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Abstract

Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing
versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can
be mixed and loaded together on the same sequencing track. This so-called multiplexing approach relies on a specific
DNA tag or barcode that is attached to the sequencing or amplification primer and hence appears at the beginning of
the sequence in every read. After sequencing, each sample read is identified on the basis of the respective barcode
sequence.
Alterations of DNA barcodes during synthesis, primer ligation, DNA amplification, or sequencing may lead to incorrect
sample identification unless the error is revealed and corrected. This can be accomplished by implementing error
correcting algorithms and codes. This barcoding strategy increases the total number of correctly identified samples,
thus improving overall sequencing efficiency. Two popular sets of error-correcting codes are Hamming codes and
Levenshtein codes.

Result: Levenshtein codes operate only on words of known length. Since a DNA sequence with an embedded
barcode is essentially one continuous long word, application of the classical Levenshtein algorithm is problematic. In
this paper we demonstrate the decreased error correction capability of Levenshtein codes in a DNA context and
suggest an adaptation of Levenshtein codes that is proven of efficiently correcting nucleotide errors in DNA
sequences. In our adaption we take the DNA context into account and redefine the word length whenever an
insertion or deletion is revealed. In simulations we show the superior error correction capability of the new method
compared to traditional Levenshtein and Hamming based codes in the presence of multiple errors.

Conclusion: We present an adaptation of Levenshtein codes to DNA contexts capable of correction of a pre-defined
number of insertion, deletion, and substitution mutations. Our improved method is additionally capable of recovering
the new length of the corrupted codeword and of correcting on average more randommutations than traditional
Levenshtein or Hamming codes.
As part of this work we prepared software for the flexible generation of DNA codes based on our new approach. To
adapt codes to specific experimental conditions, the user can customize sequence filtering, the number of correctable
mutations and barcode length for highest performance.

Background
High-throughput sequencing is an increasingly popular
technique due to steadily improving sequencing capacity
and decreasing costs. Since modern machines are (at the
time of writing this manuscript) capable of generating up
to 8 ∗ 109 base pairs (8 Gbp) total read length in one lane,
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it might exceed required capacity for many research pro-
tocols focused on smaller scale sequencing applications,
for instance those focused on selective DNA sampling for
SNP analysis [1,2], miRNA expression profiling [3], cel-
lular barcoding [4], profiling repeated elements [5] and
retroviral vector integration sites in the genome [6], as
well as complete sequencing of microbial [7] and other
small genomes [8].
In such cases many samples are combined in a single

batch and sequenced as one sample. Using this multi-
plexed format, specific sample tags, also called barcodes,
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are added to the amplification or sequencing primer
to discriminate all sub-samples in the mixture. After
sequencing, reads can be identified by reading barcodes,
allowing the sorting and separating of all sequence reads
into original samples. The protocol is efficient as long as
barcodes can be read robustly [9].
It is known, however, that multiple errors can occur

with DNA sequencing due to defects in primer synthesis,
the ligation process, sample pre-amplification, and finally
sequencing. These errors can be either nucleotide substi-
tutions or small insertions and deletions [10]. In addition
to common sources of error, some sequencing platforms
show elevated error rates in specific situations, such as
indels of identical bases in Roche 454 Pyrosequencing
[11] or random indels in PacBio sequencing technology
[12]. Although any randomly picked synthetic nucleotide
sequence can be used as a barcode, this approach is
problematic because all basic parameters of the corre-
sponding oligonucleotide, namely minimal distance, GC
content, sequence redundancy etc. cannot be properly
controlled [13].
In recent years several papers were published attempt-

ing to utilize general coding theory of binary error-
correcting codes. The major advantage of those codes
over “naive” tags is the possibility to detect and correct
a limited number of errors. In addition they also ensure
a constant minimal distance. Other parameters, such
as GC content and sequence redundancy, are generally
more uniform in error-correcting codes than in randomly
generated tags.
Probably the first attempt to create a systematic error-

