classified. The common prac-
tice of defining immune cell types using protein markers
and biological processes poses some problems when try-
ing to encode this knowledge in an ontology. For ex-
ample, follicular B cells are often described as expressing
CD23, while Bm1 B cells, a type of follicular B cell, are
characterized based on a lack of CD23 expression [10].
Humans are generally able to work around such incon-
sistencies, but in the context of a logic-based system
such as an ontology, inconsistent combinations of state-
ments such as this are detected automatically and must
be resolved before the ontology can be used to make fur-
ther inferences. In the process of developing the CL, we
detected a number of such inconsistencies, and the
resulting ontology only includes statements that are true
for all members of a class.

Using CL in transcriptome analysis
Elimination of inconsistent statements helped us identify
the ‘necessary and sufficient’ criteria needed for a cell
type’s computable definition. We explored if this ap-
proach may be applied to transcriptome analysis to filter
out the hundreds of genes differentially expressed in a
cell type to find those core to its identity. DNA micro-
array and RNA-Seq technologies allow for identification
of differential expression of large numbers of transcripts,
and various methods have been developed for analysis of
these large data sets. These methods include ANOVA
[11], gene expression clustering based on mixed model
procedures [12], the use of Shannon entropy to detect
tissue specificity [13] and determining the null distribu-
tion of each gene’s expression to find condition-specific
outliers [14]. While each method has its advantages and
drawbacks, the experimentalist must understand how
experimental components such as cell types relate to
each other in order to reliably interpret the data. We hy-
pothesized that mapping transcriptome samples to the
CL would allow identification of genes that are consist-
ently up- or down- regulated among all members of a
cell type class. By eliminating the thousands of genes
whose expression is not consistent, we could hone in on
the few genes whose expression defines the cell type.
This ‘Ontology BAsed Molecular Signature’ (OBAMS)
approach could then be used to identify candidate cell
markers and infer associated biological processes.
To develop the OBAMS approach, we used data avail-

able from the Immunological Genome Project (IGP) [15].
The IGP Consortium is performing transcriptome analysis
for over a hundred murine immune cell types and dissemi-
nates this data through the Gene Expression Omnibus re-
source and through an online portal [1]. Users of the
portal can interact with normalized data in several ways.
Expression of a single gene can be viewed across many cell
types by the “Gene Skyline” tool. The “Gene Constellation”
tool finds genes that share a similar expression profile.
Other functionality includes gene expression heat maps or-
ganized by chromosomal location or by gene family and
the recently added population comparison tool. This last
tool allows users to place immune cell populations into
one of two groups to find differentially expressed genes
between the groupings. While this tool is very useful to
immunologists, the minimal organization of the cell popu-
lations used as inputs limits its functionality for those not
familiar with hematopoietic cell hierarchy.
Here we describe how the CL, with its vetted structure

and defined relationships, can be used in transcriptome
analysis to identify genes that distinguish a cell type from
other closely related cell types. By using data from the IGP
project, we identify novel candidate biomarkers for B cell
subtypes by overlaying a genus-differentia structure to
traditional transcriptome analysis. This approach is scalable
from comparisons between cell types directly sampled to
broad groupings of cell types where one representative
population would be difficult to isolate. OBAMS can be
used to discover biomarkers and provide new biological in-
sights into the function of diverse array of cell types. This
method provides a generalized approach for identifying cell
type specific molecular signatures by using an ontology as
part of the data analysis.

Results
Using ontologies as a component of data analysis
To demonstrate the utility of applying an ontological
framework to analysis of a large dataset, we used the CL to
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perform analysis of immune cell gene expression charac-
terized by the IGP (Figure 1). The IGP cell types included
all mature myeloid and mature lymphocyte cell types for
which data were available at the time of analysis (10/25/
2010). A total of 88 cell types were analyzed including tran-
sitional B cell types. Pairwise comparisons were generated
for all these cell types, and genes whose expression signifi-
cantly differed for each cell type were identified (adjusted
p-value < 0.05 after correction for multiple testing), with
separate gene sets created for genes with ≥ 1.5-fold and for
Figure 1 Workflow of OBAMS project. The project starts with a set of pa
(Figure 2A). A user will check to see if a CL term of interest has a pairwise co
ontology (Figure 2B, Figure 2C). If yes, then a user determines if any pairwise
any of their descendants. If more than one pairwise comparison exists, then
genes with ≤ 1.5-fold for a total of 7656 gene sets. An onto-
logical framework was created to map these gene sets
to CL classes with each gene set having one has_up_
regulated_genes_for and one has_down_regulated_genes_
for relationship to the two different CL classes. Thus, gene
set “677d” represents the genes whose expression is up reg-
ulated in “germinal center B cell” compared to “marginal
zone B cell” (Figure 2A, in green). In Figure 2A, the text
box is the ontological search query used within OBO-Edit
to retrieve the gene set. The query uses Boolean logic to
irwise comparisons that are mapped to the Cell Ontology (CL)
mparison mapped directly to it, or to one of its is_a descendants in the
comparisons are shared with their nearest neighbors (i.e. siblings) or
shared genes are found among all the relevant gene sets (Figure 3).



