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Abstract

Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify
Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage
presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP
calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly
correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.

Results: To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm,
SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-
output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-
SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by
GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related
to SNVs’ quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under
different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and
sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-
dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the
non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK
have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have
a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.

Conclusions: Our results show that the agreement between different calling algorithms is relatively low. Thus,
more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies.
For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related
to calling quality and coverage as filtering criteria.

Keywords: Next generation sequencing, SNP calling, Low-coverage, Single-sample, SOAPsnp, Atlas-SNP2,
SAMtools, GATK
Background
SNPs, which make up over 90% of all human genetic
variations [1], contribute to phenotype differences and
disease risk. Due to their high frequency and binary
variation patterns, SNPs have been widely used as
generic markers in disease association studies to identify
genes associated with both monogenic [2] and complex
diseases, such as diabetes [3-6], autoimmune diseases [7-9],
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cancers [10,11], and Alzheimer’s disease [12,13]. SNPs also
serve as popular molecular markers in pharmacogenomic
studies to understand inter-individual differences in
response to treatments [14,15]. Therefore, it is essential
to obtain accurate SNP information through advanced
methods, such as, high throughput next-generation
sequencing (NGS) technologies.
NGS technologies (e.g., the Solexa/Illumina sequencer,

454/Roche system, and SOLiD/ABI system) have been
widely used in the last several years [16]. A single sequen-
cing run by an NGS platform can generate data in the
gigabase-pair scale, which usually contains millions and
even hundreds of millions of sequencing reads. This high
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:ssun5211@yahoo.com
http://creativecommons.org/licenses/by/2.0


Yu and Sun BMC Bioinformatics 2013, 14:274 Page 2 of 15
http://www.biomedcentral.com/1471-2105/14/274
throughput makes NGS technologies more suitable for
SNV identification compared to traditional technologies.
However, challenges are also present. To produce such an
enormous amount of data, multiple sequencing procedures
(e.g., template amplification, florescent intensity detection,
and base calling) are involved in NGS technologies [17]. As
a result, artifacts can be introduced by both systematic and
random errors. These errors include mishandled templates,
PCR amplification bias, and florescence noises. Since the
SNV detection relies on the identification of polymor-
phisms at the level of individual base pairs, any sequencing
error can lead to an incorrect SNP identification. Further-
more, other genetic variations (e.g., copy number variation,
insertion, deletion, inversion, and rearrangements) make
accurate SNP calling even more difficult.
In order to identify SNVs using NGS data, various

SNP calling programs have been subsequently developed
[18-33]. For a general survey on SNP calling programs,
please check the review paper by Pabinger et al. [34].
These programs serve as useful tools to detect SNPs
from high throughput sequencing data and greatly
extend the scale and resolution of sequencing technology
applications. Our preliminary work has shown that for
sequencing datasets that have high coverage and are of
high quality, SNP calling programs can perform similarly
[35]. However, when the coverage level is low in a sequen-
cing dataset, it is challenging to accurately call SNVs
[36]. Moreover, commonly used SNP calling programs
(e.g., SOAPsnp [19], Atlas-SNP2 [20], SAMtools [37],
and GATK [27,38]) all include different metrics for
each potential SNP in their output files. These metrics are
highly correlated in complex patterns, which make it chal-
lenging to select SNPs that are used for further experimen-
tal validations. In order to accurately detect SNPs from a
low-coverage sequencing dataset, effective solutions have
been in great demand. Some studies have shown that
incorporating haplotype information and other pooled
information can help in identifying SNPs in multiple-
sample datasets [36,39,40]. However, many pilot studies
have a small sample size (e.g., one or two samples), so the
multiple-sample methods cannot be applied. Although the
difficulty of SNP calling using single-sample low-coverage
sequencing data has been recognized, it is still unclear how
well different SNP calling algorithms perform and how to
choose reliable SNPs from their results.
In this paper, we have conducted a systematic analysis

using a single-sample low-coverage dataset to compare
the performance of four commonly used SNP calling
algorithms: SOAPsnp, Atlas-SNP2, SAMtools, and Unified
Genotyper (UGT) in GATK. We have also explored the fil-
tering choice based on the metrics reported in the
output files of these algorithms. First, we improve
the quality of the raw sequencing data by trimming
off the low quality ends for reads in the data, then
call SNVs using the four algorithms on these trimmed
sequencing reads. We compare the SNV calling results
from the four algorithms without using any post-output
filters. Second, we explore the values of a few key metrics
related to SNVs’ quality in each algorithm and use them
as the post-output filtering criteria to filter out low quality
SNVs. Third, we choose several cutoff values for the
coverage of called SNVs in order to increase the agree-
ment among the four algorithms. With the above analysis
procedure, our goal is to offer insights for efficient and
accurate SNV calling using a single-sample low-coverage
sequencing dataset.

Methods
Part I Reviewing the key features of SNP calling
algorithms
Preprocessing steps of different SNP calling algorithms
Alignment (i.e., mapping the reads back to a reference
genome) is a fundamental and crucial step of any NGS
data analysis, including SNP calling. In order to eliminate
the possible sources of calling errors in the alignment
results, almost all SNP calling algorithms incorporate
certain processing steps as shown in Table 1. In this
section, we review these steps one by one.

1) In order to deal with duplicate reads that may be
generated during PCR, Atlas-SNP2, SAMtools, and
GATK remove all the reads with the same start
location in the initial alignment, except the one that
has the best alignment quality. In contrast, instead
of removing the duplicate reads, SOAPsnp sets a
penalty to reduce the impact of these duplications.

2) In order to deal with reads that are aligned to multiple
locations on the genome, SOAPsnp only takes into
account the uniquely aligned reads, i.e., reads with
only one best hit (the alignment with the least
number of mismatches). Atlas-SNP2, GATK, and
SAMtools do not have a specific strategy to deal with
the multiple-hit issue, instead these calling programs
accept all hits that the alignment results provide.

3) In order to make sure the sequencing quality of each
read reflects the true sequencing error rate, SOAPsnp,
SAMtools, and GATK recalibrate the raw sequencing
quality scores generated by NGS platforms. Key
factors, such as raw quality scores, sequencing cycles,
and allele types, are all considered.

