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Abstract

Background: Pathway analysis based on Genome-Wide Association Studies (GWAS) data has become popular as a
secondary analysis strategy. Although many pathway analysis tools have been developed for case–control studies,
there is no tool that can use all information from raw genotypes in general nuclear families. We developed
Pathway-PDT, which uses the framework of Pedigree Disequilibrium Test (PDT) for general family data, to perform
pathway analysis based on raw genotypes in family-based GWAS.

Results: Simulation results showed that Pathway-PDT is more powerful than the p-value based method, ALIGATOR.
Pathway-PDT also can be more powerful than the PLINK set-based test when analyzing general nuclear families
with multiple siblings or missing parents. Additionally, Pathway-PDT has a flexible and convenient user interface,
which allows users to modify their analysis parameters as well as to apply various types of gene and pathway
definitions.

Conclusions: The Pathway-PDT method is implemented in C++ with POSIX threads and is computationally feasible
for pathway analysis with large scale family GWAS datasets. The Windows binary along with Makefile and source
codes for the Linux are available at https://sourceforge.net/projects/pathway-pdt/.
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Background
Genome-wide association studies (GWAS) have been
successful in identifying single nucleotide polymor-
phisms (SNPs) associated with complex diseases [1,2].
Almost a million or even several millions of SNPs are
densely genotyped across the genome for GWAS, and
single-SNP association tests are performed to identify in-
dividual SNPs with marginal effects on the disease.
Nonetheless, GWAS may lose power for identifying
disease loci due to the stringent significance threshold
required for multiple testing correction for the multitude
of SNPs tested [3]. For a complex disease that is
expected to be caused by the joint effects of multiple
genes, statistical power can be increased if the joint ef-
fects are considered in the test.
Statistical pathway analysis based on GWAS data has

become a popular secondary analysis strategy [4-6].
Combining single-SNP association tests within a pathway
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in statistical tests can help identify the joint effects of gen-
etic variations underlying complex disease susceptibility
that were difficult to find using the single-SNP association
tests alone. Current pathway analysis approaches can be
classified into two types, the self-contained test and the
competitive test, based on their null hypotheses [7]. The
self-contained test compares the test statistics for genes in
a given pathway to the test statistics for the same genes
under the null. The competitive test compares the test sta-
tistics for genes in a given pathway to test statistics for
other genes in the genome [8]. Either SNP p-values or raw
genotypes are expected by current pathway analysis
methods for GWAS. The advantages for p-value based
methods (i.e. methods accepting SNP p-values) include
the flexibility for accommodating different study designs
such as unrelated case–control and family-based studies.
Moreover, data sharing for a list of p-values is easier than
individual raw genotypes when a joint analysis is
performed to combine different datasets in a consortium.
The major advantage for raw-genotype based methods is
that permutations can be performed (by either permuting
phenotypes or genotypes under the null) to account for
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

https://sourceforge.net/projects/pathway-pdt/
mailto:rchung@nhri.org.tw
http://creativecommons.org/licenses/by/2.0


Park et al. BMC Bioinformatics 2013, 14:267 Page 2 of 5
http://www.biomedcentral.com/1471-2105/14/267
linkage disequilibrium (LD) structures among SNPs and
for different gene and pathway sizes [8].
Most of the currently available software packages for

pathway analysis are designed for case–control studies or
are restricted to use trios (two parents and one affected sib)
[4,9,10]. PLINK [11] provides a set-based test based on the
Transmission Disequilibrium Test (TDT) [12] statistics,
which can be used for family-based pathway association
analysis. The set-based test is restricted to use trio families
with parents, as parental genotypes are required for the
TDT statistics calculations. The user has to use external
bioinformatics tools such as the UCSC genome browser
[13] to map SNPs to genes and generate a set of SNP IDs
in a pathway for the set-based test, which can increase ana-
lysis difficulty. GenGen, implementing Wang’s method [10],
is another tool for family-based pathway analysis. GenGen,
which is also based on the TDT statistics, has the same re-
striction of using trio families. Several complex disease
studies involve nuclear families with multiple affected and
unaffected siblings, such as the autism GWAS data publicly
available through the Autism Genetic Resources Exchange
(AGRE) consortium (http://research.agre.org). Moreover,
for late-onset diseases such as Alzheimer disease, parental
genotypes are often missing. Statistical power for the
PLINK set-based test and the GenGen test can be reduced
for analyzing such families.
Another way to perform pathway analysis for general nu-

clear families, such as families with multiple siblings or
missing parents, is to use the p-value based methods. The
first step for the analysis is to obtain p-values from existing
family-based single-SNP association tests that can accom-
modate general nuclear family structures such as the Pedi-
gree Disequilibrium Test (PDT) [14] and FBAT [15]. Then
the set of p-values is provided to a p-value based method as
the second step. However, statistical power could be
compromised when a p-value based method is used rather
than a raw-genotype based method [16]. Moreover, it
would be ideal to integrate all of the pathway analysis steps
into a single efficient computer program.
Here, we integrated two well-established algorithms,

the PDT and the modified gene set enrichment analysis
(GSEA) [17] algorithm as proposed in Wang et al. [10],
into a family-based pathway analysis method. The soft-
ware implementing the method, Pathway-PDT, can use
nuclear families with one or more affected siblings and
allows for missing parents. The Pathway-PDT software
is implemented in C++ and uses threads for parallel
processing of multiple permutations to increase the
computational efficiency.

