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Abstract

Background: High-throughput RNA sequencing (RNA-Seq) is a revolutionary technique to study the transcriptome
of a cell under various conditions at a systems level. Despite the wide application of RNA-Seq techniques to
generate experimental data in the last few years, few computational methods are available to analyze this huge
amount of transcription data. The computational methods for constructing gene regulatory networks from RNA-Seq
expression data of hundreds or even thousands of genes are particularly lacking and urgently needed.

Results: We developed an automated bioinformatics method to predict gene regulatory networks from the
quantitative expression values of differentially expressed genes based on RNA-Seq transcriptome data of a cell in
different stages and conditions, integrating transcriptional, genomic and gene function data. We applied the
method to the RNA-Seq transcriptome data generated for soybean root hair cells in three different development
stages of nodulation after rhizobium infection. The method predicted a soybean nodulation-related gene regulatory
network consisting of 10 regulatory modules common for all three stages, and 24, 49 and 70 modules separately
for the first, second and third stage, each containing both a group of co-expressed genes and several transcription
factors collaboratively controlling their expression under different conditions. 8 of 10 common regulatory modules
were validated by at least two kinds of validations, such as independent DNA binding motif analysis, gene function
enrichment test, and previous experimental data in the literature.

Conclusions: We developed a computational method to reliably reconstruct gene regulatory networks from
RNA-Seq transcriptome data. The method can generate valuable hypotheses for interpreting biological data and
designing biological experiments such as ChIP-Seq, RNA interference, and yeast two hybrid experiments.
Background
Gene expression information has been widely used to
elucidate complex biological mechanisms, including the
prediction of protein functions, the precise classification
of phenotypes at the modular level, the study of expres-
sion modes under certain experimental conditions, and
the reduction of experimental noise, with the ultimate aim
of affecting the direction of biological research. RNA-Seq
is a revolutionary DNA sequencing technology recently
developed that provides a high throughput method
for cDNA sequencing, generating information about
mRNA content and quantifying gene expression. This
kind of novel sequencing technology when contrasted
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reproduction in any medium, provided the or
with traditional microarray hybridization technology, re-
duces background noise and is sensitive enough to detect a
wider range (>90%) of the transcriptome, even mRNA that
are expressed at very low levels or that are rapidly de-
graded [1]. Not only can RNA-Seq more accurately meas-
ure gene expression levels [2], but this new technology
promises to deliver more advantages, such as investigation
of alternative splicing [3] and allele specific expression [4].
In addition, the combination of strand-specific array data
and sequencing data reveals information on new, non-
coding transcripts and gene structures distinct to each case
[1], which largely benefits the study of condition specific
sub-networks or modules in biological applications.
The widespread and growing application of RNA-

Seq techniques to the study of various biological systems
emphasize the need for computational methods to analyze
the huge amount of RNA-Seq data, with the ultimate
goal of obtaining a greater understanding of biological
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mechanisms at a systems level. In order to partially ad-
dress this challenge, we developed and applied an array of
bioinformatics methods to analyze the RNA-Seq tran-
scriptome data obtained through studies of soybean
nodulation. Soybean (Glycine max L. merr.), a major crop
providing an important source of protein and oil, is very
important in biological nitrogen fixation research. The
symbiosis between leguminous plants and rhizobia leads
to the formation of a novel root organ, the nodule. In
mature nodules, rhizobia provide the host plant with
ammonium, which is produced through bacterial ni-
trogen fixation. In recent years, research progress on
understanding nodule formation has accelerated through
the application of modern molecular methods. For ex-
ample, using high-throughput sequencing technologies,
we obtained gene expression data derived from different
conditions (tissues) in soybean. With these data we
constructed nodule-related gene regulatory networks as a
tool to aid biologists to formulate testable hypothesis
about how nodule development is regulated.
Several algorithms exist to infer regulatory networks

from microarray gene expression data [5-8]. Among of
them, the method based on the Bayesian probabilistic
network [7] to infer co-regulated genes and their puta-
tive regulators, transcription factors, was successfully
applied to the microarray data of a model species:
Saccharomyces cerevisiae. However, the application of
computational methods to predict plant gene regula-
tory networks is still at an early stage [8]. Specifically,
there is a lack of bioinformatic tools or integration
methods to combine RNA-Seq data with other data
sources to study gene modules and their regulatory rela-
tionships. In the case of soybean, the availability of the
complete genome sequence [9,10] and numerous annota-
tion resources (e.g. SoyDB, a functional annotation data-
base of all putative transcription factors [10]), makes it
now possible to develop and integrate a set of bioinfor-
matic methods to reliably construct gene regulatory mod-
ules by integrating the vast soybean RNA-Seq data with
functional genomics data [8].
In line with an integrative bioinformatics framework