4) In order to deal with the presence of indels, both
SAMtools and GATK include a realignment step to
ensure accurate variant detection. In particular,
GATK constructs the haplotype that could best
represent the suspicious regions and realigns these
regions appropriately according to this best
haplotype. In contrast, SOAPsnp and Atlas-SNP2 do
not utilize a specific indel realignment algorithm.



Table 1 Preprocessing steps in each of the four algorithms

SOAPsnp Atlas-SNP2 SAMtools GATK

Version 1.03 1.2 1.1.18 1.6

Format of aligned reads SOAP output SAM/BAM BAM SAM/BAM

Duplicate reads Penalty Remove using Atlas-SNP-mapper Removed Remove using picard [41]

Reads with multiple-hit Remove Keep all hits Keep all hits Keep all hits

Quality recalibration Yes No Yes Yes

Realignment No No Yes Yes
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SOAPsnp authors have conducted a simulation
using a set of simulated data with 10,000 indels, and
have shown that only 0.6% of reads containing indels
are misaligned, and only 0.03% of those incorrect
SNPs are retained in the final SNP calling output
after routine processes including pre-filtering and
genotype determination.

SNP calling
In order to identify novel SNPs using sequencing reads
and their quality scores, all four SNP calling programs
apply the Bayesian method. SOAPsnp, SAMtools, and
GATK-UGT compute the posterior probability for each
possible genotype, and then choose the genotype with
the highest probability (PH) as the consensus genotype.
A SNP is called at a specific position if its consensus
genotype is different from the reference. As a result, for
both SOAPsnp and SAMtools, a phred-like consensus
quality score, representing the accuracy of the SNP calling,
is calculated as − 10 log 10[1 − PH]. Different from the other
three algorithms, Atlas-SNP2 calculates the posterior
probabilities for each variant allele instead of the
genotype, and the genotype is determined afterwards
according to the ratio of the number of reads covering the
reference and the number of reads covering the most
likely variant. Depending on the Bayesian framework that
each SNP calling program uses, different sets of metrics
can be considered in SNP calling procedures (Table 2).
Several common parameters are often considered by
Table 2 Metrics considered in calling SNPs by each of the fou

SOAPsnp

Quality score Recalibrated

Machine cycle Yes

Allele type Yes

Duplication level Penalty in quality score

Swap-base No

MNP events No

NQS No

Coverage variation No

Base dependency Yes

Strand independency No
most calling programs (e.g., quality scores, sequencing
cycles, and allele types). There are also some parameters
specifically adopted by each algorithm. In particular,
Atlas-SNP2 considers several unique metrics: 1) whether
the allele is involved in a multi-nucleotide polymorphism
(MNP) event; 2) whether the allele is a “swap-base”,
defined as the situation in which two adjacent mismatches
invert their nucleotides respective to the reference; 3)
whether the allele passes the neighboring quality standard
(NQS), which means that the quality score of the variant
allele should be higher than 20, and the quality score of
each of the five flanking bases on both sides should be
higher than 15; and 4) whether the variant allele coverage
is at least 3. SAMtools incorporates two unique metrics,
base dependency and strand independency. The former
accounts for the correlation between bases, while the
latter assumes that reads from different strands are more
likely to have independent error probabilities.

Built-in filters
After obtaining the raw genotypes or variant alleles, several
internal filters are used by Atlas-SNP2, SAMtools and
GATK-UGT to further identify potential SNPs (Table 3).
For example, Atlas-SNP2 allows users to set up a cutoff
value for posterior probability to get a customized list of
potential variants among those putative variant alleles. The
genotyping results are given in a variant call format (VCF)
output file and several criteria are applied to determine the
final genotypes:
r algorithms

Atlas-SNP2 SAMtools GATK-UGT

Raw Recalibrated Recalibrated

Yes No Yes

No No Yes

No No No

Yes No No

Yes No No

Yes No No

Yes No No

No Yes No

NO Yes No



Table 3 Criteria for calling a SNP in each of the four algorithms

SOAPsnp Atlas-SNP2 SAMtools GATK -UGT

Quality score No Yes Yes Yes

Strand bias No Both strands must be covered by variant allele Yes Yes

Coverage limits No variant allele coverage≥ 3 upper limits for coverage Yes No

Variant reads percentage No Heterozygous: ≥ 10% Homozygous variant: ≥ 90% No No

SNP Location No No No No
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(1) Both strands are required to be supported by
variant alleles.

(2) Cutoff values for the percentage of variant reads are
set to determine homozygous or heterozygous
genotypes. In particular, at a specific locus, if less than
10% of the total reads support the variant allele, the
genotype is determined to be a homozygous reference
for this locus; if the percentage of variant reads is
between 10% and 90%, a heterozygous genotype is
assigned to this locus; if the percentage of variant
reads is higher than 90%, this locus is determined as a
homozygous variant.

(3) A binomial test is employed to estimate the
genotype qualities, and gives a posterior probability
to indicate how confident the algorithm is in calling
this position as a variant.

Similar to Atlas-SNP2, SAMtools and UGTalso produce
SNP calling results in VCF output. Therefore, the internal
filtering criteria of VCF are incorporated in GATK-UGT
and SAMtools (e.g., the phred-scaled quality score for the
variant allele must be higher than a certain value). Since
the VCF also reports some additional information about
the called SNPs, such as strand bias, quality by depth
(coverage), mapping quality, read depth, and genotype
quality that represents the quality of the called SNPs,
users can further filter the called SNPs based on the cutoff
values they choose for these metrics. Although SOAPsnp
does not particularly use any internal filtering, it does
provide several metrics in the output for each called SNP,
e.g., consensus score, quality of best allele, quality of
second best allele, and sequence depth. These metrics
can be used as customized post-output filters.