Figure 2 Searching for pairwise comparisons mapped to the Cell Ontology. A) Gene lists resulting from almost 8000 pairwise comparisons
were mapped to the CL by creating terms (in green) that represent genes with 1.5 fold-higher or 1.5-fold-lower expression, between two cell
types. These terms were mapped by creating has_genes_up_regulated_for (green R relation) and has_genes_down_regulated_for (red R relation)
relationships. This structure allows for ontologically driven searches, depicted in text. B) Pairwise comparisons for genes up regulated in ‘germinal
center B cell’ compared to all other mature B cells. Note how search finds the other B cell types by ‘Ancestor’ of ‘mature B cell’. C) Search strategy
to find the 256 pairwise comparisons that exist between mature B cells and other types of mature lymphocytes. Note the third constraint that is
added in the search to eliminate comparisons between types of mature B cells.
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string together two different criteria to find the relevant
gene set.
By using our ontological framework, all the pairwise

comparison gene sets associated with a cell type can be
identified including those comparisons that are mapped
to an ontological descendant of a cell type, i.e. a subtype
of that cell type and further descendants through the
is_a hierarchy. For example, “germinal center B cell”
(Figure 2B) is one of 8 types of mature B cells analyzed
by the IGP consortium. The simplest query to find gene
sets that have “mature B cell” as an ancestor is through
a search for a combination of has_down_regulated_genes
and is_a relationships; the second criteria simply finds
all gene sets that have has_up_regulated_genes directly
mapped to “germinal center B cell”. In this case, this
query suffices because no pairwise comparison gene sets
are mapped to a descendant of germinal center B cell.
When a descendant of a cell type has a gene set mapped
to it, a more complex query is needed. The class “mature
B cell” does not have any pairwise comparisons directly
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mapped to it. Instead, 8 up regulated gene sets are
mapped to children and grandchildren terms of “mature
B cell”. To find all the pairwise comparisons between
types of mature B cells to other types of mature lympho-
cytes (“mature NK cell” and “mature T cell”), a third
constraint is needed. The first two constraints are as de-
scribed above while the third constraint eliminates any
pairwise comparisons that exist between types of mature
B cells. This distinction is important, as we want to in-
clude only those gene sets that compare a type of ma-
ture B cell to a type of mature NK or T cell. This query
returns 256 gene sets that represent genes up regulated
in a descendant of mature B cell when compared to a
descendant of mature NK or T cell.
This three constraint query allows for the discovery of

genes that distinguish a cell type from other closely re-
lated cell types, i.e., an ontology based molecular signa-
ture (OBAMS). OBAMS reflects the structure of the CL
by using a genus-differentia approach where a child class
inherits all the characteristics of its parent but also con-
tains additional characteristics that distinguishes it from
Figure 3 Finding genes that distinguish mature B cells from other ma
in Figure 2C are entered into a custom R script. This script retrieves the ge
retrieved lists. Genes are ranked based on mean fold change across all the
its parents and any sibling terms. The differentia in this
structure are represented by the intersection of gene sets
returned from the three constraint query. In the mature
B cell example, this intersection would contain those
genes whose expression is up regulated across all descen-
dants of mature B cells (Figure 3). By using a custom R
function, gene sets can be retrieved from our ontological
queries, genes within those sets can be parsed to find
only those present within all the sets, and then genes can
be ranked by mean fold expression. We have com-
pleted OBAMS profiles for all mature B cells, available in
Additional file 1. In addition, preliminary analysis of all
mature immune cells is available at the CL Immgen Data
Archive [16] and summarized in Figure 4 with the total
numbers of genes noted that were up or down regulated
within each major immune cell branch. In summary, we
are specifying sets of genes whose expression differentiates
a cell type from its sibling cell types and the more general
parent cell type. Because associations in an ontology are
transitive, the genes associated to a general cell type are as-
sociated in every descendant cell type. For example, Cd19
ture lymphocytes. Names of the 256 pairwise comparisons identified
ne lists from the file and finds common genes within all of the
lists. Genes are outputted on screen (depicted) and as Excel files.



Figure 4 Identification of ontology based molecular signature for leukocyte subtypes. Gene sets (from the ImmGen Project) were mapped to
immune cell types in the Cell Ontology. Pairwise comparisons were generated for all these cell types, and genes whose expression significantly differed
for each cell type were identified. The numbers and arrows indicate the total number of genes that were identified as being up or down regulated
among the descendants of each cell type.
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is up-regulated in “mature B cell” meaning that expression
of Cd19 is observed to be up-regulated in every mature B
cell-subtype when its compared to any mature non-B cell
lymphocyte (i.e. T cell and NK cell types).

