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Abstract

Background: DNA pooling constitutes a cost effective alternative in genome wide association studies. In DNA
pooling, equimolar amounts of DNA from different individuals are mixed into one sample and the frequency of each
allele in each position is observed in a single genotype experiment. The identification of haplotype frequencies from
pooled data in addition to single locus analysis is of separate interest within these studies as haplotypes could
increase statistical power and provide additional insight.

Results: We developed a method for maximum-parsimony haplotype frequency estimation from pooled DNA data
based on the sparse representation of the DNA pools in a dictionary of haplotypes. Extensions to scenarios where data
is noisy or even missing are also presented. The resulting method is first applied to simulated data based on the
haplotypes and their associated frequencies of the AGT gene. We further evaluate our methodology on datasets
consisting of SNPs from the first 7Mb of the HapMap CEU population. Noise and missing data were further introduced
in the datasets in order to test the extensions of the proposed method. Both HIPPO and HAPLOPOOL were also
applied to these datasets to compare performances.

Conclusions: We evaluate our methodology on scenarios where pooling is more efficient relative to individual
genotyping; that is, in datasets that contain pools with a small number of individuals. We show that in such scenarios
our methodology outperforms state-of-the-art methods such as HIPPO and HAPLOPOOL.
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Background
In recent years large genomewide association studies have
been considered a promising approach to identify disease
genes. In these studies, which typically include thousands
of individuals, a potential allele frequency difference for a
specific marker between cases and controls could indicate
an association between the marker and the disease.
Allele frequencies for cases and controls can be obtained

either through individual genotyping or through DNA
pooling. Although individual genotyping provides more
accurate estimates of individual allele frequencies, as well
as haplotypes which enable the study of genetic interac-
tions, DNA pooling has been widely used as it can bemore
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cost effective in genome wide association studies [1-6]. In
genotype pooling, equimolar amounts of DNA from dif-
ferent individuals are mixed into one sample prior to the
amplification and sequencing steps and the frequency of
each allele in each position is given. Therefore, for pools
of size n, the cost of genotyping is reduced by a factor of
n [5].
As evident, one of the main concerns with the use of

genotype pooling is genotype error. For a given pooled
DNA sample, the standard deviation (SD) of the estimated
allele frequency is between 1% and 4% [6]. However, as
was argued by Kirkpatrick et al. [7] pooling errors have a
greater effect on pools that contain a large number of indi-
viduals. To illustrate this point assume that σ is the SD of
allele frequencies. After a genotype experiment, the abil-
ity of the clustering algorithms to correctly identify the
number of each distinct allele depends on whether 2σ is
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smaller than the difference of allowable frequency calls.
For example, in pools of two individuals where the differ-
ence between allowable frequency calls is 0.25 (0,0.25, 0.5,
0.75, 1), an accuracy of σ < 0.125 will ensure a low rate of
incorrect calls (< 1%). For the same experiment, if pools
of four individuals are considered then the difference of
allowable frequencies is cut into half (0, 0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.875, 1). Then, it is obvious that to get
the same percentage of incorrect calls, σ , should be corre-
spondingly halved. The situation quickly deteriorates for
larger pool sizes.
Even though the main purpose of pooling is to screen

alleles for potential discrepancies between cases and con-
trols, estimating haplotype frequencies across a number
of markers is also of interest with the pooled data as
it can improve the power of detecting associations with
disease. To facilitate haplotype-based association analy-
sis it is necessary to estimate haplotype frequencies from
pooled DNA data.
It has been claimed in the literature that pooling DNA

samples is efficient for estimating haplotype frequencies.
However, the results presented within the context of hap-
lotype frequency estimation algorithms are largely numer-
ical and they do not address the statistical properties and
efficiency of the estimates being computed. In a recent
study, Kuk et al. [8] addressed this issue and provided a
general guideline on scenarios where pooling would be
more efficient relative to individual genotyping. Instead
of resorting to simulations, this study was based on the-
oretical analysis. For a fixed genotype cost, the authors
have compared the maximum likelihood estimate based
on pooled and individual genotype data. Their findings
suggest that for the case of linkage equilibrium and non-
rare allele, pooling begins to loose efficiency relative to
no pooling when the number of loci is larger than 3 (23
haplotypes with appreciable frequency). Factors such as
Linkage Disequilibrium (LD) and rare alleles reduce the
number of non-rare haplotypes appearing in the popula-
tion and pooling could still remain more efficient either
for a larger number of loci or when the pool size is kept
considerably small, as suggested by Barratt et al. [9].
A variety of haplotype estimation methods from pooled