for predicting gene regulatory networks from microarray
gene expression data [8], here we developed and applied
an integrated protocol for differential expression analysis,
gene clustering, co-regulated gene module and regulator
construction, DNA binding motif identification, and gene
function prediction to construct and verify gene regulatory
modules from RNA-Seq data. Although the basic frame-
work of constructing regulatory module network is the
same as our previous method [8] developed for microarray
data, the preprocessing and normalization of RNA-Seq
data, the filtering of differentially expressed genes,
and the biological application are quite different. Here,
considering the nodulation may have three separate
stages, we separately selected the differentially expressed
genes for each stage and also studied the differentially
expressed genes commonly present in all the three stages.
Thus, this work is a new application and adaptation of the
previous framework for increasingly important RNA-Seq
data analysis in a new biological context. Furthermore, we
added a new random computational method to evaluate
the predicted network models.
For the 10 regulatory modules constructed based on

genes which respond at all the three stages of nodulation
formation, we validated them from different aspects,
such as, by existing literature, function enrichment and
binding site analysis. The results demonstrated that we can
obtain reliable results about regulatory mechanisms in the
process of soybean nodulation formation by constructing
regulatory networks and modules from RNA-Seq data. In
addition, a series of condition specific regulatory networks
and modules separately based on the different stages of
nodulation were produced by our method. The experi-
ments demonstrated that our computational methods
can effectively integrate RNA-Seq transcriptome data with
other data sources to construct gene regulatory networks
for a cell responding to different biological conditions.

Methods
Data
RNA-Seq dataset
In this work we used the data set [11] generated for root
hairs cell tissues in different stages of nodulation (12 hours,
24 hours and 48 hours) upon rhizobium infection to
predict and analyze gene regulatory logic. Our differ-
ential expression analysis identified 354 genes differen-
tially expressed in all three developmental stages. In order
to better discover the transcription regulatory networks
controlling the expression of these 354 genes, we aug-
mented their expression data in the data set [11] with the
only other RNA-Seq data set [12] of soybean nodulation
in Soybean Knowledge Base (SoyKB) [13]. The data set
[12] contains the expression data of different tissues, such
as nodule, leave and seed. The combined data set contains
64,788 soybean genes and 34 experimental conditions in
total. Both original data sets are available in the SoyKB
[13]. The accession number of the data set [11] in the
SRA repository is SRA012188.
For the two data sets, 36mer reads were aligned to all

contigs of the Glyma1n8x Soybean genome assembly by
using the program GSNAP [14]. Processing of the align-
ments was performed using the Alpheus Pipeline retaining
only alignments which had a minimum of 34 out of 36
identities [15]. The raw count of each gene in each dataset
was normalized by both the length of gene in terms of
kilobase (KB) and the total number of reads in the dataset
in terms of megabase (MB), resulting in the normalized
gene expression value in terms of number of mapped
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reads per KB per MB. The normalized expression data
of the two datasets were combined together for gene
regulatory network construction.

Transcription factors
The set of transcription factors used in this study come
from SoyDB [9]. SoyDB provides an automatic classifica-
tion of predicted soybean transcription factors into one
of 63 annotated transcription factor families using hidden
Markov models. The number of overlapped genes between
the RNA-Seq gene profile and the set of transcription
factors from SoyDB is 5,474.
For each group of selected differentially expressed

genes (see Methods section for details), we only consid-
ered differentially expressed TFs as possible gene regula-
tors. The number of TFs used in gene regulatory network
construction is 19 for common differentially expressed
genes, and 87, 126 and 205 for the 12 hours, 24 hours and
48 hours development stage, respectively.

Soybean genomic and proteomic sequence data
We used genomic sequence data [9] for DNA binding
analysis and protein sequence data for function predic-
tion. We extracted 500 bps of genomic sequence located
upstream to the start codon of each of the genes, and
then used these sequences to further analyze for tran-
scription factor binding sites.

Methods
The computational framework for RNA-Seq data ana-
lysis contains a filter for differentially expressed genes,
the construction of regulatory module networks and val-
idation of regulatory modules. In order to predict regula-
tory networks and their modules most relevant to specific
experimental conditions, we only focus on the differen-
tially expressed genes, which are induced or repressed
under particular biological conditions. This approach re-
duces the complexity of modeling and increases the
chance that the predicted regulatory networks will be rele-
vant to the specific biological question under investigation.
However, one potential limitation of the approach is that
some relevant genes and transcription factors, whose ex-
pressions do not change significantly under the experi-
mental conditions, will be missed from the analysis. This
problem may be alleviated by incorporating prior know-
ledge (e.g. known relevant transcription factors) into the
automated modeling process [8]. The following sections
describe the detailed techniques used in the process.