correcting code for DNA barcodes was made by Hamady
et al. [7], based on the original Hamming binary code
[14,15]. The authors adapted Hamming codes for a DNA
context by representing each DNA base by two consecu-
tive binary digits. Although being popular for a while, this
barcode was later found to be flawed [13,16]: in a proposed
configuration one third of all single errors occurring at the
DNA level caused 2 bit changes (2 errors) in the code. By
definition those 2 bit errors could not be corrected. As an
alternative, Krishnan et al. proposed to use binary, linear
error-correcting codes for DNA barcoding applications
[16]. Those codes provide larger minimal distance and
better error-correcting capacity. This allowed correction
of DNA errors even if there were 2-bit errors in the code.
Recently one of us proposed to adapt Hamming binary
code to the DNA quaternary metric, thus preserving min-
imal distance and capability to correct single errors on the
DNA level [13]. Both applications [13,16], however, were
dedicated to the linear perfect codes capable of correcting
nucleotide substitutions only. As indicated above, inser-
tions and deletions (indels) might be a persistent problem
for at least some sequencing platforms. Therefore it is very
important to design a code resistant to this type of error

as well. In this manuscript we provide a code, which we
call the Sequence-Levenshtein code, capable of correcting
all types of errors, including insertions and deletions. This
code largely follows ideas from the Levenshtein code [17].
Unlike previous attempts at adapting Levenshtein [18], it
is specifically designed for the DNA context. As a conse-
quence it shows significant improvements in recovering
errors in DNA sequence compared to other codes of the
same kind.

Method
Barcode preparation
Barcodes were constructed as DNA sequences of fixed
length n from the 4 different bases. Here, we encoded
DNA bases A, C, G, T as numbers 0, 1, 2, and 3 in a
quaternary alphabet and therefore avoided the binary-
quaternary conversions used by others [7,16]. The num-
ber of all possible combinations, and therefore the size
of the maximum barcode set was 4n, e.g. an unfiltered
8-mer barcode set could have been used for 48 = 65536
unique samples. For the calculation of maximal set sizes
of barcodes of length n, we initially generated the full set
of all possible barcodes with our custom software writ-
ten in Java. This initial barcode set was then filtered to
exclude barcodes with GC-content of less than 40% or
more than 60%, perfect self-complementation, or more
than two sequential repetitions of the same base.

Error-correcting codes
Error-correcting DNA barcode sets were constructed
using only a subset of the 4n maximal combinations,
while carefully meeting some specific error-correcting
properties. Commonly, this subset is called code and the
individual barcodes in the set are called codewords.
A very popular code for the correction of substitution

errors is based on the idea of linear codes (e.g. Hamming
codes [14,15] or Reed-Solomon codes [19]). This type of
code consists only of codewords that differ in at least three
positions from each other (called the Minimum Ham-
ming Distance, denoted as dmin

H ). Figures 1(A-C) depict the
Hamming distance and its application in DNA context.
Figure 1(B) gives an example of a linear code that has

a minimal Hamming distance of 3 and corrects 1 sub-
stitution error. A substitution error and its correction is
shown in Figure 1(C): The barcode “ACT”mutates at posi-
tion 3 and the base “T” became substituted with the base
“G”. TheHamming distance to the original barcode “ACT”
is 1, while it is greater for all other barcodes of this lin-
ear code. Therefore correct decoding and identification of
the original barcode is possible. In general, more substi-
tution errors can be corrected by constructing codes with
a larger minimal distance between codewords. To cor-
rect k errors, the minimumHamming distance dmin

H of the
codewords needs to be at least 2 ∗ k + 1.