Part II Dataset
To study the performance of these different SNP calling
tools in low-coverage data, we use a low-coverage (1-2X)
whole-genome sequencing dataset from the pilot 1 of
1000 genome project: ERR000044. This dataset is
sequenced from the sample #NA18550, with 6,333,357 45-
bp-long reads generated. We first explore the sequencing
quality by plotting the per-base quality scores using FastQC
[42]. The sequence quality stays high at the beginning of
the reads, and then drops quickly when reaching to
the 3′ end of the reads (Figure 1).
Part III SNP detection and comparison
There are four major steps in the overall workflow
(Figure 2). First, before alignment, we trim off the
low quality ends of reads using the trim function in
the BRAT package [43]. In particular, the BRAT trim
function is set to cut from both the 5′ and 3′ ends
until it reaches bases with a quality score higher than
20 (i.e., 1% error rate). This trim function allows at
most two Ns in each read. Second, alignments are
conducted by either SOAP2 (version 2.21) or BWA
(version 0.6.2), using the human genome 18 as the
reference. At most two mismatches are allowed for
each read, and only the reads aligned to unique positions
are reported in the output files. Third, SNPs are called on
chromosomes 1 and 2. All SOAPsnp callings are performed
on SOAP2 alignment results, since SOAP2 is the only input
format SOAPsnp can take. Because Atlas-SNP2, SAMtools,
and GATK-UGT all require alignment results in the SAM
format, which can be generated by BWA but not SOAP2,
these three are performed on BWA alignment outputs. For
the results of each SNP calling algorithm, we identify the
dbSNPs and non-dbSNPs, using the dbSNP information
(dbSNP build 130) downloaded from the UCSC Genome
Browser [44]. Finally, we compare the SNP calling results
from the four algorithms. Since Atlas-SNP2 requires at least
3X coverage to detect a variance, for a fair comparison, we
only use SNPs with at least 3X in each algorithm. All
detected SNVs are assigned to the following classes:

I. Single nucleotide variants (SNV) identified by only
one SNP calling algorithm.

II. SNVs identified by any two SNP calling algorithms.
III. SNVs identified by any three SNP calling algorithms.
IV. SNVs identified by all four SNP calling algorithms.

This procedure is first conducted without any post-
output filters. Then we apply filters based on the key
metrics in the output of each SNP calling algorithm
(Table 4), with different coverage cutoff values.

Results
Part I Alignment and the impact of trimming
In raw data, among the 6,333,357 single-end reads, about
70% are aligned against human genome 18 by SOAP2 and
BWA. 110–400 non-dbSNPs (potentially novel SNVs) are



Figure 1 Box plots for sequencing quality score (generated by FastQC). The blue line represents the mean quality score for each base. Red
lines represent medians. Yellow boxes represent 25th to 75th percentiles. The upper and lower whiskers represent 10 and 90
percentiles, respectively.
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detected in each of the four SNP calling algorithms on
chromosome 1 and 2 (Table 5A). Since trimming can
remove low-quality bases and thus improve the alignment
results [45], we trim the data using the trim function of
the BRAT package. This process not only cuts off the low
quality bases from both ends, but also discards reads that
are shorter than 24-bp after trimming. As a result, 6,000
(0.1%) reads are removed. With slightly fewer reads
(6,327,430) available, however, the number of aligned
reads is increased by 100,000 (2%). Consequently, more
SNPs are detected in trimmed data compared to raw data
(Table 5B). Among the four algorithms, SOAPsnp calls
Figure 2 The overall workflow of comparing the four SNP calling algo
more SNVs than the other three, in both raw and trimmed
data. This is probably due to the fact that SOAPsnp has
almost no internal filtering criterion after calling a SNV,
meaning that it is not as stringent as the others. Although
SOAP2 aligns slightly more reads than BWA, our previous
study has shown that SOAP2 and BWA have similar
alignment performance in trimmed data [45]. Therefore,
the difference between SOAPsnp and the other three
algorithms is less likely caused by alignment disagreements.
When compared to SOAPsnp, Atlas-SNP2 calls signifi-
cantly less SNVs than the other programs. The possible
reasons are: 1) more stringent internal criteria are applied
rithms.



Table 4 Key metrics in each of the four algorithms

Metrics

SOAPsnp Consensus score [0, 99]

Atlas-SNP2 Posterior Probability

SAMtools Genotype quality [0,99], QUAL

GATK-UGT Genotype quality [0,99], QUAL, FisherStrand,
HaplotypeScore, MappingQualityRankSumTest,
ReadPosRankSumTest
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to determine SNVs, including coverage for variant alleles
on both strands and the percentage of variant reads; 2) the
threshold for posterior probability is set as ≥ 0.95. Since
Atlas-SNP2 requires at least 3X coverage to call a SNV, we
only report the called SNVs with ≥ 3X coverage in the
other three algorithms. Without any coverage filtering
(≥ 1X) in both raw and trimmed datasets, SOAPsnp
calls dramatically more SNVs (about 4000) than SAMtools
and GATK-UGT (about 2000). Since SNVs from raw
and trimmed data show similar patterns, and trimmed
data has more SNVs called, we use the trimmed data
in further analysis.

Part II Comparison without any filtering
In order to examine the agreement between the four
algorithms, we compare both dbSNP and non-dbSNP
results in trimmed data (see Figure 3). Overall, dbSNPs
exhibit a better agreement than non-dbSNPs. This
observation is consistent with our expectations, since
the known dbSNP positions are more common and
therefore more likely to be called. However, in terms of
the performance of the four algorithms, dbSNPs and
non-dbSNPs show similar patterns. Figure 3 shows that
GATK-UGT and SAMtools have a better agreement
compared to the other comparison pairs. This is prob-
ably due to one or more of the following reasons: 1) they
Table 5 Number of SNVs called by each of the four
algorithms using raw and trimmed data

A. In raw data

≥ 3X* dbSNPs Non-dbSNPs

SOAPsnp 940 545 395

Atlas-SNP2 432 315 117

SAMtools 532 376 156

GATK-UGT 669 444 225

B. In trimmed data

≥ 3X* dbSNPs Non-dbSNPs

SOAPsnp 968 564 404

Atlas-SNP2 448 321 127

SAMtools 570 398 172

GATK-UGT 729 478 251

* Atlas-SNP2 requires at least 3X to call a SNV. For the other three algorithms,
we choose the called SNVs with ≥ 3X coverage.
are both Bayesian-based algorithms; 2) they incorporate
similar information when determining the genotypes;
and 3) they apply similar internal filters to the called
SNVs. Because Atlas-SNP2 is more stringent than the
other three calling programs, most of the SNVs called by
Atlas-SNP2 are also called by at least one of other pro-
grams. Different from Atlas-SNP2, there are 101 dbSNPs
and 160 non-dbSNPs that are only called by SOAPsnp. In
order to investigate the difference between these SNVs that
are only called by SOAPsnp and those that are also called
by at least one of the other three algorithms, we compare
their key metrics from the SOAPsnp output: consensus
score, quality of best allele, quality of second best allele, and
sequencing depth. No obvious difference is discovered
between the two types of SNVs. Most of SNVs have a
consensus score between 2 and 20, with only a few reaching
the upper limit of 99. Moreover, most of SNVs are covered
by 3 to 10 reads in total.