Differential gene expression selection
Nodulation is the result of a mutualistic interaction be-
tween legumes and symbiotic soil bacteria (e.g., soybean
[Glycine max] and Bradyrhizobium japonicum) initiated
by the infection of plant root hair cells by the symbiont
[16]. In order to identify the genes directly related with
nodulation, we selected genes differentially expressed
when soybean roots were inoculated with B. japonicum.
These genes are referred to as differentially expressed
genes (DEGs). Using the edgeR [17] package, we set the
adjusted p value to 0.05 as the threshold to select the
DEGs based on comparisons of expression values with
three time points. We also used the DEGseq [18] pack-
age to select the DEGs, and used the default value 0.001
as the threshold.

Regulatory module network construction
A model-based strategy was used for inferring regulatory
modules from RNA-Seq data. A regulatory module con-
tains two parts: a regulatory network represented by a
decision tree and its target genes as in [7,8]. In the deci-
sion tree, transcription factors were composed as a hier-
archical structure predicted to collaboratively regulate
their target genes. Each regulator (i.e., transcription
factor) is denoted as a node of the hierarchical tree, and
its expression status was separated into three situations:
highly expressed (1), normally expressed (0), and lowly
expressed (−1). As published previously [7,19], our
strategy was based on the hypothesis: the regulators are
themselves transcriptionally regulated, so that their ex-
pression profiles provide information about their activity
level [20]. The expression status of a regulator was sepa-
rated into the three activity levels (1, 0, -1) based on its
expression values under all of the experimental condi-
tions [7,21]. In contrast to Joshi et al.’s method [19] that
classified gene expression status as either high or low,
our method added one category to represent the normal
expression level, considering that genes may be normally
expressed in some conditions. With the expression status/
activity levels of regulators, the expression values of target
genes were modeled by a mixture of probability distribu-
tions [8]. In order for gene expression values to approxi-
mate normal distributions, here the logarithm values of
gene expression values were used in the further analysis.
In order to construct the gene regulatory modules, our

method initially clustered all the differentially expressed
genes into a number of groups based on the similarity of
their expression profiles under the various treatment
conditions using the K-means algorithm [22]. Here, for
the overlap DEG gene group, the number of experimen-
tal conditions used in clustering is 34, while for each of
the other three DEG gene groups in which genes are se-
lected separately based on different stages of nodulation,
the number of experimental conditions used is 14. The
number of initial clusters was determined automatically
by balancing correlation coefficients of gene expression
values in clusters and sizes of clusters. Generally speak-
ing, the higher the number of clusters, the higher the
correlation coefficients and the smaller the cluster sizes.
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Similarly as in [8], we obtained a series of average correl-
ation coefficients and their corresponding average cluster
sizes by varying the number of clusters, and then selected
the range with the most drastic change on correlation co-
efficients and cluster sizes as the cluster number changes.
After the initial clustering, our method repeated two

steps: (1) regulatory tree construction and (2) gene re-
assignment to iteratively construct gene regulatory mod-
ules. In the tree construction step, a transcription factor
(TF) was selected from the TF list to divide the genes in
each cluster into two sub-set of conditions according to
the expression status of the TF in these conditions, i.e.,
the conditions in which the TF has the same expression
level (e.g., high versus normal/low) were grouped into
the same sub-set. Based on the assumption that the ex-
pression values in each sub-set of conditions obey the
normal distribution as in [8], the probability that a gene

i (gi) is regulated by a TF can be calculated as 1ffiffiffiffi
2π

p
σ
e

x−μð Þ2
2σ2 ,

where μ is the mean expression value in the sub-set, σ
the standard deviation of expression values in the sub-
set, and x the expression value of the gene gi in a condi-
tion assigned to the sub-set. The likelihood of the div-
ision by the TF is the multiplication of the probability of
all the gene expression values in the two sub-sets of con-
ditions. The division and the TF that produced the
highest likelihood were selected. After the first division,
each sub-set of conditions could be furthered divided
into sub-sub-groups by incorporating another TF in the
same way, resulting in a hierarchical, multi-level binary
tree. The first TF selected forms the root of the tree and
other TFs the internal nodes of the tree. A leaf node con-
tains expression values of the genes in the conditions rep-
resented by the leaf node. After a tree was constructed for
each cluster, our method entered into the second step to
re-assign each gene into a tree to produce the highest like-
lihood of its expression values in all the conditions. A gene
was re-assigned to a tree that generated the highest likeli-
hood for its expression values in all the conditions. The
likelihood of the expression values of a gene is the product
of the probability of its expression value in each condition
calculated according to the formula above. The genes
assigned to the same tree formed a new cluster. The new
clusters can be used to construct a new set of regulatory
trees as described above. This process will iterate until the
assignment of genes did not change. The detailed process
can be found in the method [8] developed for constructing
this kind of regulatory modules from microarray gene
expression data.