Buschmann and Bystrykh BMC Bioinformatics 2013, 14:272 Page 3 of 10
http://www.biomedcentral.com/1471-2105/14/272

Figure 1 Barcode correction using Hamming and Levenshtein distances. (A) Hamming distance between two example codewords. (B)
Example linear code of four codewords with the minimal Hamming distance dmin

H = 3. (C) A mutation is corrected on the basis of the minimal
distance between barcodes and mutated sequence. (D,E,F) The same for Levenshtein distance and an example Levenshtein code with the
minimum Levenshtein distance dmin

L = 3.

As in the case of linear codes, Levenshtein-based codes
guarantee a specific minimum distance dmin

L between any
codewords [17]. The difference is in the distance defini-
tion: Levenshtein based codes also include insertions and
deletions that need to occur to transform one word to
another word, as depicted in Figure 1(D). Levenshtein-
based codes consisting of codewords with a minimum
Levenshtein distance dmin

L > 2 ∗ k + 1 can correct k inser-
tions, deletions, and substitutions. Figure 1(E) depicts an
example code with dmin

L = 3 that corrects 1 insertion,
deletion, or substitution error when not in context of other
DNA. Figure 1(F) shows such a correction: The last base
of barcode “GCG” becomes deleted and is read as “GC”.
The Levenshtein distance to the original barcode “GCG”
is 1, while it is greater for all other barcodes of this Leven-
shtein code. Therefore correct decoding and identification
of the original barcode is possible.
For the purpose of this paper, the error-correction capa-

bility of a code is the number and types of errors that a

code (per design) guarantees to correct in a specific sce-
nario. The actual error-correction capabilities in realistic
scenarios (e.g. biological experiments, PCR and sequenc-
ing data) will be studied separately.

Sequence-Levenshtein distance
We adapted the Levenshtein distances in such a way that
the DNA context is taken into account and the length of
the newmutated barcode in the sequence read is correctly
identified. In the worst case, any barcode embedded in the
sequence read will be surrounded by the sample sequence
such that it decreases its distance to other sequences in
the set.
The Sequence-Levenshtein distance between two arbi-

trary words A and B is the minimum number of the
following three operations:

• Substitutions
• Deletions
• Insertions
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which results in word Ā, finalized by applying one of the
following operations exactly once:

• Truncating Ā to match the length of B
• Elongating Ā to match the length and bases of B

The latter two operations do not increase the distance
between A and B. It follows, that the distance between A
and B is 0 if A is a prefix of B (and vice versa). For the
purpose of this distance metric, we define in this case A to
be equal to B.

Barcode computation
There is no systematic calculation rule for the classic
Levenshtein code and codes based on our Sequence-
Levenshtein distance. A generation of distance-based
codes by an exhaustive search of the set of all possible
subsets has two computational bottlenecks that have to
be addressed: Firstly, the number of all subsets grows
exponential with the length of the codewords and there-
fore the enumeration of these subsets is prohibitively
inefficient. Secondly the distance between any two code-
words has to be calculated at least once, making 42n

2 − 4n
calculations necessary. Distances need to be calculated
repeatedly if the complete distance matrix cannot be held
in memory.
We therefore generated codes heuristically with a

so-called greedy closure evolutionary algorithm first
described for this application by Ashlock et al. [20,21].
Here, we initialized our code set with a small number
(2-4) of random barcodes that fulfill the distance require-
ment (the so-called seed). We then walked through all
eligible barcodes in lexicographical order and added the
tested barcode to the code set if its distance was at least
2 ∗ k + 1 to every other barcode that was already in the
code set. Using an evolutionary approach (in the com-
putational sense), we tried a large number of different
seeds or altered very successful seeds to find the seed
giving the best, i.e. largest code set. Among other heuris-
tic algorithms for the generation of classic Levenshtein
codes, this particular method has shown the best results
(Houghten et al [22]). The same study revealed that this
method yielded nearly-optimal solutions for short code-
words (n ≤ 5) and it reached approximately one third
to one half of the upper limit of code sizes for longer
codewords (5 < n ≤ 12) [22,23].
We also optimized the calculation of the Sequence-

Levenshtein distance. We adapted the dynamic program-
ming approach to the classical Levenshtein distance [24]
and reached approximately the same performance (see
Additional file 1: Supplement). Additionally, we min-
imized the number of operations with the approach
developed by Allison (Lazy Programming, [25]).

