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Abstract

Background: Analysis of global gene expression by DNA microarrays is widely used in experimental molecular
biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the
underlying biological features present in the data.
The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation
of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global
gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa
isolated from the airways of cystic fibrosis patients.

Results: Our analysis clustered samples into distinct groups with comprehensible characteristics since the
archetypes representing the individual groups are closely related to samples present in the data set. Significant
changes in gene expression between different groups identified adaptive changes of the bacteria residing in the
cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation
rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection
in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely
related to adaptation of the bacteria.

Conclusions: Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of
clustering and matrix factorization made it possible to reveal minor similarities among different groups of data,
which other analytical methods failed to identify. We suggest that this analysis could be used to supplement
current methods used to analyze DNA microarray data.
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Background
DNA microarrays simultaneously monitor expression
levels of thousands of genes, and this technology is widely
used in experimental molecular biology. However, the
complexity of such high-dimensional data sets makes it dif-
ficult to fully comprehend the underlying biological fea-
tures present in the data. Different dimension reduction
techniques aim to find patterns in high complexity data
sets. The choice of analytical method can influence the in-
terpretation of the data, and it can be useful to combine
different methods.
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K-means clustering and principal component analysis
(PCA) are techniques for unsupervised pattern recogni-
tion commonly used in microarray data analysis. K-means
clustering aims to group samples (or genes) with similar
behavior [1]. Each sample is then assigned to a cluster rep-
resented by a cluster centroid. PCA is an orthogonal linear
transformation transforming the data into a new coord-
inate system where the axes are oriented to account for
maximal variation in the data set. PCA decomposes
data into a set of uncorrelated variables called principal
components [2-4].
Clustering approaches give easy interpretable features

but pay a price in terms of modeling flexibility, because
each sample must be grouped in only one cluster and no
intermediate between clusters is allowed. PCA on the
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other hand can lead to complex representations from
which we learn relatively little about the data. Archetypal
analysis (AA) combines the virtues of both clustering
and PCA in that AA results in easy interpretable compo-
nents that have added flexibility over clustering by
allowing intermediates [5]. Cutler and Breiman first intro-
duced AA in 1994, where they used AA to analyze air pol-
lution and head shape [6]. Later, AA has been applied in
the identification of extreme practices in benchmarking
and market research and signal enhancement and feature
extraction of IR image sequences [7,8]. Recently, AA has
been shown to be useful in extracting features from differ-
ent high-dimensional data sets including neuroimaging,
computer vision and text mining data sets [5] and also in
identifying extreme and representative human genotypes
within the human population [9].
AA estimates the principle convex hull of a data set.

The convex hull can be described as a minimal set of
points that can wrap a given data set. The idea of AA is
to find a few representative points (archetypes) in a data
set such that all data can be described as a convex com-
bination of these archetypes. The archetypes are related
to experimental data but they are not necessarily ob-
served points in the data set. Each archetype represents
distinct characteristic features. Explaining data as a com-
bination of these features can make the data set easier
to interpret [5]. Unlike PCA, AA is not restricted by
orthogonality, and it is possible that this method will
clarify biologically meaningful features that are not dis-
covered by PCA, while resulting in a more detailed ac-
count of the data than given by clustering approaches
such as k-means clustering.
AA has been shown to be useful in extracting features

from different high-dimensional data sets. So far, the
method has not been applied to gene expression data des-
pite clear advantages such as the intuitive and straight-
forward interpretation of the AA components. AA can be
considered an unmixing approach that decomposes each
observation into a weighted average of features defining
distinct aspects in the data. In the related unmixing frame-
work for gene expression data proposed in [10] the data is
projected to a PCA subspace. In this subspace each obser-
vation is defined as convex combinations of features
forming the simplex with smallest volume among candi-
date simplices that are found by an iterative boundary
growing procedure that is terminated when all obser-
vations are enclosed. Contrary to this framework, AA
operates directly on the full data and as the features are
constrained to be convex combinations of the observations
the archetypes will not in general enclose all observations.
Variation of phenotypes found in nature has recently

been described as weighted averages of archetypes, where
archetypes represent phenotypes that are optimized for a
single adaptive task [11]. The phenotype space will often
be arranged in a simple geometric shape where archetypes
represent the corners, and the closer a point is to a corner
the more important the corresponding task is to fitness in
the organism’s habitat [11]. From this it can be concluded
that it is possible to identify the tasks that are important
for fitness by analyzing these corners [12]. Furthermore,
the variation within a species (the combination of arche-
types) reflects the different environments it inhabits [11].
The message of the paper by Shoval et al. (Science) [11]
clearly illustrates the value of AA and the idea of consider-
ing a phenotype space as a combination of extreme but
representative points, which is exactly the concept of this
present analysis: Archetypal Analysis.
In this study, we apply AA to five gene expression data