Ontological structuring of data can identify cell type
specific markers
Finding new cell type specific markers can be challenging
as very few transcripts are restricted to one cell type [17].
Instead, a unique combination of biomarkers must be
used to isolate a functional cell type. Ontological struc-
turing of the data verifies many of the commonly used B
cell markers. For example, Cd74 (invariant chain, Ii,
MGI:96534) is overexpressed in all 256 gene sets gener-
ated by comparisons between mature B cell descendants
to descendants of mature T or NK cells (Figure 3). Like-
wise Cd5 (MGI:88340) is associated with B-1a B cells,
Cr2 (MGI:88489) with marginal zone B cells, and Aicda
(MGI:1342279) within germinal center B cells (data not
shown). Limits to this approach are demonstrated by the
absence of some expected cell markers, such as Spn
(MGI:98384), which encodes CD43, as a marker for all
B-1 B cells. In this case, Spn expression is low in one
subclass of B-1 B cells, that being B-1a B cells isolated
from the peritoneal cavity. This could be attributed to bio-
logical reasons, such as post-transcriptional modification
(which would not be observed at the transcript level) or to
experimental issues (such as poor probe hybridization).
Other potential issues are discussed below.
This hierarchical approach identifies new candidate

cellular markers, especially when combined with the global
expression data available at the IGP portal. For example,
205 genes are up regulated in mature B cells compared to
other mature lymphocytes. Some genes like those of the
MHC-II complex are widely expressed by non-lymphocyte
cells. Other genes, such as Scd1 (MGI:98239), an enzyme
involved in biosynthesis of monounsaturated fatty acids
[18], are highly restricted to mature B cells types (Figure 5)
in comparison to the studied immune cell types included
in this analysis. Similar expression patterns can be found
in more granular cell types. Satb1 (MGI:105084) is widely
expressed across immune cell types, but in mature B cells
there is a 10-fold upregulation in B-2 B cell compared
to B-1 B cells (data not shown). Likewise, the gene
I830077J02Rik (MGI:3588284), which is described by
UniProt [19] (UniProtKB:Q3U7U4) as a single-pass trans-
membrane protein, but is otherwise uncharacterized, is
widely expressed among myeloid cells. However, in lym-
phocytes, expression of this protein is restricted to mar-
ginal zone B cells (Figure 5B, B cell types in yellow,
myeloid in purple). Using OBAMS, candidate biomarkers
can be identified at every strata of cellular identity from
broad classifications to very granular.
The transitive nature of the ontology allows us to build

a gene expression profile for more granular cell types.
We can infer that the B-1a B cell, when compared to
other mature lymphocytes, has increased expression of
the 205 genes associated with all mature B cells and the
63 genes up regulated for all B-1 B cells, in addition to
the 105 genes up regulated specifically in this cell type.
When gene expression of B-1a B cells is globally com-
pared to all mature immune cells taken out of the onto-
logical context and instead is globally compared to all
mature immune cells, only three genes are confirmed to
be up regulated in a statistically significant manner: Fzd6
(MGI:108474), Tmc3 (MGI:2669033) and 1810046K07Rik
(MGI:1917059). While of interest, very little informa-
tion can be inferred about the B-1a cell type from such a



Figure 5 Global expression of candidate cell marker genes. A) Expression of Scd1, as represented for key immune cell populations at the
Immunological Genome resource. B cells subtypes are labelled in yellow. B). Expression of I830077J02Rik. The yellow peak is marginal zone B cell.
All of the myeloid cells types also express high levels of this gene.
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limited sample, especially given that one of the genes is
uncharacterized.

Insights into cell function are gained using the gene
ontology
Reflecting on the classification schemes of immunolo-
gists, the hematopoietic branch of the CL is built on a
hybrid classification of cell surface markers, cell lineage,
and biological function [6,7]. Although some associa-
tions between the CL and GO have been curated in the
CL, this has proved a difficult task as there are large vol-
umes of information to review and many inherent con-
tradictions in the understanding of cell functions. We
present a solution using GO term enrichment to find
molecular functions or biological processes that are sig-
nificantly overrepresented in a cell type’s OBAMS. From
this, we then make new assertions of inferred function
that are independent of experimental evidence published
in the literature.
In a case example of this approach, 205 genes consist-