Simulations
Wesimulated three scenarios bothwith classical Levenshtein
codes and modified Sequence-Levenshtein codes:

• In Simulation 1 the application of classical
Levenshtein codes in DNA context was assessed. A
large number of barcodes of the same length was
generated at random, followed by a random sample
sequence. Every barcode was mutated with a single
random in/del/sub error and then attempted to be
decoded. As the length of the received codeword was
unknown, the codeword of equal length to the
generated DNA barcodes was used. If decoding did
not work (i.e. there was no DNA barcode with a
distance of 1 to the received codeword), codewords
of the length n − 1 and n + 1 were tried. If
ambiguities still existed, we decided randomly.

• In Simulation 2 the error correction capabilities of
Sequence-Levenshtein codes were tested. Every code
used in this manuscript was included, up to a length
of 12nt for 1 and 2 correctable errors. We iterated
through every possible error (1 error, respectively 2
errors; insertions, substitutions, and deletions) and
decoded the resulting DNA barcode.

• In an experimental setup, more than one error might
occur. Therefore, in Simulation 3 a large number of
classic Levenshtein and new Sequence-Levenshtein
barcodes was simulated, where every base had a
chance p of being mutated with equal likelihood for
substitutions, insertions and deletions. Every base
was equally likely to be inserted.

Results
Classic Levenshtein codes fail in DNA context
Levenshtein-based codes have one mandatory condition:
The length of the codewords and the received words need
to be known. While we know the length of the DNA bar-
codes because we construct them ourselves, the length
of the received codeword is not available as the barcode
is embedded into the DNA sequence. If the DNA bar-
code is shortened during processing, the first base of the
sample DNA sequence takes the place of the last base
of the DNA barcode. If the DNA barcode is elongated,
the last base of the DNA barcode now becomes the first
base of the sample DNA sequence. There is no inherent
separation between DNA barcode and sample sequence
to detect this change in length and thus traditional
Levenshtein correction fails. To show this, we construct
two codewords cA and cB whose Levenshtein distance is
3 but is reduced by the inference of the remaining sample
DNA sequence.
We construct the codewords cA = “CAGG” and cB =

“CGTC” with a Levenshtein-distance dL(cA, cB) = 3. In
an exemplary biological experiment, cA could be used
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as a barcode and within it could be followed by “CA”
so that the whole DNA sequence reads “CAGG|CA...”.
If the base “A” at the second position of cA becomes
deleted, the base “C” (previously on position 5) would suc-
ceed the base at position 4 so that the sequenced DNA
creceived now would read: “CGGC|A...” (Figure 2). Because
the deletion would remain undetected, we could try to
find a correction for creceived = CGGC. Consequently,
the codeword cB is actually closer to the manipulated
received sequence (dL(cB, creceived) = 1) than codeword
cA (dL(cA, creceived) = 2) and there is no possibility to find
the actual chain of mutations because the only criteria in
correcting errors is the minimal distance. Trying to guess
the real length of the corrupted barcode gives ambiguous
results as Table 1 shows.
We generalized this problem in Simulation 1 (Figure 3):

Barcodes based on classical Levenshtein codes with a
minimal distance dmin

L = 3 failed to correct indel errors
on average in 26% of the cases (see Methods for details).
This error level is very close to 1

4 , the probability of the
adverse base to be inserted or the adverse base to be
added to the barcode after a deletion. Accordingly, classi-
cal Levenshtein-based codes correctly decoded barcodes
that were corrupted once if the codes have the guaranteed
capability to correct two errors, but failed on average in
6.5% of two-corruption cases. This error level is explained

Figure 2 Deficiency of Levenshtein Codes in DNA context.
Classical Levenshtein-based codes fail in DNA context as the word
boundary is not decodable. Here, the original barcode “CAGG”
becomes corrupted through a deletion. The new barcode “CGGC” is
now closer to the wrong barcode “CGTC” on the left as opposed to
the original barcode “CAGG” on the right.