Part III Exploration of key metrics in four SNP calling
algorithms
Key metrics in SOAPsnp
We have examined SOAPsnp’s SNP calling quality in
low-coverage data by checking the coverage and
consensus scores for called dbSNPs and non-dbSNPs. We
have found that the low coverage is often associated with
low consensus scores, while the high coverage is often
associated with high consensus scores. The consensus
score in SOAPsnp represents how confident the algorithm
is in calling a SNV. A higher value corresponds to a higher
confidence. Therefore, using the consensus score as a
filter is necessary in order to have accurate SNP calling in
SOAPsnp. We have checked the distribution of consensus
score in SOAPsnp results and have chosen filtering
criteria based on this distribution. Table 6 shows that
91 SNVs have a consensus score < 5, indicating lower
confidence. With a filtering criterion for consensus
scores set at ≥ 5, 91 SNVs are removed and 877 SNVs
are left in total.

Key metrics in Atlas-SNP2
Unlike SOAPsnp, Atlas-SNP2 provides a posterior
probability for every potential SNV. It requires the
users to set a threshold for the posterior probability.
With a low coverage, many potential SNVs reported
by Atlas-SNP2 have low posterior probabilities. In our
previous analysis, we use “posterior probability ≥ 0.95”
as a criterion to call SNVs, resulting in a much
smaller number of SNVs when compared to the other three
calling programs. In order to investigate whether posterior
probability is a potential filter criterion, we set the cutoffs
at ≥ 0.3 and then ≥ 0.1. With a lower threshold of 0.1, the
number of SNVs called by Atlas-SNP2 increases from 448
to 539 (Table 7).



Figure 3 The comparison results of trimmed data without any post-output filters. All SNVs require≥ 3X coverage.
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Key metrics in GATK-UGT
In the GATK-UGT output, there are several metrics
associated with the quality of potential SNVs. We have
checked a few important ones among them: “genotype
quality”, “QUAL”, ‘FisherStrand”, “HaplotypeScore”,
“MappingQualityRankSumTest”, and “ReadPosRankSum
Test”.

1) “Genotype quality” represents the quality of the
called SNVs. It ranges from 0 to 99, with higher
values corresponding to higher qualities. To better
understand the calling quality of GATK-UGT in
low-coverage data, we have checked the distribution
of the genotype quality. In this low-coverage dataset,
for dbSNPs, the genotype ranges from 4 to 99, and
80% of dbSNPs have a genotype quality lower than
30; while for non-dbSNPs, the genotype ranges from
2 to 99, and 70% of non-dbSNPs have a genotype
quality lower than 30. Then based on the
distribution, we choose several different cutoff
values for genotype quality, ≥ 5, 6, 7, 8, 9, and
10 (Table 8). With the cutoff set at ≥ 9, 53 SNVs
Table 6 Number of SNVs called by the SOAPsnp with
different cutoffs of consensus score

Cutoffs SNVs dbSNPs Non-dbSNPs SNVs ≥ *

=0 41 10 31 968

=1 8 2 6 927

=2 11 5 6 919

=3 6 2 4 908

=4 25 8 17 902

=5 261 179 82 877

=6 125 101 24 616

=7 21 13 8 491

=8 58 36 22 470

=9 24 12 12 412

=10 13 4 9 388

* number of SNVs that have consensus score ≥ the cutoff values.

Ta
d

Po

≥

≥

≥

(32 dbSNPs and 21 non-dbSNPs respectively) are
removed, resulting in 676 remaining SNVs.

2) In VCF output, there is a metric called “QUAL”, a
phred-scaled quality probability of the SNVs being a
homozygous reference. A higher “QUAL” score
indicates a higher confidence. In our dataset, all
called SNVs have a QUAL value ≥ 30, which is a
commonly used criterion for reliable SNP calling in
GATK-UGT.

3) Another indicator of SNVs’ quality is strand bias,
which looks for the instance where the variant allele
is disproportionately represented on one strand. In
GATK-UGT output, “FisherStrand” is a phred-scaled
p-value using Fisher’s Exact test to detect strand
bias. A higher “FisherStrand” value represents a
more pronounced bias, indicating a false positive.
The commonly used criterion for reliable SNV
calling is to remove any SNV with a “FisherStrand”
value > 60. In our dataset, the “FisherStrand” value
for all SNVs ranges from 0 to 25. Therefore, there is
no need for filtering using “FisherStrand”.

4) “HaplotypeScore” in GATK-UGT output is a
measure of how well the data from a 10-base
window around the called SNV can be explained by
at most two haplotypes. Usually, with the instance of
mismapped reads, there are more than two
haplotypes around the SNV and this SNV is likely to
be a false positive. A higher “HaplotypeScore” value
represents a higher probability that the called SNV
is artificial due to mismapping. In Table 9, we check
the distribution of “HaplotypeScore” in dbSNPs and
non-dbSNPs. The majority of SNVs have a low
“HaplotypeScore” (≤ 10), indicating a generally good
ble 7 Number of SNVs called by Atlas-SNP2 with
ifferent cutoffs of the posterior probability

sterior probability SNVs dbSNPs Non-dbSNPs

0.95 (original setting) 448 321 127

0.3 476 342 134

0.1 539 393 146



Table 8 Number of SNVs called by GATK-UGT with
different cutoffs of genotype quality

Cutoffs SNVs dbSNPs Non-dbSNPs

≥ 0 729 478 251

≥ 5 724 476 248

≥ 6 723 476 247

≥ 7 681 450 231

≥ 8 681 450 231

≥ 9 676 446 230

≥ 10 476 217 259

Ta
d

Cu

=0

≥

≥

≥

≥

≥

≥

≥

al
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mapping in this dataset. Since the commonly used
criterion for reliable SNVs calling is removing any
SNV with a “HaplotypeScore” > 13, we use 13 as a
filtering criterion, which removes 26 SNVs in total.