sets for Pseudomonas aeruginosa isolated from the lungs
of cystic fibrosis patients. The five data sets were based
on different experimental conditions including growth
medium and growth state during cell harvesting. A method
like PCA most likely captures this experimental variance in
the first few components. The first components will make
restrictions for the additional components due to the or-
thogonality constraint, and information that is linked to
the real biological difference between the samples may be
difficult to extract. Since AA is not restricted by orthogon-
ality like PCA, we propose that AA will be able to extract
biological information despite the different experimental
conditions of the five studies. We show how AA succeeds
in identifying genes that undergo changes in gene expres-
sion during evolutionary adaptation of the bacteria to the
cystic fibrosis lung.

Methods
The diagram in Figure 1 illustrates the process of AA.
First data is collected and pre-processed. Pre-processing
includes extraction of the raw data cel-files in R by use
of the package affy [13]. Then, data is normalized using
the qspline method [14] and gene expression index values
are calculated using robust multiarray average expression
measure [15]. The next stage is to apply the AA algorithm
to the expression matrix and calculate explained variance
in order to evaluate the solution. Once the archetypes
are defined, it is possible to see how samples cluster to-
gether based on their relation to the archetypes. Finally,
the archetypes can be characterized in a biological con-
text based on their gene expression profiles. The gene
expression values were not calculated relative to control
strains since different control strains were used across
the five analyzed studies.

Data collection
We analyzed cDNA microarray data from four previously
published in vitro studies (study 1–4) of P. aeruginosa sam-
pled from CF lung infections. Three of the data sets were
obtained from the online NCBI Gene Expression Omnibus



Figure 1 Flow diagram of the archetypal analysis. First, data is collected and pre-processed. Then, Archetypal Analysis is applied resulting in a
clustering of samples based on the closest defined archetype. Finally, the archetypes are characterized and evaluated in a biological context.
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(GEO) Database with the accession numbers GSE21966
[16], GSE31227 [17] and GSE10362 [18]. The fourth data
set by Lee et al. [19] was obtained through request directly
to the corresponding author. A fifth data set was generated
for this study (study 5). An overview of the microarray data
set is shown in Table 1.
Study 1 [16]. This gene expression data set consists of

17 samples (in duplicates) representing clonal isolates
sampled from three CF patients on timescales ranging
from 3 months to 8 years. Two of the patients each har-
bored a unique clone (A and B), whereas a strain replace-
ment occurred in the third patient, and two individual
clones Ca and Cb were therefore isolated from this pa-
tient. For each isolate, information about colony mor-
phology is available, and for the present analysis, we
grouped these morphotypes into two categories: Mucoid
(‘mucoid’ morphotypes) and non-mucoid (‘dwarf ’ and
‘classic’ morphotypes).
The experimental procedures are fully described by

Huse et al. [16]. In brief, cells were grown in synthetic cys-
tic fibrosis sputum medium (SCFSM) to an optical density
read at 600 nm (OD600) of 0.4-0.5 prior to Affymetrix
P. aeruginosa GeneChip microarray analysis. The strains
P. aeruginosa PAO1 and P. aeruginosa PA14 (referred to
as PAO1 and PA14 respectively) were included as controls
in their study. PAO1 was originally isolated from a burn
wound [20] and has been widely used as a reference strain
for studies of P. aeruginosa. PA14 is a highly virulent
laboratory strain that most likely represents an environ-
mental strain of P. aeruginosa, although it has also been
isolated from CF lungs in Europe [21,22].
Study 2 [17]. This data set consists of different clonal

lineages isolated from the lungs of CF patients (B6, B12,
B38, CF30, CF46, CF66, CF105, CF114, CF173, CF211,
CF243, CF333 and CF506) between 1973 and 2008 span-
ning early stage infection to chronic stage infection [23].
Many of the isolates from study 2 share the same clonal
type called “DK2”. The data set consists of 29 samples in
triplicates. One group of samples was isolated from CF
children between 2006 and 2008 and these isolates rep-
resent early stage infection. Each isolate was character-
ized based on two colony morphotypes; mucoid and
non-mucoid. The data set includes a sequential mucoid
and non-mucoid paired strain, where the non-mucoid
strain (B38-2NM) was generated in vitro by allelic re-
placement of its mucA allele [24]. Cells were grown in
Luria-Bertani (LB) medium to OD600 of 0.5 (OD600 = 1
for samples #129-140) prior to Affymetrix P. aeruginosa
GeneChip microarray analysis. PAO1 was included as con-
trol in this study.
Study 3 [19]. This data set consists of twelve clonally re-