Function prediction
A software MULTICOM-PDCN [23-25], for protein
structure and function prediction, was used for the ana-
lysis of functional coherence for the referred regulatory
modules. With MULTICOM-PDCN three categories of
functions were predicted for the differentially expressed
genes based on the sub-ontologies (i.e. biological pro-
cesses (P), molecular function (F) and cellular compo-
nent (C)) [25,26].

Results and discussion
Differential expression gene analysis
With the EdgeR [17] package, we set the adjusted p-value
to 0.05 as the threshold to select the different expression
genes (DEGs) based on three comparisons as follows.

� Group 1: In the comparison between root hairs at
12 hours after rhizobium inoculation vs mock
inoculation, we identified 1101 DEGs.

� Group 2: In the comparison between root hairs at
24 hours after rhizobium inoculation vs mock
inoculation, we identified 2168 DEGs.

� Group 3: In the comparison between root hairs at
48 hours after rhizobium inoculation vs mock
inoculation, we identified 3081 DEGs.

The total number of DEGs identified regardless of in-
oculation time was 4606. The number of DEGs consist-
ently found at all the time points was 354. Figure 1 shows
the numbers of each gene set.
In order to test the stability of identifying DEGs, we

also used DEGseq to select the DEGs. Taking the genes
in the comparison between 12 hours after rhizobium in-
oculation to mock inoculation, we compared the results
of selected DEGs with DEGseq and EdgeR (Figure 2).
All the DEGs selected with EdgeR are included in those
with DEGseq. Therefore, for our further analyses we
used the DEGs selected with EdgeR.

Initial gene clustering
In order to construct gene regulatory modules, we
clustered each group of genes or their overlap de-
scribed above into clusters. The key issues are to de-
termine how many clusters there should be and what
average size (number of genes) the clusters should
have. We tested different numbers of clusters to do
clustering and obtained a series of average correlation
coefficients and average cluster sizes. Figure 3 illustrates
the plots of average correlation coefficients against average
cluster sizes for clustering on each list of genes. The
number of clusters balancing both correlation coefficients
and cluster sizes eventually chosen were denoted in the
plots as well.

Regulatory network prediction
We chose the DEGs (354 genes) that were differentially
expressed in all three time points of the rhizobial inocu-
lation study to predict regulatory network modules.



Figure 1 Selection of differentially expressed genes (DEGs). a: DEGs selection process; b: with p value threshold of 0.05, the DEG numbers of
each set.
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These genes were likely to be important since their ex-
pression predicts that they play a role through the nodu-
lation formation process. Although chosen from the
rhizobial inoculation experiment, the expression values
of these genes under all 34 of the experimental condi-
tions available were used to construct the regulatory net-
work. Based on these DEGs, 10 modules were generated
(see Part A in the Additional file 1). In the module 9
(see Figure 4), we found the regulator 'Glyma04g00210', a
known transcriptional factor [10] that functions in nodula-
tion. Another transcription factor, Glyma08g10140, sig-
nificantly matches LOC_Os03g15680.1 (E-value = 3e-45)
according to sequence alignment, which is a nodulation-
signaling pathway 2 (NSP2) protein in the rice genome, in
the transcription factor database [27]. The de novo predic-
tion that these specific TF genes are involved in nodula-
tion from our cluster analysis matches closely with the
literature and gave us confidence that our methods did
identify physiologically relevant regulatory modules.
We conducted functional analyses on the genes in the

module to further validate the predicted relationships
between TFs and their targets. We used MULTICOM-
PDCN [23,25] to predict the functions of 13 genes in the
module and then identified significantly enriched func-
tions with p-values less than 0.01. Some functions, such as
response to biotic stimulus, defense response, cis-zeatin
O-beta-D-glucosyltransferase activity, and trans-zeatin
O-beta-D-glucosyltransferase activity, were signifi-
cantly enriched for this module (Table 1). These two
glucosyl transferase enzymes are responsible for con-
jugating a glucosyl moiety to the cytokinin, zeatin [28].
Glucosyl- zeatin has been hypothesized to be significant in
storage or transport [28]. This form of zeatin has also
been shown to be resistant to degradation [29]. Cytokinins
such as zeatin are involved in cortical cell division, which
is vital in the formation of nodule organs in legume plant
roots [30,31]. They have also been found to bind proteins
including Lotus histidine kinase (LHK1) and Medicago
truncatula cytokinin response (MtCRE) in the cortex
inducing nodule organogenesis [32,33].
Moreover, we used MEME [34] and TomTom [35] to

predict the TF binding sites of genes in the module. Two
domain classes that were predicted are the BetabetaAlpha-
zinc finger and the Leucine Zipper. The leucine zipper is a
super-secondary structure that functions as a dimerization
domain, which consists of multiple leucine residues at ap-
proximately 7-residue intervals. Interestingly, some TFs
predicted for this module are in the GRAS family, which
often possess the leucine heptad repeat (LHR) domains
[36]. The matching between predicted TFs and DNA