ently up regulated by all mature B cell types were used
as input to VLAD, an online GO term enrichment tool
[20], with the result that there was an association of the
gene set with a highly ranked biological process identified
as “antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II” (GO:0002504),
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p-value = 5 × 10-20. According to this analysis, mature B
cells can be differentiated from T and NK cells by their
ability to present antigen to T cells in a manner similar to
dendritic cells. While this function has been demon-
strated experimentally [21], this association had not been
captured by curators of the CL as most of the literature
focuses on the production and use of immunoglobulin
complexes. However, such associations are important for
comprehensive representation of cell types. As a result of
this computational analysis, an association has now been
made in the CL between “mature B cell” and “profes-
sional antigen presenting cell” by declaring both cell types
are capable of the GO process “antigen processing and
presentation of peptide or polysaccharide antigen via MHC
class II” (GO:0002504). Other interesting GO associations
that we found through term enrichment and that are sup-
ported by evidence in the literature include the findings
that B-2 B cells are in resting state compared to B-1 B cells
[22] by “negative regulation of lymphocyte activation”
(GO:0051250), and that marginal zone B cells are capable
of “antigen processing and presentation, endogenous lipid
antigen via MHC class Ib” (GO:0048006) [23]. Thus one
benefit of this approach is the review of the completeness
of CL representations. We performed GO term enrich-
ment for all up regulated genes in particular mature B cell
subtypes, and the results are summarized in Table 1 (and
collected in Additional file 1).
Beyond those cell type process assertions with sup-

porting experimental evidence, we identified other en-
riched GO biological processes associated with cell types
Table 1 Summary of GO term enrichment for all up regulated

B cell
Genes up
regulated

Example biological process
(up regulated genes) GO

Mature B cell 134 Antigen processing and
presentation of peptide or
polysaccharide antigen via
MHC class II

GO

B-1a B cell 91 Anatomical structure
development

GO

B-1b B cell 66 Cellular chloride ion
homeostasis

GO

Fraction F mature B cell 2 Cellular iron ion
homeostasis

GO

Germinal center B cell 1160 Mitotic cell cycle GO

Marginal zone B cell 99 Antigen processing and
presentation, endogenous
lipid antigen via MHC
class Ib

GO

B-1 B cell 59 Activation of protein kinase C
activity by G-protein coupled
receptor protein signaling
pathway

GO

Total 1611

We performed GO term enrichment for all up regulated genes in particular mature
that are de novo assertions. For example, our analysis re-
vealed that B-1b B cells over express genes that encode
mitochondrial proteins. This may support a report of a
protective mechanism against apoptosis that allows B-1
B cells to survive after antigen stimulation [24]. An-
other interesting observation is that B-2 B cells express
genes that are associated with dendrite development. A
spherical shape is often associated with lymphocytes but
in vivo imaging demonstrates this is not always case
[25,26]. The dendrite development may reflect a branching
morphology taken by these cells, as has been proposed for
GC B cells [27]. Alternatively, genes involved in dendrite
development may regulate cell migration through different
tissues as suggested by expression associated with the
trailing edge of cells, Pip5k1b (MGI:107930), and cilia,
Bbs9 (MGI:2442833) and Rapgef4 (MGI:1917723). Novel
testable hypotheses such as these can be potentially devel-
oped based on the use of ontologies to structure gene ex-
pression analysis.

Ontologies can be used to perform ‘in silico’ experiments
GC B cells undergo somatic hypermutation of their gen-
omic DNA, which allows for selection of immunoglobulin
complexes with higher affinity for antigen. We hypothe-
sized that the OBAMS signature for GC B cells would
identify genes that regulate genomic DNA stability. How-
ever, GC B cells are also distinguished from other mature
B cells by being in a proliferative state; the top ten GO
enriched biological processes from their OBAMS profile
involve various aspects of the cell cycle (Figure 6A).
genes in particular mature B cell subtypes

ID
Genes down
regulated

Example biological process
(down regulated genes) GO ID

:0002504 57 Antigen receptor-mediated
signaling pathway

GO:0050851

:0048856 66 Cellular chloride ion
homeostasis

GO:0030644

:0030644 91 Anatomical structure
development

GO:0048856

:0006879 0

:0000278 524 Regulation of metabolic
process

GO:0019222

:0048006 32 Regulation of phosphate
metabolic process

GO:0019220

:0007205 6 Regulation of actin
polymerization or
depolymerization

GO:0008064

776

B cell subtypes. In cases where a single GO term is shown, its URI is listed.



Figure 6 Candidate genes involved in the unique functions of Germinal Center B cells. A) Gene Ontology term enrichment of germinal
center B cells (GC B cell) reveals genes involved in cell cycling and in the repair of DNA. B) DNA repair is often associated with cellular
proliferation, so a new set of pairwise comparisons was generated against other proliferating lymphocytes using the methods described. Marginal
zone B cells were included to eliminate genes found among B cells. C) Table of Top 10 genes overexpressed in GC B cells compared to activated
lymphocytes and MZ B cells. * Probe maps to two different IgKappa variable segments.
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Because eukaryotic DNA replication is a flawed process
that uses proofreading mechanisms during the normal se-
quence of events [28], we need to subtract out those genes
up regulated in other proliferating immune cells to find
genes that specifically regulate somatic hypermutation of
GC B cells.
We initially used the ontology to find the closest neigh-