lated, sequential mucoid and non-mucoid paired P. aeru-
ginosa isolates. The isolates were obtained from three CF
patients. All isolates from study 3 share the same clonal
type called “DK1”. Cells were grown in beef broth (BB) to
an OD600 of 1 prior to Affymetrix P. aeruginosa GeneChip
microarray analysis. Each experiment was done in du-
plicate. Isolates with high mutation rates (hereafter,
“hypermutators”) were identified within the data set.
Study 4 [18]. This data set consists of eight sequential

isogenic isolates recovered over a period of three to five
years from a single CF patient (patient M). The isolates in-
cluded both hypermutators and non-hypermutators and
one isolate was mucoid. Cells were grown in LB medium
and harvested during late-logarithmic growth phase at op-
tical density above 3. Each sample was triplicated.
Study 5 (this study). This data set consists of four iso-

lates from the same patient (CF211). The isolates are two
mucoid/non-mucoid pairs isolated together in 1997 and
2006 respectively. Cells were grown in BB to an OD600 of 1
prior to Affymetrix P. aeruginosa GeneChip microarray
analysis. Microarray data were generated using Affymetrix
protocols as previously described [23]. Each experiment
was done in triplicates. The isolates share the same clone
type “DK2” as many of the isolates from study 2, but the
experimental conditions are similar to those in study 3.

Archetypal analysis
The fundamental principle of AA is briefly introduced
below. AA is fully described by Cutler and Breiman [6].
AA is defined by the decomposition

X≈XCS;

s:t: C ≥ 0;
XN
n¼1

cnd¼1; S ≥ 0;
XD
d¼1

Sdn¼1:



Table 1 List of samples

Sample # Sample name Study Patient Clone Year Mucoid Mutator State1 Medium2 OD3

[1,2] Huse_A1 Study 1 A “A” ~1983 No N/A Early SCFSM 0.4-0.5

[3,4] Huse_A2 Study 1 A “A” ~1984 No N/A Early SCFSM 0.4-0.5

[5,6] Huse_A3.1 (m) Study 1 A “A” ~1985 Yes N/A Early SCFSM 0.4-0.5

[7,8] Huse_A3.2 Study 1 A “A” ~1985 No N/A Early SCFSM 0.4-0.5

[9,10] Huse_A4 (m) Study 1 A “A” ~1986 Yes N/A Early SCFSM 0.4-0.5

[11,12] Huse_B1 Study 1 B “B” ~1983 No N/A Early SCFSM 0.4-0.5

[13,14] Huse_B2.1 Study 1 B “B” ~1987 No N/A Late SCFSM 0.4-0.5

[15,16] Huse_B2.2 Study 1 B “B” ~1987 No N/A Late SCFSM 0.4-0.5

[17,18] Huse_B2.3 (m) Study 1 B “B” ~1987 Yes N/A Late SCFSM 0.4-0.5

[19,20] Huse_B3.1 (m) Study 1 B “B” ~1991 Yes N/A Late SCFSM 0.4-0.5

[21,22] Huse_B3.2 Study 1 B “B” ~1991 No N/A Late SCFSM 0.4-0.5

[23,24] Huse_B3.3 (m) Study 1 B “B” ~1991 Yes N/A Late SCFSM 0.4-0.5

[25,26] Huse_Ca1 Study 1 C “Ca” ~1983 No N/A Early SCFSM 0.4-0.5

[27,28] Huse_Ca2 (m) Study 1 C “Ca” ~1983 Yes N/A Early SCFSM 0.4-0.5

[29,30] Huse_Cb1 (m) Study 1 C “Cb” ~1987 Yes N/A Early SCFSM 0.4-0.5

[31,32] Huse_Cb2 Study 1 C “Cb” ~1987 No N/A Late SCFSM 0.4-0.5

[33,34] Huse_Cb3 (m) Study 1 C “Cb” ~1987 Yes N/A Late SCFSM 0.4-0.5

[35-36] Huse_PA14 Study 1 N/A “PA14” N/A No N/A wt SCFSM 0.4-0.5

[37-38] Huse_PAO1 Study 1 N/A “PAO1” N/A No N/A wt SCFSM 0.4-0.5

[39-41] Yang_PAO1 Study 2 N/A “PAO1” N/A No N/A wt LB 0.5

[42-47] Yang_CF510-2006 Study 2 N/A “WTB” N/A No N/A N/A LB 0.5

[48-50] Yang_B6.0 Study 2 B6 “B6” ~2005 No N/A Early LB 0.5

[51-53] Yang_B6.4 Study 2 B6 “B6” ~2007 No N/A Early LB 0.5

[54-56] Yang_B12.0 Study 2 B12 “B12” ~2005 No N/A Early LB 0.5

[57-59] Yang_B12.4 Study 2 B12 “B12” ~2007 No N/A Early LB 0.5

[60-62] Yang_B12.7 Study 2 B12 “B12” ~2009 No N/A Early LB 0.5

[63-65] Yang_B38.1 Study 2 B38 “B38” ~2005 No N/A Early LB 0.5

[66-68] Yang_B38.2 (m) Study 2 B38 “B38” N/A Yes N/A Early LB 0.5

[69-71] Yang_B38.2 Study 2 B38 “B38” ~2005 No N/A Early LB 0.5

[72-74] Yang_B38.6 (m) Study 2 B38 “B38” ~2006 Yes N/A Early LB 0.5

[75-77] Yang_CF43-1973 Study 2 CF43 “DK2” 1973 No N/A Early LB 0.5

[78-80] Yang_CF66-1973 Study 2 CF66 “DK2” 1973 No N/A Late LB 0.5

[81-83] Yang_CF105_1973 Study 2 CF105 “DK2” 1973 No N/A Early LB 0.5

[84-86] Yang_CF114_1973 Study 2 CF114 “DK2” 1973 No N/A Early LB 0.5

[87-89] Yang_CF30-1979 Study 2 CF30 “DK2” 1979 No N/A Late LB 0.5

[90-92] Yang_CF173-1984 Study 2 CF173 ”DK2” 1984 No N/A Late LB 0.5

[93-95] Yang_CF333-1991 Study 2 CF333 ”DK2” 1991 No N/A Late LB 0.5

[96-98] Yang_CF66-1992 Study 2 CF66 “DK2” 1992 No N/A Late LB 0.5

[99-101] Yang_CF333_1997 Study 2 CF333 “DK2” 1997 No N/A Late LB 0.5

[102-104] Yang_CF173-2002 Study 2 CF173 “DK2” 2002 No N/A Late LB 0.5

[105-107] Yang_CF243-2002 Study 2 CF243 “DK2” 2002 No N/A Late LB 0.5

[108-110] Yang_CF333-2003 Study 2 CF333 “DK2” 2003 No N/A Late LB 0.5

[111-113] Yang_CF173-2005 Study 2 CF173 “DK2” 2005 No N/A Late LB 0.5

[114-116] Yang_CF333-2005 Study 2 CF333 “DK2” 2005 No N/A Late LB 0.5
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Table 1 List of samples (Continued)