genomic data have been proposed in the literature that
fall into two large categories. The first category consists
of methods that focus on a small number of markers but
allow for considerably larger pool sizes while the second
category of methods allows for a larger number of markers
but for a small number of individuals per pool.
As haplotype frequency estimation from pooled

genomic data can be seen as a missing data problem, it
comes to no surprise that the majority of methods focus-
ing on small pool sizes mainly contains methods that use
the expectation-maximization (EM) algorithm for max-
imizing the multinomial likelihood [10-12]. Kirkpatrick

et al. [7] suggested a perfect phylogeny method, HAP-
LOPOOL, that was supplemented with the EM algorithm
and linear regression in order to combine haplotype
segments and was shown to outperform competing EM
algorithms.
Haplotype frequency estimation from large genotype

pools was first addressed by Zhang et al. [13] using Poool
and was further modified by Kuk et al. [14] resulting in the
AEM algorithm. As the EM algorithm presents limitations
in speed and difficulties with large pool sizes or long hap-
lotypes, Kuk et al. [15] developed a fast collapsed method
that trades performance but can handle larger datasets.
Gasbarra et al.[16] introduced a haplotyping method for
pooled DNA based on a continuous approximation of the
multinomial distribution and a set of constraints (LinEq).
The goal of the method is to perform haplotype inference
incorporating prior database knowledge from databases
such as HapMap. Finally, Pirinen introduced HIPPO [17],
a Bayesian model for estimating the pooled haplotypes.
HIPPO uses a multinormal approximation of the likeli-
hood and a reversible-jump Markov chain Monte Carlo
(RJMCMC) algorithm to estimate the existing haplotypes
in the population and their frequencies. The HIPPO
framework is also able to accommodate prior database
knowledge for the existing haplotypes in the population
and has demonstrated improvements in the performance
over the AEM and LinEq methods.
There is also an equivalence between the haplotype

frequencies estimation and the inference of relative abun-
dances of species in mutagenomics studies. Kessner et al.
[18] proposed an EM-based method based on individual
sequence reads that can be used to deal with both scenar-
ios. The haplotypes present in the pools are assumed to
be known and need to be input to the method. Another
EM method was proposed by Eskin et al. [19], where
some individual genotypes are required in addition to
the pooled sequence data. Amir et al. [20] proposed a
method to reconstruct the abundance of each bacterium
in a bacteria community by looking at a database of known
16S rRNA sequences and a single Sanger-sequence of the
unknown mixture, by assuming that only a small set of
bacteria are present within the set of bacteria with known
16S rRNA sequence.
In this study we present an algorithm for haplotype

frequency estimation based on the maximum parsimony
principle. A mathematical framework is presented where
this principle is translated in a joint sparsity require-
ment and the frequency inference is performed using the
alternating direction method (ADM) of multipliers. Our
method focuses on datasets that have a small number of
individuals per pool and a considerably large number of
markers. We compare our method with the best perform-
ing methods from the two pooling algorithm categories as
presented above, namely HIPPO and HAPLOPOOL. We
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have performed comparisons on a variety of marker and
dataset sizes. All our comparisons represent scenarios for
which, based on Kuk et al. [8], pooling is more efficient
than individual genotyping. We show that our method
demonstrates superior performance in terms of accuracy
compared with state-of-the-art competing methods for
almost all scenarios examined with special emphasis on
scenarios where the number of loci is large.