bor to GC B cells in the IGP dataset that is activated (i.e.
proliferating). At the time of analysis, activated B cell
datasets were unavailable, so two other datasets were
used. The first data were from mature Ly49-positive NK
cells isolated from a mouse spleen, one day after infection
with murine cytomegalovirus (MCMV). Since NK cells
are activated after viral infection; we hypothesized that
genes that regulate lymphocyte activation should be up
regulated in NK cells from MCMV infected mice com-
pared to controls [29]. The second cell type used were
CD8+ T cells expressing a transgenic T cell receptor spe-
cific for OVA peptide (OT-I). T cells were isolated from
mice at day 4 after exposure to a virus expressing the
OVA peptide. Both of these cell types had high expres-
sion of the M-phase marker, Cdk1 (MGI:88351), formerly
known as Cdc2a, confirming these cell types were ac-
tively proliferating (data not shown). Raw data from these
cell types and the controls were collected, as well as data
from GC B cells and marginal zone B cells (MZ B cells).
This last cell type, the MZ B cell, was added as this was
the closest neighbor for which raw data were available
and thus could provide a reference to remove B cell spe-
cific markers.
Using our ontological framework, we created gene sets

that represented genes overexpressed in GC B cells com-
pared to MZ B cells and activated NK and CD8+ T cells
(Figure 6). Five hundred fifty genes were found to be up
regulated by > 2-fold in this analysis; 106 of which are
also found as being up regulated in GC B cells in the ori-
ginal analysis (Additional file 2). Several known markers of
GC B cell are present in the ten most highly expressed
genes, including the Mybl1 (MGI:99925) transcription
factor, the Aicda (MGI:1342279) gene that is respon-
sible for deamination of cytosine that leads to point muta-
tions in the immunoglobulin gene segments, and the Igj
(MGI:96493), Igk-V (MGI:96499), and Igh-V (MGI:96477)
gene segments involved in the class switch recombination
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[30,31]. Interestingly, the remaining genes are involved in
the G protein coupled signaling pathways and are also im-
plicated in cancers as discussed below.
A recent study performed by the ImmGen Consortium

complements and validates our efforts [32]. The authors
used network analysis to identify molecular markers
for natural killer (NK) cells. Data from their study over-
lapped with our NK cell analysis; both their study
and ours showed that NK cells encoded NK cell recep-
tors such as Klra8 (Ly49H) (MGI:102968) and Ncr1
(MGI:1336212). Additionally, in both studies the genes
Adamts14 (MGI:2179942), Serpinb9b (MGI:894668) and
Styk1 (MGI:2141396) were identified specifically as being
expressed in NK cells, which was previously unreported. In
total, 74% of the 66 genes identified by OBAMS analysis
overlapped with the larger 93 gene set from the ImmGen
analysis. Genes identified in the former that were not in
the later largely fell into one group – genes whose expres-
sion was restricted to NK cells among all lymphocytes, but
were expressed in other non-lymphoid cell types. This
highlights the differences in the two approaches. Genes
identified in ImmGen analysis but not in the OBAMS ap-
proach fell largely into two categories – genes whose ex-
pression we excluded due to expression within a dataset
not used in the network analysis, Vgamma5 GammaDelta
IELs, or genes identified by the lowest scoring threshold
category (see Additional file 3). Thus, the complementary
approaches represented by network analysis and OBAMS
can identify new biomarkers in immune cell subtypes with
good reproducibility.

Discussion
Mammalian cell types have distinct identities that reflect
their diverse roles in executing the biological processes
necessary for sustaining life. Finding genes defining their
identity is a difficult task as genes whose expression is
restricted to any one cell type are rare. Here we demon-
strate a novel method of performing gene expression
analysis within an ontological framework that provides
new insights into understanding cellular identity. By
generating pairwise comparisons within a logical hier-
archy, we find genes whose expression is associated with
cellular types at both a granular and a broad level. Im-
portantly, this structure is transitive so that genes whose
expression is associated with a broad level classification
are also associated with all descendant cell types in the
hierarchy. This allows a parsing out of gene expression
to specific cell types, despite the evidence that most
genes are expressed in more than one immune cell type.
Hypotheses can be developed about cellular functions

based on genes associated with a cell type by OBAMS.
Our approach illustrates, for example, how B cells are
unique among lymphocytes in being able to present anti-
gen by the MHC class II pathway. We find this despite
wide expression of MHC Class II components in the
myeloid branch of hematopoietic cells. Literature review
confirms this role of B cells but other insights lack ex-
perimental evidence, and our results may initiate new
avenues of research. While we noted expression of genes
by B-2 B cells involved in dendrite formation as one
such example, other hypotheses may be generated from
unexpected OBAMS results, such as the expression of
iron transport genes in Fraction-F B cells or the expres-
sion of genes that negatively regulate blood coagulation
by B-1a B cells.
Ontologies can also be used in the next step: testing a

hypothesis by helping to frame analysis of pre-existing
data in relevant ways. In an illustration of this point, we
identified genes involved in somatic hypermutation of
DNA, a function used by GC B cells to generate high af-
finity antibodies. Identifying genes that specifically regu-
late this process is difficult due to the proliferative state
of GC B cells and the associated DNA repair mecha-
nisms inherent in any proliferating cell. By using the CL,
we identified similar cell types that are proliferating and
then subtracted any shared up regulated genes. Genes
associated with B cells were also removed by excluding
those genes expressed in the closely related B cell type
MZ B Cells. We hypothesized the remaining genes
would be enriched for those involved in somatic hyper-
mutation of DNA.
Literature review of the identified genes from our GC