5) “MappingQualityRankSumTest” is a Wilcoxon rank
test that tests the hypothesis that the reads carrying
the variant allele have a consistently lower mapping
quality than the reads with the reference allele. This
metric is only available for the SNVs where both the
variant allele and reference allele are supported by
reads. In our dataset, there are 225 SNVs
(97 dbSNPs and 126 non-dbSNPs) that have
“MappingQualityRankSumTest” values, indicating
that they have coverage in both variant and
reference allele. In these 225 SNVs, the
“MappingQualityRankSumTest” value ranges from−7
to 2 for dbSNPs, and−5 to 2 for non-dbSNPs. The
commonly used criterion for reliable SNVs calling
removes any SNV with a
“MappingQualityRankSumTest” value < −12.5. Since
in our dataset all SNVs are > −12.5, there is no need
to apply any filter on the
“MappingQualityRankSumTest” values.

6) “ReadPosRankSumTest” is a Mann–Whitney Rank
Sum Test that tests the hypothesis that instead of
being randomly distributed over the read, the
ble 9 Number of SNVs called by GATK-UGT with
ifferent cutoffs of HaplotypeScore

toffs SNVs dbSNPs Non-dbSNPs

613 419 194

1 638 431 207

2 653 437 216

5 680 448 232

10 693 453 240

13 703 459 244

20 707 462 245

30 718 468 250

l 729 478 251
variant allele is consistently found more often at the
beginning or the end of a sequencing read. Similar
to the “MappingQualityRankSumTest”, this metric is
also only available for the SNVs where both the
variant allele and reference allele are supported by
reads. In our dataset, for the SNVs that actually have
the “ReadPosRankSumTest” report, their values
range from−5 to 6. These values satisfy the common
criterion that the “ReadPosRankSumTest” value
is ≥−20.

Based on the above exploration of the six key metrics in
GATK-UGT output, we set a series of filtering criteria
for reliable SNP calling by GATK-UGT: “genotype
quality” ≥ 9; “QUAL” ≥ 30; “FisherStrand” ≤ 60; “Haplo
typeScore” ≤ 13; “MappingQualityRankSumTest” ≥ −12.5;
“ReadPosRankSumTest” ≥ −20. As a result, 650 SNVs
(out of 729 raw SNVs) pass the filtering, with 427
dbSNPs and 223 non-dbSNPs. We will use this set of
SNVs in a later analysis. Since “QUAL”, “FisherStrand”,
“MappingQualityRankSumTest”, and “ReadPosRankSum
Test” values all satisfy the criteria in our dataset, we
cannot remove any SNV by applying filtering on these
four metrics. However, they are all important metrics that
are related to SNP quality. Thus, we recommend that
users filter raw SNP calling results based on their values.
Key metrics in SAMtools
Similar to GATK-UGT, SAMtools reports the VCF output.
We have checked two important metrics in SAMtools
results: “genotype quality” and “QUAL”. In both dbSNPs
and non-dbSNPs, the values of genotype quality range
from 4 to 99. Setting different cutoff values for “genotype
quality” does not filter out significantly more of the called
SNP (Table 10). For “QUAL”, all SNVs have a QUAL
value ≥ 3, which is a commonly used criterion for “QUAL”
in SAMtools results. Therefore, for our dataset we do not
apply any filter on SAMtools results and use the raw SNVs
for a later analysis.
Part IV Comparison with filtering using key metrics and
coverage
To compare the four algorithms under different coverage
levels, we use the SNP calling results with filtering criteria
applied in each calling program, and then add the filtering
of coverage with several cutoff values, ≥ 4X, 5X, 6X, 7X,
8X, 9X, and 10X (Table 11). The number of SNVs called
by each calling program decreases dramatically by more
than 50% when the cutoff increases from 3X to 4X, and
drops to about 15% at 10X. With 3X, SOAPsnp calls more
SNVs than the other calling programs, while Atlas-SNPs
calls the least. However, when the coverage cutoff
increases, the number of SNVs called by each calling



Table 10 Number of SNVs called by SAMtools with
different cutoffs of genotype quality

Cutoffs SNVs dbSNPs Non-dbSNPs

≥ 4 (all) 570 398 172

≥ 5 567 397 170

≥ 6 565 396 169

≥ 7 564 395 169

≥ 8 563 395 168

≥ 9 559 393 166

≥ 10 558 393 165
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program becomes more similar, with SOAPsnp call-
ing slightly more.
Table 11 shows the changing patterns of the number

of SNVs as the coverage cutoff level increases. Although
the numbers of SNVs identified by the different calling
programs become more similar as the coverage cutoff
increases, it is unclear whether the agreement of different
calling programs and their performance will increase
accordingly. In order to address this question, we have done
further comparisons using the following two methods:
Method 1 checks the agreement among different calling
algorithms (see Table 12, Figures 4 and 5), and Method 2
calculates empirical positive calling rates and sensitivities
(see Table 13). For both methods, we check dbSNPs and
non-dbSNPs separately.

Method 1: check the agreement among different calling
programs
For dbSNPs, using the original setting (≥ 3X), there are 592
unique dbSNPs called by the four algorithms, and 46.79%
of them are common among all the calling programs.
When increasing the cutoff of coverage to 4X, although the
number of unique dbSNPs drops dramatically from 592 to
276, the percentage of agreements among the four calling
programs remains similar (Table 12A). With a further
increase of coverage cutoff values, the number of unique
dbSNPs continuously decreases, while the agreements stay
similar (Table 12A). For each SNP calling program, we plot
Table 11 Number of SNVs called by each of the four algorithm