Figure 2 Overview of the genes differentially expressed when comparing roots mock inoculated with those inoculated with Bradyrhizobium
japonicum. (a) Differentially expressed genes on the MA-plot. (b) Histogram of the number of reads for inoculated genes after 12 hours.
(c) Boxplot of read counts for each group. (d) Scatterplot comparing the number of reads for each gene for inoculated and un-inoculated after
12 hours. (e) Histogram of the number of reads for un-inoculated genes after 12 hours. (f) Differentially expressed genes separately chosen by
DEGseq and EdgeR.

Figure 3 Determination of number of clusters. The initial cluster number for each group is determined based on the change trend between
average correlation coefficient of expression values of genes in the same clusters and average size of clusters (i.e. number of genes in the cluster).
The rectangle fields show the drastic change on correlation coefficients and cluster sizes. Here, group 1 represents the DEGs based on the
comparison at 12 hours; group 2 represents the DEGs based on the comparison at 24 hours; group 3 represents the DEGs based on the
comparison at 48 hours; overlap represents the genes differentially expressed based on the comparisons at all three time points.
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Figure 4 Module 9 generated based on overlapped DEGs. The tree-like upper part visualizes the predicted regulatory decision tree of the
module, where a tree node (i.e. color bar) represents a query on the expression level of a predicted TF and a branch (i.e. arrowed edge) denotes
a yes / no answer (highly / lowly expressed or not) to the query. The family names and gene IDs of the predicted TFs are listed above the nodes.
A path from the top to a sub-set of conditions shown in the square box at the bottom predicts that the TFs on the path collaboratively regulate
the expression of the genes in these conditions. For example, the right most path suggests that, if Homeodomain is highly expressed, Nin-like
highly expressed, and GRAS highly expressed, the genes in the modules will be regulated in the nodulation conditions (i.e., conditions 34 and 3).
The colored square box visualizes the expression levels of all genes in the module across all the conditions, where a row denotes a gene and a
column denotes an experimental condition. The color bar on the right illustrates a specific color with an expression value, from the lowest
(green) to the highest (red). The numbers at the bottom of the figure corresponds to the experimental conditions, which are described in details
in the Additional file 1.
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binding sites might indirectly support the prediction of the
gene regulatory module.
Nodulation signaling protein (NSP) is a GRAS-like

transcription factor comprised of a variable N- terminal
domain and a highly conserved C-terminal domain [37].
NSP1 and NSP2 were first identified in the legume plant
Table 1 The enriched functions of genes within the gene
regulatory module 9

GO term Functions P-value

GO:0009607 P:response to biotic stimulus 6.74236E-04

GO:0010224 P:response to UV-B 2.32667E-02

GO:0006952 P:defense response 1.16894E-02

GO:0050502 F:cis-zeatin O-beta-D-glucosyltransferase
activity

4.00410E-02

GO:0050403 F:trans-zeatin O-beta-D-glucosyltransferase
activity

4.09650E-02

GO:0005199 F:structural constituent of cell wall 6.22214E-03

GO:0005618 C:cell wall 2.05644E-02

P-value is calculated based on the hypergeometric distribution. 27089 soybean
genes were annotated by MULTICOM-PDCN [25] according to Gene Ontology
function terms. The prefix P: biological process; F: molecular function;
C: cellular component.
Medicago and found to be vital for changes in gene ex-
pression induced by Nod factor signaling [38,39]. The
NSP transcription factors have also been identified as es-
sential for nodule formation in another legume, Lotus
japonicus [40]. Recently, soybean homologues of NSP1
and NSP2 have been shown to be regulated by root hair
infection by Bradyrhizobium infection [11].
Additional file 2: Figure S1 illustrates the fifth gene