Results and discussions
In this section, first we describe the datasets and figures of
merit used to evaluate the method. Then we present the
results from comparing our method ADM to HIPPO and
HAPLOPOOL.
All our comparisons were performed in scenarios were

the use of pooling is potentially beneficial relative to no
pooling according to the guidelines of Kuk et al. [8]. Our
methodology specifically targets datasets that have a small
number of individuals per pool and a large number of
SNPs.
In real applications, it is very often the case that stud-

ies are performed in datasets for which partial knowledge
of the existing haplotypes already exists (for example
datasets from HAPMAP studied populations). This infor-
mation could be used as a basis for an accurate definition
of the haplotype dictionary matrix H, as will be defined
in the Methods section, so that the number of possi-
ble haplotypes M is much smaller than the full set of
allowable haplotypes. However, in order to evaluate the
proposed method in the most general scenarios, no prior
information is assumed and all possible haplotypes are
considered.
The presented method is based on the augmented

Lagrangian expansion of a constrained optimization prob-
lem which has an associated parameter ρ, as it will be
shown in the Methods section. For all the results pre-
sented in this study, we have set ρ = 1

ā with ā being the
average of the observed relative frequency of the allele 1
of the considered SNPs and pools. We have found exper-
imentally that this choice of ρ achieves a good perfor-
mance. Moreover, the ADM is an iterative method, which
finalizes once a stopping criterion is met. For the results
presented here, the l2-norm of the difference between the
solution at step k and the solution at step k − 1 over the
l2-norm of the solution at step k − 1 is compared to a tol-
erance parameter of 10−20. If the first term is smaller or
k = 8000, then the ADM stops and the solution at step k
is presented.

Datasets
To examine the performance of our methodology we have
considered in our experiments real datasets for which esti-
mates of the haplotype frequencies were already available
and which cover a variety of dataset sizes.

We have first simulated data using the 10 loci haplo-
types and their associated frequencies for the AGT gene
considered in Yang et al. [12]. The haplotypes and their
respective frequencies are given in Table 1. We have sim-
ulated datasets with different number of pools O = 50,
75, 100 and 150. In each pool, each individual randomly
selects a haplotype according to the distribution of hap-
lotypes. For each pool size, we have created 100 datasets
that were used as the datasets for our simulation.
The second dataset consisted of SNPs from the first

7Mb (742 kb to 7124.8 kb) of the HapMap CEU popula-
tion (HapMap 3 release 2- Phasing data (http://hapmap.
ncbi.nlm.nih.gov/)). This chromosomal region was parti-
tioned based on physical distance into disjoint blocks of 15
kb. The resulting blocks had a varying number of markers
ranging from 2 to 28. For our purposes we have consid-
ered only the datasets that had more than 10 SNPs and
less than 20 (which was the maximum number of loci so
that HAPLOPOOL could produce estimates within a rea-
sonable amount of time) which resulted in selecting a total
of 80 blocks. On each block the parental haplotypes and
their estimated frequencies were used as the true haplo-
type distribution. As in the previous cases in each block
four different pool sizes were considered: O = 50, 75, 100
and 150 pools.

Performance criteria
Assume first that g = [ g1 · · · gM]T is the gold standard
haplotype frequency vector in a given dataset observed
in the population and f = [ f1 · · · fM]T is the predicted
haplotype frequency vector from a givenmethod. To com-
pare the performance of different methodologies we have
considered two criteria:

χ2 distance: The χ2 distance between the two distribu-
tions g and f is defined as χ2( f , g)=∑M

i=1,gi �=0( fi−gi)2/gi
where only the terms with non-zero haplotype frequency
vector gi are considered.

Table 1 Haplotypes and frequencies for the AGT gene

Haplotype Frequency

1 1 1 1 0 1 1 0 0 0 0.033

1 1 0 1 0 1 1 1 1 0 0.016

1 1 0 1 0 0 1 0 0 1 0.017

1 0 0 1 0 1 1 0 0 1 0.017

1 1 0 1 0 1 1 0 0 1 0.017

1 1 1 1 0 1 1 1 0 1 0.507

0 1 0 1 1 0 0 1 1 1 0.017

1 1 0 0 0 0 1 1 1 1 0.033

0 1 0 1 0 0 1 1 1 1 0.1

1 1 0 1 0 1 1 1 1 1 0.193

1 1 1 1 1 1 1 1 1 1 0.05

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
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l1 distance: The l1 distance between the two distribu-
tions is defined as l1( f , g) = ∑M

i=1 | fi − gi|.