Coverage cutoffs SOAPsnp Atlas-

≥ 3X 877 (537, 340) 539 (3

≥ 4X 397 (230, 167) 291 (1

≥ 5X 280 (162, 118 ) 218 (1

≥ 6X 222 (130, 92) 187 (1

≥ 7X 194 (115, 79) 160 (9

≥ 8X 168 (99, 69) 145 (9

≥ 9X 153 (88, 65) 138 (8

≥ 10X 137 (78, 59) 126 (8
the agreement with other algorithms under different
coverage cutoffs (Figure 4). For SOAPsnp, even though
the number of called dbSNPs drops dramatically, the
agreements with other calling programs do not change as
much as the coverage cutoff increases. For Atlas-SNP2,
the percentage of agreement with the other three calling
programs decreases when the coverage cutoff increases.
This is probably due to the fact that with a lower cutoff
(≥ 3X), Atlas-SNP2 calls much fewer than the other
calling programs. Therefore, compared to other programs,
the 277 agreement dbSNPs take a larger portion among all
SNVs called by Atlas-SNP2. However, when the coverage
cutoff increases, the number of dbSNPs called by
Atlas-SNP2 is far more similar to the other algorithms,
therefore the percentage of agreement in Atlas-SNP2
becomes smaller than ≥ 3X. Compared to SOAPsnp and
Atlas-SNP2, GATK-UGT and SAMtools exhibit a higher
agreement with other calling programs. 60-70% of their
dbSNPs are called by all four programs, 20% are called
by three programs, and about 10% are called by two
programs (see Figure 4 bottom panel). Moreover, in
both GATK-UGTand SAMtools, when the cutoff increases
from 3X to 5X, the percentage of dbSNPs called by all four
programs increases 3-4%.
For non-dbSNPs, the comparison results show similar

patterns as dbSNPs, but with a lower percentage of agree-
ment (Table 12B). The number of unique non-dbSNPs
called by the four algorithms drops from 402 to 211 when
the coverage cutoff increases from 3X to 4X, and finally
decreases to 79 when the coverage cutoff is 10X. The
percentage of non-dbSNPs called by all four calling
programs increases over the different coverage cutoffs,
especially from 3X to 7X. While the percentage of
non-dbSNPs only called by one algorithm decreases
over the cutoffs, from 37.56% in 3X to 31.65% in 10X. For
each calling program, we plot the agreement with other
algorithms under different coverage cutoffs (Figure 5).
Among the four calling algorithms, SOAPsnp shows the
lowest percentage of agreements with others. These low
agreements are probably due to the fact that SOAPsnp
always calls more SNVs than other programs under
s with different coverage cutoffs

SNP2 GATK-UGT SAMtools

93, 146) 650 (427, 223) 570 (398, 172)

95, 96) 309 (187, 122) 270 (174, 96)

38, 80) 223 (127, 96) 203 (121, 82)

16, 71) 186 (105, 81) 167 (100, 67)

9, 61) 156 (93, 63) 145 (87, 58)

3, 52) 134 (81, 53) 127 (81, 46)

7, 51) 126 (75, 51) 115 (73, 42)

2, 44) 111 (65, 46) 100 (64, 36)



Table 12 Comparing four algorithms using different
coverage cutoffs for dbSNPs and non-dbSNPs

A. dbSNPs

Coverage
cutoffs

Total By 1 By 2 By 3 By 4

≥ 3X 592 108 (18.24%) 82 (13.85%) 125 (21.11%) 277 (46.79%)

≥ 4X 276 68 (24.64%) 32 (11.59%) 50 (18.12%) 126 (45.65%)

≥ 5X 201 61 (30.35%) 20 (9.95%) 33 (16.42%) 87 (43.28%)

≥ 6X 169 54 (31.95%) 15 (8.88%) 33 (19.53%) 67 (39.64%)

≥ 7X 153 53 (34.64%) 15 (9.80%) 29 (18.95%) 56 (36.60%)

≥ 8X 134 43 (32.09%) 12 (8.96%) 29 (21.64%) 50 (37.31%)

≥ 9X 123 38 (30.89%) 15 (12.20%) 25 (20.33%) 45 (36.59%)

≥ 10X 110 34 (30.91%) 11 (10.00%) 27 (24.55%) 38 (34.55%)

B. non-dbSNPs

Coverage
cutoffs

Total By 1 By 2 By 3 By 4

≥ 3X 402 151 (37.56%) 99 (24.63%) 76 (18.91%) 76 (18.91%)

≥ 4X 211 76 (36.02%) 41 (19.43%) 53 (25.12%) 41 (19.43%)

≥ 5X 161 57 (35.04%) 30 (18.63%) 37 (22.98%) 37 (22.98%)

≥ 6X 127 38 (29.92%) 27 (21.26%) 29 (22.83%) 33 (25.98%)

≥ 7X 106 33 (31.13%) 21 (19.81%) 22 (20.75%) 30 (28.30%)

≥ 8X 93 32 (34.41%) 17 (18.28%) 22 (23.66%) 22 (23.66%)

≥ 9X 87 28 (32.18%) 16 (18.39%) 23 (26.44%) 20 (22.99%)

≥ 10X 79 25 (31.65%) 18 (22.78%) 20 (25.32%) 16 (20.25%)

“Total” means the total number of SNVs called by four algorithms. “By 1”
means the number (percentage) of SNVs called by only one of the four
algorithms. “By 2” means the number (percentage) of SNVs called by any two
algorithms. “By 3” means the number (percentage) of SNVs called by any three
algorithms. “By 4” means the number (percentage) of SNVs called by
four algorithms.
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different coverage levels. In all four calling programs,
the percentage of agreements increases over the cover-
age cutoff values, especially from 3X to 7X, indicating that
filtering the non-dbSNPs with a higher coverage threshold
improves the agreement among the four algorithms.

Method 2: calculate empirical positive calling rates and
sensitivity
For this comparison method, we choose the variants that
are called by at least three calling programs as the
“empirical truth”, and then investigate the calling
performance of each SNP calling program based on
this empirical truth by calculating both the positive
calling rate and the sensitivity. We then compare the
four calling programs at different coverage levels
using these rates. The positive calling rate and the sensi-
tivity are calculated as Positive calling rate = A/(A + B),
and Sensitivity = A/(A +C) as shown in Table 13. In these
formulas, A is the number of SNVs identified as an
empirical truth (i.e., called by at least 3 calling programs)
and also called by this calling program; B is the number of
SNVs identified as an empirical truth, but not called by
this calling program; and C is the number of SNVs called
by this calling program, but is not an empirical truth.
The results of comparing four SNP calling algorithms

using the empirical positive calling rate and sensitivity are
shown in Table 14 and Table 15 and are explained below.