regulatory module. This module contains 37 genes.
According to the MULTICOM-PDCN function pre-
dictions, the significantly enriched functions include
nodulation, gibberellic acid mediated signaling pathway,
gibberellin 3-beta-dioxygenase activity, glutamate dehydro-
genase [NAD (P)+] activity, and flavanone 4-reductase
activity, which are directly or strongly related to nodular
formation and development [41,42]. The DNA bind-
ing site analysis on the genes in the module pre-
dicted BetabetaAlpha-zinc finger, Stat, Homeo, and
Helix-Loop-Helix leucine zipper domains. Among them,
Stat and Leucine zipper are the typical domains of GRAS
family [36,43,44] predicted for the module. Homeo
domain is also consistent with the TF (MYB/HD-like,
Homeodomain) predictions.
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The supporting evidences of all the 10 modules are
listed in the Table 2. These modules were assessed from
four aspects: (1) function enrichment of genes in a mod-
ule, (2) interaction potentials between TFs regulating a
module predicted by STRING [45], (3) the goodness of
fit between the motifs extracted from upstream of genes
in a module and the annotated target motifs of the TFs
regulating the module, and (4) literature confirmation of
the regulatory function of TFs and the genes in corre-
sponding experimental conditions. Most modules can be
partially supported by the potential interactions among
the predicted TFs within these modules predicted by
STRING or by the possible match between the DNA
binding motifs of the putative TFs and the conserved
motifs in the upstream sequences of the genes in the
modules. Some relationships between the nodulation de-
velopment and the gene function of modules based on
biological experiments were reported in the previous
work [41,46-51].

Incorporation of prior biological knowledge into network
construction
Previous studies [52] implicated specific transcription
factors as key regulators of nodule formation and de-
velopment. According to [52], these key regulators belong to
NIN-like, Bzip, GRAS, C2H2 (Zn), HomeoDomain and
CCAAT families. In order to specifically incorporate this
prior information into the gene regulatory network con-
struction, we constructed gene regulatory modules based on
these six pre-selected transcription factor families, resulting
in 10 modules (see F1-F10 in Part B in the Additional file 1).
For example, in module 9, 5 regulators belonging to
these 6 family (i.e., Glyma06g03200, Glyma04g00210,
Glyma11g33720, Glyma08g10140, Glyma18g04500) were
Table 2 The 10 modules based on overlapping genes and som

Module Representative enriched biological process* Gen

1 gibberellic acid mediated signaling pathway

2 polyamine biosynthetic process

3 flavonoid biosynthetic process

4 cytokinin biosynthetic process

5 Nodulation

6 regulation of cytoskeleton organization

7 pattern specification process

8 response to stress

9 response to UV-B

10 nitrile biosynthetic process

Column 1 lists id of the module. Column 2* reports the representative enriched GO
the corresponding GO lists. Column 4 is the percent of genes in each module partic
processes in Table 2 with the significance p < 0.05. Column 5 (I$) shows if there are
according to the STRING prediction and the BLAST homology search. Column 6 (M&
motifs extracted from the upstream sequences of the regulated genes in the modu
between the nodule development or formation and the gene function of the modu
predicted to regulate the module. This experiment dem-
onstrated that prior biological knowledge could be incor-
porated into our gene regulatory network construction
framework if necessary.
Incorporation of non-differentially expressed TFs into
network construction
Thus far, we have focused on constructing gene regula-
tory networks from differentially expressed genes. How-
ever, this approach may miss some TFs, critical to the
biological process, but whose expression level does not
change appreciably in the datasets available. To address
this issue, we incorporated different percent of the non-
differentially expressed transcription factors into the net-
work construction. We then compared the modules
constructed in these different scenarios in order to
check how well the same TF-TF relation, TF-target rela-
tion, and gene-gene relation were preserved in these
modules, i.e., how many pairs of these three relations
mentioned above still can be predicted together. Here we
use Rand index [45] to calculate the overlap of the three
relations. Given a set of n elements S = {O1,O2,…On} and
two partitions of S to compare, X = {x1, x2,… xr} and Y =
{y1, y2,… ys}, the Rand index is calculated as R ¼ aþb

aþbþcþd,
a, the number of pairs of relations in S that are in the
same set in X and in the same set in Y; b, the number
of pairs of relations in S that are in different sets in X and
in different sets in Y; c, the number of pairs of relations
in S that are in the same set in X and in different sets in
Y; d, the number of pairs of relations in S that are in dif-
ferent sets in X and in the same set in Y. Additional file 2:
Figure S2 reports how Rand indices change with different
portions of non-differentially expressed TFs incorporated.
e of their evidence supports

e number Coherence (%)+ I$ M& L#

57 7 √ √ [32]

52 4 √ √ [33]

48 6 √ √ [34]

35 3 √ √ [35]

28 7 √ √ √

32 3 √

11 9 √

34 9 √ √ [36]

13 8 √ √ √ [37]

44 2 √ √ [38]

biological processes in these modules. Column 3 is the number of genes in
ipating in the biological process, and + presents all of the GO biological
at least two predicted TFs in the module existing the interaction relation
) reports if the DNA binding motifs of some predicted TF families matched the
les. Column 7 (L#) lists if previous literature had reported the relationship
le.