Frequency estimation
We have examined the accuracy of our method and com-
pared it against HIPPO and HAPLOPOOL on the AGT
gene and HapMap datasets described in our previous
subsection. The performance of the methods is shown
in Figures 1 and 2. For the 10 loci dataset the results
shown are the average χ2 and l1 distance from a 100
simulation experiments. We can see that ADM demon-
strated superior performance for both figures of merit
(Figure 1).
For the HapMap dataset (Figure 2) only ADM and

HAPLOPOOL were evaluated since the maximum num-
ber of loci HIPPO can handle is 10. At the same
time, even though HAPLOPOOL can in principle handle
larger datasets, we restricted our comparisons to datasets
between 10 and 20 loci due to excessive computational
time.
From our experiments we can also see that the number

of pools also affected accuracy. All algorithms demon-
strated improved performance with increasing number of
pools in the dataset.

Noise andmissing data
Wehave further evaluated the performance of ourmethod
in the presence of measurement error. We have sim-
ulated genotyping error by adding a Gaussian error
with SD σ to each called allele frequency. In partic-
ular, if we denote the correct allele frequency at SNP
j in pool i as cij, then the perturbed allele frequency
is given by ĉij = cij + x where x ∼ N(0, σ 2). To obtain

Figure 1Measures of performance of HAPLOPOOL, HIPPO and
ADM applied to the AGT gene dataset.

Figure 2Measures of performance of HAPLOPOOL and ADM
applied to the HapMap dataset.

the allele counts we discretize each allele frequency to
the closest allowed frequency depending on the num-
ber of individuals per pool and obtain the allele counts
accordingly.
We have selected the values for σ so that they represent

realistic scenarios and thus ranging between 0 (no mea-
surement error) and 0.06 [5-7]. The ADM method has a
parameter δ that takes into account the presence of noise
which could be set to be a function of σ . However, the
parameter was set to δ = 0.1 for all tested σ as the vari-
ance of noise in the sample is not assumed to be known
in advance. The results are shown in Figure 3. We give
the results only when the number of pools is 75 but the
shape of the figures is similar for the remaining pool sizes
examined in our previous examples.
We can see that ADM demonstrates superior perfor-

mance compared to competing methods and, as expected,
its performance deteriorates with increasing noise levels.
The results also demonstrate the fact that pooling errors
affect more pools that contain a large number of indi-
viduals. The reason is, as has been noted before, that
in smaller pools the gap between allowable frequency
calls is much larger resulting in a smaller percentage
of miscalled allele counts and thus in better frequency
estimates.
We have further set a realistic percentage of SNPs to

be missing (1% and 2% per dataset) and demonstrated
the accuracy of our modified methodology. As shown in
Figure 4, the performance of our method slightly dete-
riorates with an increase in the proportion of missing
SNPs while, similar to the previous scenarios examined,
the accuracy increases with increasing pool size.
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Figure 3Measures of performance of HAPLOPOOL and ADM
applied to the HapMap dataset with noisy observations.

Conclusions
In this study we have presented a method for estimat-
ing haplotype frequencies from pooled data based on
the maximum parsimony principle. A novel mathematical
framework is introduced where this principle is trans-
lated to finding a sparse representation of the observed
DNA pools in a dictionary of haplotypes. This leads to an
optimization problem that is solved with the alternating
direction method of multipliers. The proposed method is

also extended to scenarios where noisy and missing data
is present in the considered DNA pools, and is able to
process pools with a large number of SNPs.
Numerical experiments using synthetic and real data

have shown improved performance with respect to the
best of the haplotype frequency inference methods. In
particular, the proposed ADM method is an efficient
method that performs better than other methods such
as HIPPO and HAPLOPOOL in the considered datasets
consisting of pools with a small number of individuals and
a large number of markers.

Methods
Overview
This section provides a description of the proposed
method for haplotype frequencies inference based on the
maximum-parsimony principle. The method seeks to dis-
cover the frequencies of the haplotypes present in a pop-
ulation given the observed relative frequencies of each
allele in each DNA pool. In order to obtain a biological
meaningful estimation, the proposed method makes use
of the maximum-parsimony principle which attempts to
minimize the total number of haplotypes observed in the
sample [21].
Each pool has an associated vector of observed relative

frequencies that, with the proposed mathematical frame-
work, can be expressed as the linear combination of hap-
lotypes of a dictionary. This dictionary of haplotypes can
be constructed using information from external databases
[16] or, in the most general case where such information

Figure 4Measures of performance of ADM applied to the HapMap dataset with missing observations.
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is not available, all possible haplotypes need to be consid-
ered. Each vector of observed relative frequencies should
be reconstructed with the minimum number of distint
haplotypes in the dictionary according to the maximum-
parsimony principle. Moreover, as there are more than
one pool available, the set of used haplotypes needs to be
selected to explain all pools jointly.
This framework for haplotype frequencies estimation

leads to a joint constrained sparse optimization problem.
This kind of optimization problem has been studied in
the compressed sensing literature, where the alternating
direction method (ADM) of multipliers has been pro-
posed to find the corresponding solution. The proposed
method makes use of the ADM adapted to the haplotype
frequencies estimation.