Implementation
The Pathway-PDT algorithm
The Pathway-PDT algorithm combines the framework of
the family-based association test, PDT [14], and the
weighted Kolmogorov-Smirnov-like (KS-like) running
sum statistic proposed in GSEA for gene expression ana-
lysis [17] and its GWAS adaptation first suggested in the
Wang et al. study [18]. Pathway-PDT inherits the prop-
erties of PDT that it can use general nuclear families
with multiple affected and unaffected siblings and allow
for missing parents. The KS-like test compares the dis-
tributions of gene scores for genes within and outside a
given pathway. Therefore, Pathway-PDT is a competitive
test that uses genome-wide information for testing a
pathway.
There are several steps in the Pathway-PDT algorithm:

(1)Assign SNPs to genes. SNPs are assigned to a gene if
they are inside the gene or k kb away from the gene.
The parameter k is specified by the user. A
commonly used k is 5 kb or 20 kb to account for
SNPs in regulatory regions for the gene.

(2)Calculate PDT statistic for each SNP that has been
assigned to a gene.

(3)For each gene, select the largest PDT statistic
(corresponding to the minimum p-value) from the
PDT statistics for all SNPs assigned to the gene as a
score for the gene.

(4)Let the total number of genes in the dataset be N,
where the jth gene, Gj, has a score rj. The N genes are
sorted by their gene scores from largest to smallest. For
each pathway P, calculate the weighted KS-like running
sum statistic (referred to as the Enrichment Score of P
or ES(P)) by the following [17]:

ES Pð Þ ¼ max
1≤i≤N

∑
Gj∈P;j≤i

rj
�� ��w
NR

− ∑
Gj∉P;j≤i

1
N−NH

( )

where NR ¼ ∑Gj∈P rj
�� ��w , w is the weight for each
gene and NH is the number of genes in P. The
default weight w is 1 for Pathway-PDT as
recommended in the GSEA algorithm [17].

(5)Permute the transmitted and untransmitted alleles
from parents to siblings within each family and
recalculate the PDT statistics for SNPs within genes.

(6)Repeat steps 3–5 for K times.

The p-value for the Pathway-PDT test is the propor-
tion of times that the permuted ES(P) is greater than the
observed ES(P) in the K times. Based on our simulation
results, Pathway-PDT maintained correct type I error
rates when K was specified as 2,000. However, a larger
number of K is required if a higher precision of p-value
is needed. The null hypothesis is that the distribution of
gene scores in P is the same as the distribution of gene
scores for other genes in the genome.
Similar to Monks and Kaplan [19], it can be shown

that permuting the transmitted and untransmitted alleles
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from parents to siblings within a family results in a sign
change for the PDT statistic for the family. Therefore,
even when parents are missing in a family, permuting
the PDT statistic is still possible by simply changing the
sign of the statistic for the family. Alleles at SNPs on the
same chromosome are permuted simultaneously to pre-
serve the LD structures among the SNPs. Note that cal-
culating the PDT statistics in a permutation requires raw
genotypes or the PDT statistic for each of the families.
The information cannot be obtained from single-SNP p-
values or single-SNP statistics. Also the statistics are
recalculated based on the same sizes of genes and path-
ways as the original sizes in each permutation. There-
fore, the permutation procedure properly accounts for
gene and pathway sizes so that large genes or pathways
do not bias the Pathway-PDT statistic under the null.
Pathway-PDT maintains the advantage of raw-genotype
based method that LD structures, gene sizes, and path-
way sizes are properly accounted for in the test. More-
over, the permutation statistics are used to calculate the
permutation-adjusted p-values and False Discovery Rate
(FDR) [20] in Pathway-PDT to adjust results for multiple
testing corrections.

Comparison between Wang’s method and Pathway-PDT
Both Wang’s method [10] and Pathway-PDT were ex-
tended from the GSEA algorithm. As discussed in Wang
et al., their method can be applied to unrelated case–
control or family-based studies. The GenGen package
provided by the authors uses the TDT statistics as the
fundamental single-SNP statistics. Therefore, the soft-
ware is restricted to analysis of trios. The procedure of
calculating the TDT statistics and the permuted statistics
(i.e. calculate_association.pl), and the procedure of calcu-
lating the pathway statistics (i.e. calculate_gsea.pl) are
implemented in two different Perl scripts in GenGen. In
order to improve the permutation efficiency for a large
number of permutations (e.g. 2,000 permutations), the
user has to split the permutations into several parts
(e.g. 10 parts, each part has 200 permutations), run
calculate_association.pl to calculate the permuted statis-
tics for each of the parts in parallel, and provide all the
files containing the permuted statistics to calculate_gsea.
pl to obtain the final pathway results, as suggested in the
user manual. In contrast, the Pathway-PDT method is
developed based on the PDT statistic, which can use
general nuclear families with missing parents and mul-
tiple affected siblings. Even when parents are missing in
a family, calculating the permuted PDT statistic is still
possible by simply permuting the sign of the original
PDT statistic. The procedures of calculating the PDT
and Pathway-PDT statistics, and the permutation proce-
dures are automatically performed in Pathway-PDT in a
single run. Moreover, threads can be used to parallelize
the permutation procedures on a computer with multi-
core CPUs. Therefore, Pathway-PDT provides an effi-
cient and user-friendly tool for family-based GWAS
pathway analysis.