Figure 5 Module 41 generated based on DEGs identified from roots 24 hours after rhizobia inoculation.

Table 3 The binding site analysis for the gene regulatory
module 41 at nodulation stage of 24 hours

TF family or domain
by TOMTOM

p-value Motif based on the genes

High Mobility Group 3.29431E-05 CTTTTTTTCTCTTTTTTT

BetaBetaAlpha-zinc finger 4.82488E-05 CACCCACACACACAAACA

BetaBetaAlpha-zinc finger 4.89364E-05 CCCCCTCCACC

TATA-binding 7.80973E-05 TATATATATATATATATA

Leucine Zipper 9.65926E-04 GGGGGGCATCACGGTGGC
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It is shown that when the percent of non-differential ex-
pression transcription factors is under 10%, the predicted
relations are relatively stable, i.e., most TFs and genes pre-
dicted for a module under random perturbation by intro-
ducing a small fraction of non-differentially expressed TFs
into candidate TF lists are the same.

Gene regulatory modules predicted for each stage of
nodulation
The gene regulatory modules described above were
constructed for the genes differentially expressed in all of
the three different time points sampled during nodule for-
mation. Similarly, we also constructed the gene regulatory
modules for genes differentially expressed in a certain stage
(12, 24, or 48 hours) in nodulation formation. In this case,
the TF expression status (up, down, norm) was determined
by comparing the expression level at the selected specific
condition with the other conditions. We used the RNA-Seq
data [11] generated under 14 experimental condition
(corresponding to the number from 3 to 16: 12HA1_IN_RH,
12HA1_UN_RH, 24HA1_IN_RH, 24HA1_UN_RH, 48HA1_
IN_RH, 48HA1_Scripped_Root, 48HA1_UN_RH, Green_
Pods, Leaves, Nodule, Root, Root_Tip) to construct the
modules for the genes differentially expressed in each of
the three nodulation stages. All the modules predicted for
the three stages are listed in Additional files 3, 4, and 5, re-
spectively. By way of example, we describe one module in
detail below.
Module 41 (Figure 5) is one module predicted from the

data derived 24 hours after inoculation. This module
contains 6 nodulation related genes: Glyma16g01020,
Glyma18g02230, Glyma17g08110, Glyma02g36580,
Glyma04g00210, Glyma07g04430 [10]. We predicted 4
transcription factors: Glyma11g33720, Glyma11g19480,
Glyma05g20710, Glyma08g22850, which separately be-
long to GRAS, C2H2(ZN), WRKY and TPR families.
With the binding site analysis, the four most signifi-
cant TFs are, separately, the High Mobility Group,
BetaBetaAlpha-zinc finger, TATA-binding and Leucine
Zipper. Leucine Zipper domain is one of typical do-
mains of GRAS family [36], and BetaBetaAlpha-zinc finger
superfamily contains C2H2(ZN) family [53] (Table 3). The
enriched functions include response to gibberellin stimu-
lus, gibberellin biosynthetic process, and nodulation
(Table 4). The prediction of GRAS family TFs for the
module is largely consistent with their reported role in
root and shoot development and gibberellic acid signaling
[54], and in nodulation [55,56].



Table 4 The enriched functions of genes in the gene
regulatory module 41 at nodulation stage of 24 hours