Maximum-parsimony haplotype frequencies inference
framework
The proposed method estimates the frequencies of hap-
lotypes consisting of L diallelic loci residing on a narrow
chromosomal interval. In each locus, only two out of the
four different nucleotides can be found in a large percent-
age of the population. The most common nucleotide in
that locus is called the wild-type and is encoded with a
0 and the other nucleotide is the mutant and is encoded
with a 1. We define the haplotype dictionary matrix H as
an L×Mmatrix containing theM possible distinct haplo-
types as its columns. To obtainH, we can use information
from external databases [16] or, when this information is
not available, all possible haplotypes of length L must be
considered. We consider O pools, where each pool con-
sists of ni individuals (i = 1, · · · ,O) and therefore, there
are 2ni haplotypes in each pool. Moreover, we define pi �[
pi1 · · · piM

]T , where pij is the unknown proportion of the
j haplotype in the i-th pool, and ai �

[
ai1 · · · aiL

]T , with
ail is the observed relative frequency of the allele 1 in the
i-th pool for the l-th SNP. Then, the unknown vectors pi
satisfy

ai = Hpi, pi � 0, ‖pi‖1 = 1, (1)

where ‖pi‖1 �
∑M

j=1 |pij| is the l1-norm of the vector
pi. Since pi � 0, we have ‖pi‖1 = ∑M

j=1 pij ; that is,
the l1-norm is the sum of the proportions which needs
to be 1. Each proportion pij can only be discrete multi-
ples of the basic unit of 1

2ni ; that is, p
i
j takes values in the

set {0, 1
2ni , · · · , 1}, but as measurements contain noise, we

relax this condition and allow each proportion to take any
value in the interval [ 0, 1] [16].
Then the haplotype frequency estimation problem can

be stated as follows: Given the observed relative frequen-
cies of the alleles ai, i = 1, · · · ,O, infer the proportions
of the haplotypes pi, i = 1, · · · ,O, in every pool. The

dimension of each relative frequency of the alleles ai is L,
while the dimension of the unknown proportion vector
pi is M, where generally M � L; that is, the estimation
task is an ill-posed inverse problem and side information
is needed to complete this task. In particular, in this paper,
we make use of the maximum parsimony principle. This
principle states that the number of different haplotypes
that explains all the observed relative frequency vectors
ai should be as small as possible. Therefore, the maxi-
mum parsimony haplotype inference problem is stated as
follows. Given the set {ai, i = 1, . . . ,O} of observed rel-
ative frequency vectors of i pools with ni subjects and
for L loci, we aim at inferring the vector of proportions
{pi, i = 1, . . . ,O} that is composed of the minimum num-
ber of distinct haplotypes. From the point of view of Eq.
(1), the maximum parsimony principle can be translated
as using as few columns of H as possible to explain all the
observed frequency vectors ai.

Haplotype frequencies inference based on a joint
constrained sparse representation of pooled DNA
We define X � [p1 · · ·pO] as the unknown matrix con-
taining the proportions of the haplotypes for the O pools,
and equivalently, A � [ a1 · · · aO]. Then, taking into
account all pools, (1) becomes

A = HX, X � 0, 1TX = 1T , (2)

where 1 � [1 · · · 1]T . The maximum parsimony princi-
ple dictates that the inferred proportions X̂ that satisfies
(2) utilizes the least number of columns of matrixH. This
is equivalent to requiring the inferred solution X̂ to have
row-sparsity; that is, let xi and xj be the i-th row and the
j-th column of matrix X, respectively and define a vector
e(X) containing the energy of each row of matrix X, i.e.,
e(X) �

[
e(x1) e(x2) · · · e(xM)

]T with e(xi) = ‖xi‖2, then
row-sparsity implies finding the solution to the following
optimization problem

minX ‖e(X)‖0

s.t.