B cell analysis confirmed the validity of our approach.
Expression of Aicda and IgJ are considered hallmarks of
GC B cells. Nuggc (MGI:2685446), formerly known as
Gm600, has high similarity with the human GTPase SLIP-
GC, a nuclear GTPase expressed in activation-induced
deaminase-expressing lymphomas and germinal center B
cells [33]. Rgs13 (MGI:2180585) strongly impairs signaling
through G-inhibitory linked signaling pathways and has
been found to down regulate responsiveness of GC B cells
to chemokine response [34]. The Ras activator Rasgrp3
(MGI:3028579) promotes B cell signaling by enhancing sig-
nals from the B cell receptor complex, and is critical in the
production of certain classes of immunoglobulins [35].
Rassf6 (MGI:1920496), also a Ras-interacting protein, is
implicated in inducing apoptosis in tumorigenic cells and
in regulation of organ size [36-38]. This gene has not been
previously described as playing a role in GC B cells. Gcsam
(MGI:102969), formerly known as Gcet2, is a regulator
of the RhoA signaling pathway that negatively regulates
lymphocyte mobility and whose expression is associated
with increased survival in at least two types of lymphoma
[39,40]. In addition to involvement in G protein coupled
signaling pathways, mutations of all these genes are impli-
cated in development or progression of a number of can-
cers, suggesting that this approach can be used to discover
chemotherapeutic targets.
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Known constraints and potential enhancements
to our approach
There are constraints to this approach. First, this ap-
proach requires consistent gene expression across all the
subtypes of a cell type being analyzed. For example,
CD43 expression is considered a marker of B-1 B cells
but was not detected as such in our analysis. This is be-
cause there are three datasets associated with descen-
dants of this cell type; one did not have high expression
of the Spn gene that encodes CD43. While this is a limi-
tation in our approach, other resources such as the Gene
Expression Atlas (GEA) address this issue. The GEA is a
semantically enriched database of curated experiments
from the Array Express transcriptome resource [41].
The GEA performs meta-analysis across multiple tran-
scriptome assays and identifies genes that are up- or
down regulated in factors that are shared between indi-
vidual studies. These shared factors are represented by
an application ontology known as the Experimental Fac-
tor Ontology (EFO) that includes as part of its structure
portions of the CL [42]. Users can query the GEA by
EFO classes such as “B cell” to find genes annotated to
this term. In contrast to our approach, a gene whose ex-
pression is not consistent for all members of a class is
not eliminated but rather the contrasting results are
presented. Our restrictive approach serves as a compliment
to the resources available at GEA.
Another issue that we have not addressed is the ana-

tomical location of the cell types. The IGP project has
generated data from the same cell type isolated from dif-
ferent locations such as the spleen, lymph node, bone
marrow, and peritoneal cavity. For example, “Fraction-F
B cell” isolated from bone marrow is described as CD21-
positive, as they need to be distinguished from CD21-
negative immature B cells present in this tissue. In our
current schema, Fraction F B cells are compared to fol-
licular B cells of the spleen, which have high levels of
CD21. As a consequence, CD21 is not associated with
Fraction F B cells. A more comprehensive ontological
structuring of data will include anatomical axes of differ-
entia by using anatomical ontologies such as UBERON
[43]. Indeed, our approach is not limited to the use of
the CL but is applicable to any well-structured ontology
that represents classes for which transcriptome data ex-
ists. OBAMS could be used to identify overexpressed
genes among a tumor type or genes whose expression
changes as a tissue undergoes differentiation. Critical to
this is access to robust ontologies for which samples can
be mapped.
A potential limitation is a restriction in a OBAMS sig-