GO term Functions P-value

GO:0042545 P:cell wall modification 7.76836E-07

GO:0009639 P:response to red or far red light 1.46641E-03

GO:0006032 P:chitin catabolic process 7.70352E-05

GO:0042744 P:hydrogen peroxide catabolic process 2.11711E-05

GO:0007047 P:cellular cell wall organization 2.64477E-06

GO:0009739 P:response to gibberellin stimulus 2.07483E-03

GO:0006949 P:syncytium formation 8.69996E-04

GO:0009686 P:gibberellin biosynthetic process 7.38468E-03

GO:0006073 P:cellular glucan metabolic process 3.89541E-02

GO:0009607 P:response to biotic stimulus 1.94115E-03

GO:0009877 P:nodulation 4.04420E-02

GO:0006952 P:defense response 7.89696E-03

GO:0009820 P:alkaloid metabolic process 1.51887E-02

P-value is calculated based on the hypergeometric distribution. The prefix P:
biological process; F: molecular function; C: cellular component.
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Module evaluation
Similar with Joshi et al. [57], we used a random experi-
ment and probability distribution to assess the reliability
of the modules. For a predicted module, we randomly
re-assigned the same number of genes to form the TF
regulatory tree of the same topology to generate a ran-
dom tree and repeated the process1000 times.
Figure 6 Evaluation of Predicted Modules (or Models). (a) Histogram o
based on overlap DEGs; (b) Histogram of log(p) of predicted modules and
predicted modules and random modules based on group2 DEGs; (d) Histo
group3 DEGs. All histograms are normalized to have an area equal to 1.
Assuming that a regulatory tree divided experimental
conditions into a set of sub-groups - S = {S1, S2,… Ss} and
the mean and standard deviation of the gene expression
values in a sub-group Sk were μk and σk, respectively. The
genes within a module M = {g1, g2,… gn} under certain
condition were assigned to the sub-group yielding a prob-

ability score: log pj
� �

e
Xn
i¼1

−
xij−μk
� �2
2σk2

−ln σkð Þ , where xij

was the expression value of gi under condition j. The log
(pj) values (a measure of likelihood of data under the mod-
ule) of modules predicted by our algorithm and generated
by random experiments have the different distributions in
Figure 6 (a). A higher value of log(pj) suggests that a mod-
ule predict the expression values of the genes better.
The average of log(pj) for 10 predicted modules under

all conditions is −1.2062 and the range of averages for the
random modules generated by 1000 random experiments
is [−2.0703, -1.9758]. The range of the standard deviations
of log(pj) for the random modules generated by 1000 ran-
dom experiments is [0.2575, 0.3533], whereas the standard
deviation for the predicted modules is 0.4667. The data
show that our method reconstructs the gene regulatory
modules with substantially high log(pj) (i.e. likelihood),
which suggests the more accurate prediction of the out-
come of experiments [57].
In order to investigate the robustness of the method

with respect to the thresholds of selecting differentially
f log(p) (i.e. log-likelihood) of predicted modules and random modules
random modules based on group1 DEGs; (c) Histogram of log(p) of
gram of log(p) of predicted modules and random modules based on
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expressed genes, we used 0.0001 p-value threshold ra-
ther than the common threshold 0.05 to select overlap
DEG genes in all three nodulation stages for gene regula-
tory network construction. The results showed that the
gene regulatory modules constructed under 0.0001 thresh-
old were smaller due to a small size of DEG genes, but al-
most completely overlapped with the large modules
constructed under threshold 0.05 (data not shown). The
experiment suggests that our gene regulatory construction
process is rather stable against the threshold of selecting
differentially expressed genes.

Conclusions
In this work, we focus on inferring the gene regulatory
modules related to soybean nodule development and for-
mation from RNA-Seq transcriptome data. Our method
was able to construct gene regulatory networks for differ-
entially expressed genes in a number of biological condi-
tions. The method can also incorporate non-differentially
expressed TFs or pre-selected TFs into network construc-
tion and predict their target genes. Some of predicted TF-
gene relationships were validated by DNA binding site
analysis, gene function enrichment analysis and previous
research. Furthermore, the gene regulatory network pre-
diction clearly also identified TFs not previously shown
to play a role in nodulation and, therefore, should stimu-
late research to explore their function. For example, in
some modules, TFs belonging to the AUX-IAA-ARF
family were predicted, which may be consistent with
previous work [58] reporting that hormones (e.g. auxin and
cytokinin) play a role in nodule formation. NODCON1GM
(sequence pattern: AAAGAT) and NODCON2GM
(sequence pattern: CTCTT) were two putative nodulin
consensus sequences investigated in [59]. We searched
these two patterns in the up-stream sequences of all pre-
dicted gene modules and the results were reported in
the Additional files 1, 3, 4 and 5.
In addition to being applied to the soybean RNA-Seq data

in this case study, the method can be similarly employed to
analyzing the RNA-Seq data of any other species. With the
large amount of RNA-Seq data being produced for many
species under various biological conditions, our method
should become a useful tool to infer gene regulatory logic
from these data at a systems level. The predicted regulatory
relationships can be used to generate hypotheses for
designing biological experiments.
Additional files

Additional file 1: Modules based on overlapping DEGs. Part A:
Module 1–10 generated based on overlapped genes with all included
TF families. Part B: Module F1-F10 generated based on overlapped genes
with pre-selected six families (NIN like, Bzip, GRAS, C2H2 (Zn),
HomeoDomain and CCAAT).
Additional file 2: Figure S1. Module 5 generated based on the
overlapped DEGs; Figure S2. Module stability after incorporating
different percent of non-differential expressed TFs.

Additional file 3: Modules generated based on the 12-hour DEGs.

Additional file 4: Modules generated based on the 24-hour DEGs.

Additional file 5: Modules generated based on the 48-hour DEGs.
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