⎧⎪⎨
⎪⎩
HX = A
1TX = 1T

X � 0,

(3)

where ‖e(X)‖0 is the l0 norm of the vector e(X) and cor-
responds to the number of non-zero components of the
vector. This means that the solution will have as many
all-zero rows as possible.
However, minimizing an l0 norm is computational

intractable as it involves solving a combinatorial problem.
One option well studied in the compressed sensing lit-
erature is to replace the l0 norm with the l1 norm, as it
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promotes sparsity and leads to more tractable solutions.
Then, the inference, in our case, becomes the solution to

minX ‖e(X)‖1

s.t.

⎧⎪⎨
⎪⎩
HX = A
1TX = 1T

X � 0.

(4)

This matrix problem lies within the convex optimiza-
tion framework. In the most general case where there
is no prior information regarding the possible haplo-
types to be considered, the size of the matrix H grows
exponentially with the number of SNPs. In what fol-
lows we present an efficient method to find the solu-
tion to (4) by means of the alternating direction method
(ADM) of multipliers. The ADM proceeds to solve local
small problems in order to uncover the global solution
to the problem with proven convergence; that is, the
ADM is guaranteed to find the optimal solution to (4)
[22]. We first briefly describe the ADM in its general
form and then we show how (4) can be solved with the
ADM.

Alternating directionmethod ofmultipliers
Given two convex functions f : Rm1 → R and g : Rm2 →
R, the alternating direction method of multiplier is used
in order to find the solution to the following optimization
problem of two sets of variables x ∈ R

m1 and z ∈ R
m2

minx,z f (x) + g(z)
s.t. Cx + Dz = e,

(5)

with C ∈ R
p×m1 , D ∈ R

p×m2 , and e ∈ R
p.

For ρ > 0, the augmented Lagrangian of (5) is given by
[22]

Lρ(x, z, y) = f (x) + g(z) + yT (Cx + Dz − e)

+ ρ ‖Cx + Dz − e‖22
(6)

Minimizing (6) with respect to x and z jointly is usually
not tractable. Instead, the alternating direction method of
multiplier proceeds to iterate minimizing (6) over x for a
fixed z, followed by the minimization of (6) with respect
to z for a fixed x and a dual variable update; that is, let
u � 1

ρ
y, Table 2 illustrates the steps involved. It is seen in

this table that the global solution to (5) is found by solving
the local small problems of steps 6 and 7.

Table 2 Alternating directionmethod of multipliers

1 Set k = 0

2 Set ρ > 0

3 Initialize x0, z0 and u0

4 Repeat

5 k = k + 1

6 xk+1 � argminx
(
f (x) + ρ

2

∥∥Cx + Dzk − e + uk)
∥∥2
2

)
7 zk+1 � argminz

(
g(z) + ρ

2

∥∥Cxk+1 + Dz − e + uk)
∥∥2
2

)
8 uk+1 � uk + (

Cxk+1 + Dzk+1 − e
)

9 until convergence

Joint constrained sparse haplotype frequency estimation
algorithm
Introducing the M × O matrix Z, (4) can be restated in
order to apply the ADM and obtain closed-form expres-
sions for the local minimization steps as follows

minX,Z ‖e(Z)‖1

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

HX = A
1TX = 1T

Z � 0
X = Z.

(7)

This optimization problem can be restated in the frame-
work of (5) by defining

x �

⎛
⎜⎝

x1
...
xO

⎞
⎟⎠ , z �

⎛
⎜⎝

z1
...
zO

⎞
⎟⎠ , e �

⎛
⎜⎜⎜⎝

a1
...
aO

0O·M×1

⎞
⎟⎟⎟⎠ ,

C �
(
IO ⊗ H
IO·M

)
, D �

(
0O·L×O·M
−IO·M

)
,

where ⊗ is the Kronecker product, 0O·M×1 is an O ·M× 1
zero vector, IO is the O × O identity matrix, IO·M is the
O·M×O·M identity matrix and 0O·L×O·M is anO·L×O·M
zero matrix, and

f (x) � U(Ex−1)(x)

g(z) �
M∑
i=1

‖zgi‖2 + U(z≥0)(z),
(8)

where E �

⎛
⎜⎝

1T
. . .