nature for a cell type as more data is brought in for a
subtype and more pairwise comparisons are performed.
Indeed as we were developing our OBAMS approach we
were concerned there would only be a very few genes
whose expression was consistent across all types of the
higher level classes (i.e. mature B cell). This proved un-
founded for mature B cell (over 200 genes or gene seg-
ments up, suppl file 1) and NK cell types (63 up-regulated,
suppl file 3) with the latter having good correspondence
with known cell markers and with the NK network ana-
lysis. This is in part due to the efforts of the ImmGen con-
sortium to reduce inter-center and inter-sample variability
but also reflects that cell type characteristics are tightly cor-
related with gene expression. This correlation is strong
enough that researchers have recently deconvoluted gene
expression results from complex tissues to determine the
frequency of the constitutive cell types through expres-
sion of cell marker genes [44]. However, other cell types
may have more variable gene expression among their sub-
types, which would lead to a sub-optimal OBAMS. To ad-
dress this, our OBAMS approach may be applied in other
kinds of analyses, including the use of weighted gene co-
expression networks or Shannon entropy [13,45,46]. These
approaches have the advantage of not excluding a gene if it
is not expressed in all relevant samples. A highly expressed
gene present in the majority of samples with a shared trait
will still be identified. In these types of transcriptome ana-
lyses, modules of genes are created based on similar
expression within samples that share particular traits.
Ontologies such as the CL can be used to assign traits to
samples. For example, a “myeloid” or “lymphoid” trait
can be assigned to all cell types analyzed in the IGP
dataset. OBAMS may also be used in other types of mo-
lecular analysis where samples can be mapped to the CL.
Such possibilities include mass cytometry and mapping
of cellular epigenomes, both of which are suitable for
high-throughput analyses and likely to generate large data
volumes [47,48].
There are several guidelines that can be applied going

forward to enhance the OBAMS approach. First, the
samples being studied must be mapped to an appro-
priate ontology that has a robust representation of the
biological context. An ontology with erroneous associa-
tions will lead to misleading OBAMs signatures. Samples
being analyzed should be of a similar type (cell type, tis-
sue, tumor, etc.) with appropriate efforts made to reduce
variability, as our current implementation of OBAMS is
sensitive to spurious expression in one sample. The
scope of the samples being analyzed is important to con-
sider. To determine an OBAMS signature for a class,
representation of the major subtypes is important, but
inclusion of a sample from every subtype is not critical
and may not even be practical. What is critical is to have
samples from a sibling class for which the OBAMS is
being generated. This serves as a “background” control
to remove genes whose expression is constant across the
higher level branch that the class of interest resides in.
For example, in our GC-B Cell analysis we wanted to
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find genes whose expression was unique when compared
to other activated lymphocytes. As there were no activated
B cell datasets available at time of analysis, we included
comparisons to “marginal zone B cell” as this was a sibling
class to germinal center B cell in the CL. If these compari-
sons were not included, B cell markers such as CD19
would have been included in the OBAMS. By taking this
approach, we obtained biologically relevant results.
In summary, the IGP project has been an ongoing effort

to characterize the transcriptomes of immune cells. While
using an established technology, the breadth and scale of
the consortium’s efforts presages the high-throughput
“next-gen” and “next-next-gen” that are generating ever-
increasing amounts of data. Structuring large volumes of
data in an ontological context allows for integration of
gene expression information with other disparate forms
of data, the ability to do in silico experiments, and gain
biological insights that might otherwise be missed.

Conclusions
Characterization of molecular pathways can help eluci-
date the normal functioning of cells and the etiology of
many diseases. We have developed a novel method for
detecting pathways critical to cellular identity based on
gene expression analysis using the Cell Ontology (CL).
The CL is a manually constructed computer readable re-
source that links cell types by different relationships
such as develops_from or is_a (subtype of ). We have en-
hanced the CL to aid in analysis of complex biological
data. We incorporated the CL into gene expression ana-
lysis of 88 immune cell types using publicly available data.
We demonstrate we can find genes whose expression are
associated with groupings of cell types and activated path-
ways that provides insights into cell type function. We ex-
tend our findings to study a cell type that selectively
mutates its own genome and show that genes associated
with this process are also implicated in cancer. These re-
sults establish that ontologies like the CL are valuable tools
in analyzing complex biological data.

Methods
Pairwise analysis of gene expression data
The IGP has generated gene expression profiles for
fluorescence-activated cell sorting (FACS) sorted mouse
immune cell types by use of microarray gene chip ana-
lysis [15]. These data are available through the Gene Ex-
pression Omnibus (GSE15907) [49]. We downloaded and
locally stored files that contain the original IGP gene ex-
pression data for 88 mature immune cell types (October
2010). We then developed a workflow to associate gene
expression information with cell types (Figure 1). Stan-
dard Affymetrix gene chip analysis was done in R using
the following Bioconductor packages: “affycoretools”,
“affy”, “limma”, and “puma” [50-52]. Quality control of the
original data was first determined using affystart. Gene ex-
pression across replicates was calculated using the Robust
Multichip Average (RMA) normalization method. The
“puma” package was used to generate a matrix of all
possible pairwise comparisons between the 88 mature
immune cell types. Differential expression of genes (as
represented by hybridization to Affymetrix nucleotide
probes) was calculated for each pairwise comparison by es-
timating the fold changes and standard errors through fit-
ting a linear model for each gene followed by empirical
Bayes smoothing of the standard errors. Two sets of genes
were created for each pairwise comparison: one for genes
whose expression was increased > 1.5-fold with an adjusted
p-value < 0.05 using the Benjamini and Hochberg method
to correct for multiple testing [53], and another set of
genes whose expression decreased > 1.5-fold. The output
was generated as a series of tab-delimited files with coordi-
nates on the puma matrix and a “u” or “d” corresponding
to up or down regulated genes.