Table 1 Distances of the received codeword at various
presumedword lengths

Presumed Presumed Candidate
word length word boundary barcodes

“CAGG” “CGTC”

3 “CGG|CA” 1 2

4 “CGGC|A” 2 1

5 “CGGCA|” 3 2

We compare two candidate barcodes “CAGG” and “CGTC” with different
presumed word lengths and boundaries. Levenshtein distances for word
boundaries presumed at 3 and 4 conflict and an unambiguous identification of
the original used barcode is not possible.

by the probability of inserting or complementing
the two random worst-case bases, which is

( 1
4
)2 = 1

16 =
0.0625.
Clarke and Ferreira previously showed that Levenshtein

codes with a minimal distance dmin
L = 5 can robustly

correct at least one error in a context scenario with fixed-
length decoding as applied here [26]. Henceforth, we will
delineate the guaranteed minimal error-correction capa-
bility of Levenshtein codes specifically in DNA context
under this assumption, so that Levenshtein codes with
dmin
L = 5 guarantee to correct at least one error, those with

a minimal distance dmin
L = 9 guarantee to correct at least

two errors in DNA context.

Sequence-Levenshtein distance
With the adapted Sequence-Levenshtein metric, the dis-
tance between the previously considered codewords
“CAGG” and “CGTC” is now dSL(“CAGG”, “CGTC”) = 2:
Delete second base “A” of “CAGG” to get “CGG” and sub-
stitute third base “G” with “T” to get “CGT”. In the worst
case the remaining sample sequence will start with base
“C”, so that if we elongate with “C” then get “CGTC”.
Therefore, “CAGG” and “CGTC” cannot be part of the
same error correcting code.
The formal definition of our Sequence-Levenshtein

metric allowed us to prove that it is indeed a “distance
metric” (see Additional file 1: Supplement), so that codes
based on this distance can correct k substitutions and
indels in DNA context if their minimumdistance is at least
dmin
SL = 2 ∗ k + 1.

Sequence-Levenshtein code example and decoding
An example of a Sequence-Levenshtein code with 4
bases for the correction of 1 error yielded 4 barcodes:
“TTCC”, “ACAC”, “CGAA”, and “TAGG”. Suppose, we
use “TTCC” as the barcode and the base “T” at the
second position becomes deleted during sequencing. In
our example, exemplary sample reads have the length
m = 10 and the sequence read is “TCC|ATGCATA”
(Figure 4). To decode this example, we calculate the
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Figure 3 Simulation of Levenshtein Codes in DNA context. Levenshtein codes with a minimal distance dmin
L = 3 failed to correct indel errors on

average in 26% of the cases while Levenshtein codes with a minimal distance dmin
L = 5 always corrected one indel error but failed to decode two

indel errors in about 6.5% of the cases.

distance between the word “TCCATGCATA” and the
words “TTCC”, “ACAC”, “CGAA”, and “TAGG” with
the results in Table 2. The column “operations” is the
listing of the possible operations that corrupted the
barcode.
It is apparent that the difference between the num-

ber of insertion and deletion operations is the difference
between the barcode length and the starting part of the
sample sequence, which allowed the identification of the
starting position of the sample sequence, as shown in
column four of Table 2.