Simulations for power and type I error calculations
Simulation studies were conducted to evaluate the type I
error rates and to compare power for the Pathway-PDT
with the p-value based tool, ALIGATOR, which uses p-
values from GWAS and a bootstrap sampling approach
to estimate empirical p-values, and the PLINK set-based
test, which is a raw-genotype based test. The PLINK set-
based test has been shown to be a powerful test for
pathway analysis using simulations and real data applica-
tions [9,16]. The single-SNP PDT p-values were used as
input for ALIGATOR.
A forward-time population simulation program,

genomeSIMLA [21] was used to simulate GWAS
datasets based on the Illumina HumanHap550 geno-
typing chip and the LD information of the HapMap
CEU population. No causal variants were simulated for
the type I error analysis. Disease models for the power
analyses included two additive models (Model1 and
Model2) with ten causal variants. The minor allele fre-
quencies for the ten variants were close to 0.2. The
odds ratios for the ten variants were 1.2 and 1.3 for
Model 1 and Model 2, respectively, following the
estimated average effect size of common variants con-
tributing to the complex disease susceptibility [22]. A
pathway with 24 genes, which contain 285 variants,
was used to evaluate both type I error rates and power.
A total of 2,000 and 500 replicates were generated to
calculate type I error rates and power, respectively. A
total of 500 nuclear families (two parents and three
siblings, where at least one sibling is affected) were
simulated for each replicate. For scenario 1, we as-
sumed all 500 families had parents. For scenario 2, we
assumed 50% of the families had missing parents. Gene
weights were set to be 1 as used by GSEA and Wang
et al. study [10,17]. Default parameters in PLINK and
ALIGATOR were used for the simulations.

Results and discussion
The null data simulations showed that type I error rates
were controlled for Pathway-PDT at the 0.05 and 0.01
significance levels. Figure 1 shows the power comparison
of Pathway-PDT with PLINK and ALIGATOR at the
0.05 and 0.01 significance levels. The power patterns are
similar for Models 1 and 2. Pathway-PDT is generally
the most powerful test, except for Model 2 under sce-
nario 1 where all families have parents, PLINK is the
most powerful test at the 0.05 significance level. While
not comprehensive, the simulation results suggest that
Pathway-PDT, which directly uses raw genotypes in



Figure 1 Power comparisons of Pathway-PDT with the PLINK set-based test and ALIGATOR. Disease models for the power analyses
included two additive models, Model 1 and Model 2, with 10 causal variants at minor allele frequencies near 0.2 and odds ratios of 1.2 and 1.3,
respectively. A pathway with 24 genes, which contain 285 variants, for a total of 500 replicates of 500 nuclear families (two parents and three
siblings, where at least one sibling is affected) was used to evaluate power. For scenario 1, we assumed all 500 families had parents. For scenario
2, we assumed 50% of the families had missing parents. Gene weights were set to be 1 as used by GSEA and Wang et al. study [17,18]. Default
parameters in PLINK and ALIGATOR were used for the simulations.
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families, can be more powerful than the p-value based
method, ALIGATOR. When families have more than
one sibling or missing parents, Pathway-PDT can also
have more power than the PLINK set-based test. This
again demonstrates the importance of the implementa-
tion of the Pathway-PDT method for family-based path-
way analysis.
Pathway-PDT requires three types of input files: a

gene file, which contains the locations of genes, a
pathway file with pathway definitions, and the standard
PLINK map and ped files. The analysis of pathways
is performed in parallel using the POSIX threads
(pthreads). The total run time of Pathway-PDT for ana-
lyzing 210 KEGG pathways for 1,000 permutations based
on a GWAS dataset with 710 families genotyped on the
Illumina 1 M chip platform was 42 minutes on 8 Intel
×86-64 processors. Therefore, Pathway-PDT can effi-
ciently perform large-scale pathway analysis in a reason-
able time frame.
Conclusion
In conclusion, we implemented a family-based pathway
algorithm, Pathway-PDT, in an efficient software
package. The routine procedures of pathway analysis
such as mapping SNPs to genes and mapping genes to
pathways, the procedures of calculating the single-SNP
and pathway statistics, and calculating the permutation
adjusted p-values and FDR are automatically performed in
the Pathway-PDT software in a single run. Moreover,
threads are used to run the permutations in parallel to in-
crease the efficiency of the tool. With convenient user
interface and efficient performance, Pathway-PDT will be
very useful for analyzing family-based GWAS datasets.
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