Mapping of pairwise comparisons to CL
Preliminary mappings between the mature immune cells
sampled in the IGP and classes in the CL were established
using text matching based on cell type names. This was
followed by manual review of cell surface markers used.
Immune cell representation in the CL was found to be ro-
bust, and the few omissions were added to CL by editing
the ontology in OBO-Edit 2.1 [54]. CL classes that repre-
sented analyzed cell types in the IGP were referenced by
inclusion of the IGP URL [1] in the dbxref of the cell type
definition. The continuously updated source file for the CL
ontology can be found at the Cell Ontology website [55].
Thus we maintain a robust mapping between CL and IGP
cell types.
An analytical framework was created to leverage the

logic of the CL in our pairwise analysis. First, we extracted
a simple subset of the CL that excluded external ontologies
(the complete CL includes portions of other ontologies
such as the Protein Ontology as required to create logical
definitions, a technique known as MIREOT [56]). We then
extended this core ontology with a set of classes, each
representing differentially expressed gene sets. We created
a second root class (i.e. class with no parents) called
“Gene-sets” with the child class “mature immune cell com-
parisons” (GS:0000001). We created a new ontology class
si,j for every entry mi,j in the differential expression matrix,
where i ≠ j and i,j ≤ 88, yielding a total of 7,656 classes. We
placed each class si,j as a subclass of GS:0000001, and
added a has_up_regulated_genes relationship between si,j
and ci and a has_down regulated_genes relationship
between si,j and cj. Note that the two halves of the
matrix are not equivalent, since we are representing both
up and down regulated genes. We then modified the
resulting structure, removing redundant links. Also note
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that several ci have more than one si,j they are associated
with. These represent cases where the IGP consortium’s
differentia of cell types was more refined than the CL.
This includes the same cell type being isolated from dif-
ferent anatomical locations, and/or the use of an inter-
mediate expression level of a cell marker to identify a cell
type (e.g. peritoneal cavity macrophage expressing inter-
mediate levels of Emr1).
The ontology, known as ‘CL-pairwise.obo’, is available

online [57].
Applying logic of CL to discover genes up regulated
for B cell types
To determine the set of genes that are up regulated in a
child class x compared to its parent y, the relevant pair-
wise comparisons were found using the CL-pairwise
ontology. For each child–parent pair, we find the set of
gene sets such that this gene set is inferred to be up reg-
ulated in any kind of x, down regulated in any kind of y,
excluding gene sets down regulated in some kind of x.

For all x in C:
For all y in Parent( C ):

S � x; y ¼ Si; j i∈anc xð Þ; j∉anc yð Þ; j∉anc xð Þj �½
Here the anc function returns the reflexive closure of the
ancestors of a class

In cases where there is more than one is_a parent to X,
a search was done for each parent. The output of these
searches was a list of pairwise comparisons that were fed
into a custom R function. This function accessed the rele-
vant pairwise comparison gene sets, found the genes com-
mon to all sets, calculated the mean fold expression change
and standard deviation based on the fold-expression within
each set, and added annotation information, including offi-
cial gene symbols, from Mouse Genome Informatics (MGI)
(Figure 2). The R function used can be found at the CL
Immgen Data Archive [16].
GO term enrichment
Genes found to be up regulated for a cell type were func-
tionally evaluated using GO term enrichment statistical
analysis tool, VLAD that is hosted at MGI [20]. This tool
identifies GO classes that are significantly overrepresented
in the annotations for a given set of genes. These computa-
tionally identified GO biological processes were compared
to GO biological processes that were associated with CL
terms by experiments reported in the literature. Also, a
one-to-one correspondence was generated for species-
specific mouse genes to corresponding protein terms in
the Protein Ontology (PR) [8]. These PR terms were like-
wise compared to those PR terms manually associated with
CL terms in logical definitions. In several cases, new asso-
ciations were then made between particular CL classes and
GO or PR classes.

Additional files

Additional file 1: OBAMS profiles for all mature B cells. Additional
file 1 contains a zip archive of OBAMS profiles for all mature B cells,
including for each cell type individual spreadsheets showing up and
down regulated genes for that cell type relative to parental cell types,
and VLAD (GO term enrichment) results for all mature B cells.

Additional file 2: Genes Upregulated in GC-B cells vs MZ B cells.
This Excel spreadsheet presents the OBAMS profile for genes up-
regulated in GC-B cells vs MZ B cells (to remove B cell marker type
genes) and activated mature lymphocyte cell types.

Additional file 3: Genes upregulated in NK cells. Side-by-side
comparison of genes identified in OBAMS and ImmGen analyses with the
genes ranked according to their fold-change (OBAMS) or delta score
(ImmGen, data from supplementary file of Bezman et al. [32]) with the
matches between the two lists indicated and potential reasons given to
explain genes missing from either list.
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