Sequence-Levenshtein codes useful for DNA applications
We calculated and verified a number of Sequence-
Levenshtein codes for different sequence lengths and
compared them to codes with higher Levenshtein dis-
tance that were designed for the correction of at least
this particular number of errors (the guaranteed error
correction capability in DNA context). Figure 5 depicts
the number of DNA barcodes that we generated for the
correction of at least 1 or 2 insertion, deletion, and sub-
stitution errors with our Sequence-Levenshtein distance
and with the classic Levenshtein distance. For comparison

Barcode:

Barcode:

Sequence Read:

Sub

Del

Elongate

Elongate

Del

3

1

2

Figure 4 Operations in Sequence-Levenshtein distance.
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Table 2 Example decoding results

Candidate barcode Distance to “TCCATGCATA” Possible chain of operations Resulting word boundary

“TTCC” 1 del(2),elong(“ATGCATA”) 3 (“TCC|ATGCATA”)

“ACAC” 2 sub(“T”,1),del(3),elong(“ATGCATA”) 3 (“TCC|ATGCATA”)

“CGAA” 3 ins(“T”,1),sub(“C”,3),del(5),elong(“TGCATA”) 4 (“TCCA|TGCATA”)

“TAGG” 3 sub(“C”,2),sub(“C”,3),sub(“A”,4),elong(“TGCATA”) 4 (“TCCA|TGCATA”)

Table shows the results of decoding the example sequence read “TCCATGCATA” for four different candidate barcodes “TTCC”, “ACAC”, “CGAA”, and “TAGG”. The real
original barcode “TTCC” has the shortest Sequence-Levenshtein distance to this sequence read and the word boundary is estimated correctly at 3.

purposes, we also added the number of barcodes of the
classical Levenshtein code with a distance dmin

L = 3 that
does not guarantee to correct at least one error reliably in
DNA context.
For codewords of length 8nt, 48 = 65536 possible com-

binations of DNA bases can be generated. Of those, 14600
met the required chemical properties as described in the
Methods section. Finally, with the Sequence-Levenshtein
distance a maximum barcode set of 188 elements for the
correction of one error in DNA context could be gen-
erated. This is equivalent to a code rate of log2(188)

log2(65536) ≈
0.472. For classical Levenshtein codes, we could generate
552 barcodes, the equivalent of a code rate of log2(552)

log2(65536) ≈
0.569.We found that the code rate increased with barcode
length for both Levenshtein and Sequence-Levenshtein
based codes (see Additional file 1: Figure S1).
Figure 5 shows that our modified Sequence-Levenshtein

codes scaled up to more than 20,000 possible barcodes
with one guaranteed correctable error. This would sat-
isfy the needs of the most complex sample multiplexing
setups. Alternatively, for a medium-sized experiment of
only 48 samples, the length of the barcode did not need
to exceed 7 bases (77 barcodes). Conversely, we could
increase the robustness of the code to 2 correctable errors
and generate 90 11-nt-long barcodes. Compared to classic

Levenshtein codes, we produced one order of magni-
tude more barcodes for the same length and guaranteed
minimal number of correctable errors.

Simulation for correctness and the decoding rate
In Simulation 2, we simulated all possible 1 or 2 muta-
tions for every Sequence-Levenshtein barcode used in
this manuscript up to a length of 12 with the guaran-
teed capability to correct 1 or 2 errors and found that
the original barcode could be decoded correctly in every
case.
We also used this simulation to measure the speed

of decoding random sequence reads with our unopti-
mized Java-based prototype implementation. As a general
result, the number of decoded sequence reads per seconds
depended on three parameters:

• Length of the sequence read: longer was slower
• Length of barcodes: longer was slower
• Number of used barcodes: more barcodes were slower

In the slowest simulation with 20,894 12-nt-long bar-
codes and 14-nt-long sequence reads, we decoded 20
sequence reads per second while we decoded approx-
imately 190,000 sequence reads per second with four
4-nt-long barcodes.