1T

⎞
⎟⎠, US is the indicator function of

the set S (that is, US(x) = 0 if x ∈ S and ∞ otherwise),
and zgi is the vector of components in z that correspond
to the i-th row of matrix Z.
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With these definitions, the steps of the ADM in Table 2
lead to the joint constrained sparse haplotype frequency
estimation algorithm of Table 3. The Shrink function is
an operation applied row-wise to the matrix input and is
given by

Shrink(r, a) � max (‖r‖2 − a, 0)
r

‖r‖2 , (9)

the max operation of step 9 is component-wise, and 0 �
[0 · · · 0]T .

Extensions

Noisy data
Measurement errors in determining allele frequencies are
considerable in DNApools, presenting a variance between
0.02 and 0.04 [5,7]. This means that imposing the con-
straint HX = A is too restrictive and can be relaxed
in order to take the measurement noise into account. In
particular, we introduce a parameter δ, and we propose
to find the maximum-parsimony solution by solving the
following optimization problem.

minX ‖e(X)‖1

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√∑O

i=1
‖ai − Hpi‖22 ≤ δ

1TX = 1T

X � 0.

(10)

Introducing the M × O matrix Z1 and the L × O matrix
Z2, the ADMmethod can be used to solve (10), by solving
the equivalent problem

Table 3 Joint constrained sparse haplotype frequency
estimation algorithm

1 Set k = 0

2 Set ρ > 0

3 Set X0 = 0, Z0 = 0, U0
1 = 0, U0

2 = 0

4 U4 =
(
I − HT

(
I + HHT

)−1
H

)
5 Repeat

6 k = k + 1

7 uT3 = 1TU4
(
HH

(
Uk
2−A

)+Uk
1−Zk

)−1T

1TU41

8 Xk+1 = U4
(
Uk
1 − Zk + HT (Uk

2 − A) − 1uT3
)

9 Zk+1 = max
(
Shrink

(
Xk+1 + 1

ρ
Uk
1,

1
ρ

)
, 0

)
10 Uk+1

1 = Uk
1 + Xk+1 − Zk+1

11 Uk+1
2 = Uk

2 + HXk+1 − A

12 until convergence

Table 4 Joint constrained sparse haplotype frequency
estimation algorithm in the presence of noisy
measurements

1 Set k = 0

2 Set ρ > 0

3 Set X0 = 0, Z0 = 0, U0
1 = 0, U0

2 = 0

4 U4 =
(
I − HT

(
I + HHT

)−1
H

)
5 Repeat

6 k = k + 1

7 uT3 = 1TU4
(
HH

(
Uk
2−Zk1

)+U1−Zk2
)−1T

1TU41

8 Xk+1 = U4
(
Uk
1 − Zk1 + HT (Uk

2 − Zk2) − 1uT3
)

9 Zk+1
1 = max

(
Shrink

(
Xk+1 + 1

ρ
Uk
1,

1
ρ

)
, 0

)
10 Zk+1

2 = proj(H,Xk+1,Uk
2,A, δ)

11 Uk+1
1 = Uk

1 + Xk+1 − Zk+1
1

12 Uk+1
2 = Uk

2 + HXk+1 − Zk+1
2

13 until convergence

minZ1,Z2,X ‖e(Z1)‖1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√∑O

i=1
‖ai − zi2‖22 ≤ δ

1TX = 1T

Z1 � 0
Z1 = X
Z2 = HX,

(11)

Table 5 Joint constrained sparse haplotype frequency
estimation algorithmwithmissing data

1 Set k = 0

2 Set ρ > 0

3 Set X0 = 0, Z0 = 0, U0
1 = 0, U0

2 = 0

4: U4 =
(
I − HT

(
I + HHT

)−1
H

)
5 Repeat

6 k = k + 1

7 For i = 1, · · · ,O
8 u3,i =

1TU4

(
HT
i

(
uk2,i−ãi

)
+u1i −zki

)
−1

1TU41

9 xk+1
i = U4

(
uk1,i − zki + HT

i (u
k
2,i − ãi) − u3,i1

)
10 end for;