1) For calling dbSNP positions, Table 14A (dbSNPs)
shows that SOAPsnp has a relatively lower positive
calling rate. This is because SOAPsnp tends to call
more variants than the other three calling programs,
suggesting a higher false positive rate. GATK has a
relatively higher positive calling rate than the others
at different coverage levels for calling dbSNPs.
Atlas-SNP2 and SAMtools tend to stay between
SOAPsnp and GATK.

2) For calling non-dbSNP positions, similar to dbSNPs,
Table 14B shows that SOAPsnp tends to call more
false positive variants since it lacks stringent internal
filtering criteria. Atlas-SNP2 shows the highest
positive calling rate. This is probably because it is
the most stringent calling program. GATK has a
higher positive calling rate than SOAPsnp and
SAMtools.

3) As far as the positive calling rate is concerned,
Atlas-SNP2 and GATK perform better than
SOAPsnp and SAMtools on both dbSNPs and
non-dbSNPs. With the change of coverage level,
the comparison results are relatively stable.

4) For calling dbSNPs and non-dbSNPs, Table 15
shows that, with the exception of SAMtools, the
other three programs all have very high sensitivity in
calling SNVs. Overall the sensitivity of all calling
programs are pretty stable across the different
coverage levels, except that Atlas-SNP2’s sensitivity
is a bit low at 3X coverage.

Discussion
Identifying a reliable list of SNPs is critical when analyzing
NGS data. For data with high-coverage and/or multiple
samples, previous studies have shown that different SNP
calling algorithms have a good agreement between each
other and have high true positive rates [36,39,40]. However,
for single-sample low-coverage data, it is difficult to call
SNVs with high confidence. In order to provide insights
into the choice of SNP calling programs, we have com-
pared the performance of four commonly used SNP calling
algorithms using low coverage sequencing data.

About the four SNP calling algorithms and their
post-output filtering
Out of the four algorithms, SOAPsnp calls many more
SNVs compared to the others. This is probably because
it has less internal filtering criteria. After applying the
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Figure 4 The agreement of dbSNPs with different coverage cutoffs in each of the four algorithms.
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criterion that removes any SNVs with a consensus score
lower than 5, the total number of SNVs called by SOAPsnp
decreases and becomes more similar to the other algo-
rithms. In the SOAPsnp output file, the consensus score is
an important metric representing the quality of calling a
SNP. Therefore, when processing low-coverage data,
we recommend that users apply the consensus score
as a post-output filter for SOAPsnp results.
Atlas-SNP2 is much more stringent compared to

the other three algorithms. 97% of the SNVs called by
Atlas-SNP2 are also called by at least one of the other
three calling programs. With a much lower threshold for
posterior probability, Atlas-SNP2 calls more SNVs but still
fewer than the other algorithms. Since it has the lowest
number of called SNVs, Atlas-SNP2 appears to have a
higher positive calling rate and sensitivity when compared
to the other calling programs (Tables 14 and 15). How-
ever, when using Atlas-SNP2 to deal with low-coverage
dataset, the users should be careful with the filtering
settings. For example, in this study, we set the threshold
for posterior probability at 0.1, which indicates a low con-
fidence in calling a SNP. Because Atlas-SNP2 is much
more stringent than the other programs, even with a low
posterior probability, the called SNVs are still very likely
to agree with other calling programs.
Compared to the above two algorithms, GATK-UGT

and SAMtools call a moderate number of SNVs.
When using the GATK-UGT package, applying the
common criteria is necessary, including “Genotype quality”,
“QUAL”, “MappingQualityRankSumTest”, “FisherStrand”,
“HaplotypeScrore”, and “ReadPosRankSumTest”. With the
SAMtools program, filtering out the SNVs with low
genotype quality and low “QUAL” value can help improve
the accuracy in SNP calling.
Filtering out the low quality SNVs is an important step be-

fore performing further analysis, especially for low-coverage
data. When choosing the criteria for filtering, it is important
not only to consider the commonly used standards, but also
to take into account the characteristics of each specific
dataset. For example, in our dataset, all the SNVs have little
or no strand bias, have high “MappingQualityRankSumTest”
scores, and have high “ReadPosRankSumTest” scores. Setting
the threshold of genotype quality at 9 gives a similar
number of SNVs compared to others. Besides the key
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Figure 5 The agreement of non-dbSNPs with different coverage cutoffs in each of the four algorithms.
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metrics that we have explored in the Result section,
each algorithm provides additional information. For
instance, SOAPsnp reports the quality of variant and
reference alleles, number of reads covering the variant
and reference alleles, average copy number, and more.
GATK-UGT and SAMtools both report their results
in VCF, which can include many metrics. Users may
check these metrics based on the characteristics of
their own data if necessary, though we did not find
these metrics to be very helpful (data not shown).
Table 13 Positive calling rate and sensitivity

Empirical truth

SNV Not SNV

Program’s calling results called as SNV A B

called as Reference
(i.e., not SNV)

C –

For a specific calling program (e.g., SOAPsnp), A is the number of SNVs
identified as an empirical truth (i.e., called by at least 3 calling programs) and
also called by this calling program; B is the number of SNVs identified as an
empirical truth, but not called by this calling program; C is the number of
SNVs called by this calling program, but is not an empirical truth. Positive
calling rate is calculated as A/(A + B); sensitivity is calculated as A/(A + C).
About the impact of coverage
Coverage is an important factor to consider when
assessing the quality of called SNVs. Without any coverage
filtering (i.e., just ≥ 1X coverage), the results of the four
calling programs can be dramatically different. Usually,
high coverage regions or bases tend to have higher calling
qualities (e.g., higher consensus scores in SOAPsnp,
higher posterior probabilities in Atlas-SNP2, and higher
genotype qualities in SAMtools and UGT). Low coverage
regions or bases tend to have lower SNP calling qualities.
However, there is not a simple linear relationship between
coverage and the genotype quality scores that are generated
by different SNP calling programs.
Our results show that when increasing the coverage

levels for each calling program, the number of identified
SNVs drops dramatically in all calling programs. However,
increasing sequencing coverage cutoffs does not necessarily
lead to an increase in agreement among the different calling
programs. In fact, our comparison results show that the
impact of coverage on calling agreement is small except
that we see some agreement increase in non-dbSNPs
when the coverage level changes from 3X to 7X. This
may sound counter-intuitive. However, this observation



Table 14 Positive calling rates of the four calling
programs under different coverage cutoffs for dbSNPs
and non-dbSNPs