Figure 5 Number of Barcodes vs Barcode Length. Barcodes based on the Sequence-Levenshtein distance resulted in barcodes with a
magnitude higher numbers then Levenshtein barcodes for the same length of the barcode and the same guaranteed minimal error correction
capability. The guaranteed correction of one additional error shrunk the number of barcodes by almost two magnitudes.
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Experimental simulation
In Simulation 3, we analyzed the behavior and limits of
Sequence-Levenshtein codes under the assumption that
multiple mutations of barcodes are possible. The results
are depicted in Figure 6. The theoretical expected average
number of mutations μM for each barcode of length n and
per-base mutation probability p was μM = p ∗ n, which
we also confirmed on average in all simulation runs. As
a consequence, the number of mutations in a barcode of
a sequence read increased linearly with the length of the
barcode, leading to a higher number of mismatches during
the decoding phase (Figure 6(A)).
Sequence-Levenshtein codes have been decoded cor-

rectly at a better rate than classical Levenshtein codes of
the same barcode length and the same minimal distance
(dmin

SL = dmin
L = 3 and dmin

SL = dmin
L = 5 respectively). Fur-

thermore, both classical Levenshtein codes and Sequence-
Levenshtein codes with a higherminimal distance (dmin

SL =
5 and dmin

L = 5) decoded barcodes correctly more often
than the same codes with a smaller minimal distance
(dmin

SL = 3 and dmin
L = 3). Notably, although Sequence-

Levenshtein codes with dmin
SL = 3 were designed for the

same guaranteed minimal number of correctable errors in

DNA context as classic Levenshtein codes with dmin
L = 5,

the latter outperformed the former when a random num-
ber of mutations was considered. All these effects were
more pronounced for median base mutation probabilities
p ∈ [0.2, 0.8].
In practice, the choice of the barcode length and the type

of error correction (dmin
SL = 3 or dmin

SL = 5) is based on
the number of samples that one wants to sequence in par-
allel. We therefore repeated simulation 3 on 48 barcodes
from six different error correcting codes that supported
this number of parallel samples: a classic Levenshtein code
with dmin

L = 3 and length 6; a classic Levenshtein code
with dmin

L = 5 and length 9; a Sequence-Levenshtein
code with dmin

SL = 3 and length 7; a Sequence-Levenshtein
code with minimum distance dmin

SL = 5 and length 11,
a linear code of length 5, and finally a code of length 3
that offered no correction (see Additional file 1: Table S2
for details). The result is depicted in Figure 6(B). It shows
that the new Sequence-Levenshtein codes outperformed
classical Levenshtein codes of the equivalent minimal
distances as well as the linear code despite requiring
longer barcodes. The same was true for the comparison
of Sequence-Levenshtein codes with minimal distances

Figure 6 Results of Simulation 3. (A) Number of correct matches after decoding depending on base mutation probability rate p for different error
correction codes and barcode lengths. (B) Number correct matches after decoding depending on base mutation probability rate p for the fixed
number of 48 barcodes simulated with the smallest eligible error correction codes: Levenshtein code with dmin

L = 3, length 6;
Sequence-Levenshtein code with dmin

SL = 3, length 7; Levenshtein code with minimum distance dmin
L = 5, length 9; Sequence-Levenshtein code

with minimum distance dmin
SL = 5, length 11.
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dmin
SL = 5 and dmin

SL = 3. Apparently, in this case the added
robustness of larger distances and the change to the clas-
sical Levenshtein distance outweighed the drawbacks of
longer barcodes.