11 Zk+1 = max
(
Shrink

(
Xk+1 + 1

ρ
Uk
1,

1
ρ

)
, 0

)
12 Uk+1

1 = Uk
1 + Xk+1 − Zk+1

13 For i = 1, · · · ,O
14 uk+1

2,i = uk2,i + Hix
k+1
i − ãi

15 end for

16 until convergence
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where zi2 is the i-th column of matrix Z2. This simple
transformation allows us to obtain closed-form expres-
sions for the local minimization steps of the ADM.
The maximum parsimony solution to the haplotype fre-

quency inference estimation with noisy observations can
be found by following the steps illustrated in Table 4,
where xk+1

i and uk2,i correspond to the i-th column ofXk+1

and Uk
2 respectively, and

Zk+1
2 = proj(H,Xk+1,Uk

2,A, δ)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

HXk+1 + Uk
2 if

√∑O

i=1
‖Hxk+1

i + u2,i − ai‖2 ≤δ

A + HXk+1 + Uk
2 − A√∑O

i=1 ‖Hxk+1
i + u2,i − ai‖2

δ otherwise

(12)

Missing data
Errors often occur during the genotyping process, and
the data at some loci might not have been observed. We
present modifications to the algorithms to perform haplo-
type inference in the presence of missing data. We assume
that it is known a priori where the genotype information
is missing for each genotype of each individual.
The presence of missing data in a genotype of a given

pool imply a smaller number of constraints. Let ãi be
the observed relative frequency vector where all the loci
with missing information have been removed, and Hi
the matrix with all the rows corresponding to those
loci removed. Notice that different pools present missing
information in different loci, making the matrix depen-
dant on the considered individual.
The solution to the haplotype inference problem can be

found by solving

minX ‖e(X)‖1

s.t.

⎧⎪⎨
⎪⎩
Hixi = ãi i = 1, · · · ,O
1TX = 1T

X � 0.

(13)

The ADM is also used to find the solution to this opti-
mization problem, and the resulting steps to find the
haplotype frequency estimation are shown in Table 5.

Large number of SNPs
When the number of SNPs is large, the size of the matrix
H increases dramatically. One approach for this case is
to partition the data into blocks and process one block
at a time. After all blocks are processed, a ligation pro-
cess is performed to obtain the final result. We adopt
the partition-ligation (PL) method [23] for haplotype fre-
quency estimation.

The PL method starts with the partition phase. The
vectors of observed relative frequencies ai, i = 1, · · · ,O
is divided into Q non-overlapping and non-empty sets
that cover all of the vectors. Each set contains seg-
ments from the same SNP loci for all individuals.
Let

{
Gq11:q

1
2
,Gq21:q

2
2
· · · ,GqQ1 :q

Q
2

}
be the partitioned sets

of relative frequency vectors, where the i-th subset
Gqi1:q

i
2
contains the relative frequencies for SNP locus

qi1 to qi2 for all N individuals. We impose that the
first locus of the first set be the first locus of the
complete genotype, i.e., q11 = 1. Moreover, each set is
adjacent to the previous one, i.e., qi1 = qi−1

2 + 1 for
i = {2 · · ·Q}. Notice that as we need to cover all loci,
the last locus for the last set is qQ2 = L. For each set
Gqi1: q

i
2
, the haplotypes frequencies are inferred using

our algorithm, which outputs a small set of haplotypes
frequencies.
Then, the PL proceeds to a ligation phase, where adja-

cent sets are merged to obtain a new partition of the data,
with

⌈
Q
2

⌉
sets, e.g., when merging the (2i)-th set with the

(2i + 1)-th set, the resulting set consists of the observed
frequencies for all individuals between locus q2i1 and q2i+1

2 .
For each merged setGq2i1 : q

2i+1
2

, we run the haplotype infer-
ence algorithm again, but restricting H to contain every
possible concatenations of the haplotypes of the (2i)-th set
with the haplotypes of the (2i + 1)-th set that have non-
zero estimated frequencies. The process continues until
there is only one set of relative frequencies and the haplo-
type frequencies inference algorithm is finally applied to
this set.
In order to use the PL method, we need to determine an

initial partition of the data. Therefore, we need to specify
the number of partitions Q and the length of each parti-
tion or equivalently, the initial locus of each partition, i.e.,{
qi1

}
i=1···Q. A simple and low-cost way of setting the initial

loci
{
qi1

}
i=1···Q is to fix each block to be of equal length.

Then, given an upper bound W on the length for each
initial block, the number of blocks is Q = 
 L

W �.
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