A. dbSNPs

Coverage cutoffs SOAPsnp Atlas-SNP2 GATK-UGT SAMtools

≥ 3X 0.734 0.888 0.902 0.892

≥ 4X 0.735 0.867 0.882 0.868

≥ 5X 0.704 0.841 0.874 0.876

≥ 6X 0.723 0.819 0.867 0.870

≥ 7X 0.696 0.808 0.817 0.862

≥ 8X 0.747 0.796 0.864 0.852

≥ 9X 0.727 0.782 0.813 0.849

≥ 10X 0.769 0.780 0.862 0.828

B. non-dbSNPs

Coverage cutoffs SOAPsnp Atlas-SNP2 GATK-UGT SAMtools

≥ 3X 0.438 0.863 0.628 0.628

≥ 4X 0.545 0.896 0.713 0.615

≥ 5X 0.602 0.875 0.708 0.610

≥ 6X 0.641 0.873 0.691 0.627

≥ 7X 0.620 0.852 0.730 0.672

≥ 8X 0.594 0.827 0.736 0.674

≥ 9X 0.615 0.824 0.745 0.690

≥ 10X 0.559 0.818 0.674 0.667

Table 15 Sensitivities of the four calling programs under
different coverage cutoffs for dbSNPs and non-dbSNPs

A. dbSNPs

Coverage cutoffs SOAPsnp Atlas-SNP2 GATK-UGT SAMtools

≥ 3X 0.980 0.868 0.958 0.883

≥ 4X 0.960 0.960 0.938 0.858

≥ 5X 0.950 0.967 0.925 0.883

≥ 6X 0.940 0.950 0.910 0.870

≥ 7X 0.941 0.941 0.894 0.882

≥ 8X 0.937 0.937 0.886 0.873

≥ 9X 0.914 0.971 0.871 0.886

≥ 10X 0.923 0.985 0.862 0.815

B. non-dbSNPs

Coverage cutoffs SOAPsnp Atlas-SNP2 GATK-UGT SAMtools

≥ 3X 0.912 0.546 0.837 0.570

≥ 4X 0.968 0.915 0.926 0.628

≥ 5X 0.959 0.946 0.919 0.676

≥ 6X 0.952 1.000 0.903 0.677

≥ 7X 0.942 1.000 0.885 0.750

≥ 8X 0.932 0.977 0.886 0.705

≥ 9X 0.930 0.977 0.884 0.674

≥ 10X 0.917 1.000 0.861 0.667
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can be explained by the fact that the four programs use
different statistical methods and algorithms, which model
different aspects of the sequencing information. These
differences lead to the complex correlations of output
metrics.
Filtering out many low-coverage SNVs may result in

a sacrifice of missing novel SNVs. For example, the
number of called SNVs in each calling program decreases
by more than 50% when the coverage cutoff increases
from 3X to 4X, and drops to 15% at 10X. Therefore,
caution should be used when choosing coverage as a
filtering criterion. Simply choosing the SNVs called
with high coverage might not be sufficient. This is
because, with a higher threshold of coverage, the users
may over-filter the results and miss novel SNPs related to
the disease of their interest.

About the generalization of our results and decision
making
In this paper, we use a set of single-end data, which is
one mate of a pair-end dataset. We have also conducted
the same analysis using a different single-end sequencing
dataset and have arrived at the same conclusion. Therefore,
we only report the results from the first dataset we used.
In addition, the results we report here are generated
by analyzing chromosomes 1 and 2 together. We have
also analyzed chromosomes 1 and 2 separately and
get the same conclusion as when they are combined.
Furthermore, the findings in this paper are similar to
the results reported by other researchers [46]. Therefore,
our comparison methods and results can be generally
applied to low-coverage sequencing data. In addition,
although this paper mainly focuses on the SNP calling in a
single sample, our methods and conclusion can be easily
applied to the variant calling in multiple samples. In
particular, the empirical-based positive calling rate and
sensitivity analysis can serve as an empirical standard for
comparing algorithms in multiple-sample SNP calling.
Overall, the four calling programs have very low agree-

ment amongst each other, with only roughly 35% ~ 45%
for dbSNPs and 19% ~28% for non-dbSNPs. For very low
coverage data, it might be wise to choose a concordance
among two or more SNP calling program instead of just
using one algorithm. However, this may result in a high
false-negative rate, with many true SNVs being missed. In
addition, choosing filtering cutoff values for coverage and
different quality scores with high and low values may have
the same advantages and disadvantages as choosing a
single SNP calling program vs. using the concordance of
two or more SNP calling programs. Therefore, as far as
the experimental validation of novel SNVs is concerned,
we recommend that users employ a comprehensive
strategy in their validation plan. First, in order to obtain a
high experimental validation rate, the users may choose
the SNVs that are called by more than one algorithm and
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with high metrics (e.g., coverage and quality scores) in the
beginning of the validation process. Then, if the validation
success rate is high, the users may validate more low
coverage SNVs called by multiple calling programs, or
SNVs called by only one program but with high quality.
This approach can both ensure an effective validation and
avoid missing many true disease-contributing SNVs.

Conclusions
We have compared the performance of four SNP calling
programs in a low-coverage single-sample sequencing
dataset. It is important to filter out the SNVs of low quality
using different metrics (e.g., quality scores and coverage).
Our results show that the concordance among these differ-
ent calling algorithms is low, especially in non-dbSNPs, and
increasing the cutoff values of coverage has little effect on
improving the concordance. This is probably due to dis-
crepancies in the statistical methods and algorithms that
these calling programs employ. Additionally, to provide an
empirical standard for choosing a SNP calling program, we
have calculated the empirical positive calling rate and
sensitivity for each calling algorithm under different
cutoffs of coverage. We have found that dbSNPs have
generally higher rates compared to non-dbSNPs, suggesting
lower quality in called non-dbSNPs in low-coverage
sequencing data. Moreover, among the four calling
programs, GATK and Atlas-SNP2 show a relatively
higher positive calling rate and sensitivity when compared
to the others, and GATK tends to call more SNVs than
Atlas-SNP2. Therefore, if users intend to use only one
calling program, we recommend GATK. However, in order
to increase the overall accuracy, we advocate for employing
more than one SNP calling algorithms.
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