Discussion
Historically error-correcting codes were first made in
binary metric to correct program-reading errors in early
type computers in the 1950s [14,27]. Levenshtein was
one of the first in attempting to resolve more natural
problems such as insertions and deletions [17]. Whereas
computer codes were gradually evolving (in data transfer
and processing, mobile, satellite communications, etc.), an
application for DNA studies was far from successful. A
few authors rediscovered Hamming code while making a
theory of oligonucleotide design for microarrays [28,29].
This however was not implemented in commercially avail-
able microarrays. Similarly, currently available barcoded
primers from, for instance, Illumina look like a random
design devoid of any theoretical (error-correcting) consid-
erations [13]. The first attempt to implement Hamming
code into DNA barcode design failed due to improper
binary-tertiary conversion protocol [7]. Later, this prob-
lem was resolved by adapting the Hamming concept to
quaternary format [13]. Alternatively, Krishnan et al. used
binary, linear error-correcting codes with longer minimal
distances for DNA barcode design [16]. Whereas a notice-
able progress was achieved with linear/perfect codesmen-
tioned above, a proper application of Levenshtein codes
for DNA barcodes had not yet been demonstrated. The
major obstacle in these implementations was the prob-
lem of word recognition in the continuous context of
DNA. As this inherent failure is not addressed in the lit-
erature on Levenshtein-based error correction in DNA
barcodes (e.g. [18]), we at best assume that some form
of separating sequence is used between the DNA bar-
code and the sample DNA, and at worst no correction
of this failure was attempted. The drawback of separat-
ing sequences is obvious: they do not come with any
correction ability by themselves and elongate the DNA
sequence at the same time, increasing the error rate for
the sample DNA. The use of separating sequences is
therefore not ideal.
By simulating equally likely substitutions, deletions,

and insertions we tested the robustness of Sequence-
Levenshtein distance based codes. We found that the
error correction of Sequence-Levenshtein barcodes was,
on average, more reliable than comparable Levenshtein-
based codes. Although the probabilities of mutation rates
in experimental sequencing data or in biological sam-
ples might considerably deviate from equal, it very much
depends on the organism and the sequencing platform.
Therefore it is not easy to create a “real life” simulation
of sequencing errors. In our mutation study we ignored

possible differences in mutation rates solely to test as
many possible mutations on as many possible DNA com-
binations as possible. As a result the revealed rates of suc-
cessful error corrections will not necessarily correspond
to those in a real sequencing data.
Sequence-Levenshtein codes can be further improved

in the following ways. Firstly, as barcode libraries are
often constructed only once and then reused for later
experiments, it is desirable to construct barcode sets
that correct k errors with a maximum subset that cor-
rects k+1 errors. Thus, if the number of parallel pro-
cessed samples in an experiment is very low, the more
robust k+1 subset is used. This code construction is eas-
ily achieved by modifying the evolutionary greedy search
algorithm to favor barcode sets with a large robust k+1
subset. Secondly, not every error occurs with the same
probability: some substitutions are more likely than oth-
ers, e.g. DNA/RNA sequences are more likely to be
altered at the end of the read than at the beginning.
An advanced version of this code would therefore use
probabilities of operations as a distance measure and
construct codes that, while not guaranteeing error cor-
rection, will correct more errors on average with shorter
barcodes.

Conclusion
We propose a solution to the problem of the word size
definition in the continuous context of DNA and a defi-
nition of a modified Levenshtein distance which we name
“Sequence-Levenshtein distance”. This new distancemea-
sure takes into account the interference of appended sam-
ple sequences and the resulting shorter distances between
barcodes.
This approach allows for the detection of the length

of the corrupted barcode and the recovery of the start
of the appended sample sequence. However, this imposes
more strict rules for the selection of barcode sets eligi-
ble for error correction. We show that the application
of these new barcodes decreases mismatching in multi-
plexing experiments considerably, increasing the robust-
ness of experimental results. For further experimental
validation and application, we provide barcode sets of
different lengths and guaranteed error-correcting capa-
bilities that will satisfy current size-needs of most exper-
imental setups as well as software to decode sequence
reads which is, in its current implementation, highly
efficient.
Our Sequence-Levenshtein software package is a ver-

satile tool to flexibly generate barcode sets of different
sizes and robustness, simulate expected mismatch rates
for individual next generation sequencing technologies,
and decode millions of sequence reads in a short time. As
such, we believe it offers a valuable research utility to the
general public.
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