[117-119] Yang_CF333-2007.1 Study 2 CF333 “DK2” 2007 No N/A Late LB 0.5

[120-122] Yang_CF333-2007.2 (m) Study 2 CF333 “DK2” 2007 Yes N/A Late LB 0.5

[123-125] Yang_CF333-2007.3 (m) Study 2 CF333 “DK2” 2007 Yes N/A Late LB 0.5

[126-128] Yang_CF66-2008 Study 2 CF66 “DK2” 2008 No N/A Late LB 0.5

[129-131] SD_CF211-1997 (m) Study 5 CF211 “DK2” 1997 Yes N/A Late LB 1

[132-134] SD_CF211-1997 Study 5 CF211 “DK2” 1997 No N/A Late LB 1

[135-137] SD_CF211-2006 (m) Study 5 CF211 “DK2” 2006 Yes N/A Late LB 1

[138-140] SD_CF211-2006 Study 5 CF211 “DK2” 2006 No N/A Late LB 1

[141-142] Lee_CF30-1992 (m) Study 3 CF30 “DK1” 1973 Yes No Late BB 1

[143-144] Lee_CF30-1992 Study 3 CF30 “DK1” 1973 No No Late BB 1

[145-146] Lee_CF30-2001 (m) Study 3 CF30 “DK1” 2001 Yes No Late BB 1

[147-148] Lee_CF30-2001 Study 3 CF30 “DK1” 2001 No No Late BB 1

[149-150] Lee_CF46-1988 (m) Study 3 CF46 “DK1” 1988 Yes No Late BB 1

[151-152] Lee_CF46-1988 Study 3 CF46 “DK1” 1988 No No Late BB 1

[153-154] Lee_CF46-1997 (m) HYP Study 3 CF46 “DK1” 1997 Yes Yes Late BB 1

[155-156] Lee_CF46-1997 HYP Study 3 CF46 “DK1” 1997 No Yes Late BB 1

[157-158] Lee_CF128-1992 (m) Study 3 CF128 “DK1” 1992 Yes No Late BB 1

[159-160] Lee_CF128-1992 HYP Study 3 CF128 “DK1” 1992 No Yes Late BB 1

[161-162] Lee_CF128-2002 (m) Study 3 CF128 “DK1” 2002 Yes No Late BB 1

[163-164] Lee_CF128-2002 HYP Study 3 CF128 “DK1” 2002 No Yes Late BB 1

[165-167] Hob_1998 Study 4 M “M” 1998 No No Late LB >3

[168–170] Hob_1998 (m) Study 4 M “M” 1998 Yes No Late LB >3

[171-173] Hob_1999 Study 4 M “M” 1999 No No Late LB >3

[174–176] Hob_2001 Study 4 M “M” 2001 No No Late LB >3

[177-179] Hob_1999 HYP Study 4 M “M” 1999 No Yes Late LB >3

[180-182] Hob_2001.1 HYP Study 4 M “M” 2001 No Yes Late LB >3

[183-185] Hob_2001.2 HYP Study 4 M “M” 2001 No Yes Late LB >3

[186-188] Hob_2001.3 HYP Study 4 M “M” 2001 No Yes Late LB >3
1Adaptation state (early or late).
2Growth medium for the experiments: Synthetic Cystic Fibrosis Sputum Medium (SCFSM), Luria-Bertani Broth (LB), or Beef Broth (BB).
3Optical density (OD) at 600 nm during cell harvest.
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Where we use the notation S ≥ 0 to denote that
the entries of a matrix S are constrained non-negative.
The archetypes (components) are given as the columns
of the matrix A defined by A = XC such that the col-
umns of A are formed by convex combinations of the
samples.
A K-component AA finds a matrix with elements

Amk defining K M-dimensional archetypes and each
data point can be represented by a convex combin-
ation of these archetypes. Each archetype thereby has
a specific gene profile that is saved in the k’th column
of A, i.e. ak. The coefficients (α1, α2, .., αK) for a given
data point xn are saved in the nth column of the
matrix S, i.e. sn, with elements Skn. The values of these
coefficients range from 0 to 1 and the sum of the co-
efficients equals 1.
The AA algorithm as for PCA and k-means attempts
to minimize the residual sum of squares (RSS).

RSS¼
XM;N

m¼1;n¼1

X‐ASð Þ2mn¼ X‐ASk k2F

Where M is the number of attributes and N the num-
ber of observations.
Determining the characteristics of each of the arche-

types can clarify the features of the data set.
Principal component analysis and k-means clustering
Principal component analysis and k-means clustering
were applied to the same data set.
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Principal component analysis is given by the decom-
position

X≈AS;
s:t: ATA¼I; SST¼D;

where I is the identity matrix and D is a diagonal matrix
with the elements in the diagonal are sorted according
to their magnitude.
In k-means clustering S is constrained to be a binary

assignment matrix such that A = XST (SST)-1 represents
the Euclidean centers of each cluster.

Number of components
For AA, it is necessary to set the number of components
prior to analysis similar to k-means clustering. Our
choice of archetype component was guided by plotting
the explained variance as a function of number of com-
ponents (Figure 2). For the purpose of this study, we
chose to analyze seven components, which kept the num-
ber of components at a minimum while at the same time
Figure 2 Explained variance. The explained variance plotted as a functio
archetypal analysis (AA) and k-means clustering (K-means). The plotted valu
indicated with error bars for k-means clustering. The standard deviations fo
explaining a large part (59.3%) of the variance. The stand-
ard deviation between 10 repeated iterations is very low,
which suggests that the solution is robust. The explained
variance for PCA and k-means clustering with seven com-
ponents were 54.4% and 68.4% respectively. As expected,
the PCA model, which is the most flexible of the con-
sidered models, has a higher explained variance than
AA that in turn has a higher explained variance than
the more restricted k-means clustering.
As a quality measure the deviation between the nth

original data point xn and the derived data point
XCsn based on the seven archetypes was calculated.
The measure is given as the Explained Sample Variance

ESV ¼ ⋅ kxnk
2
F−kxn−XCsnk2F

xnk k2F
⋅

� �
ranging between 0 and 1

where 1 is a perfect match. By evaluating these ESV
values, it is possible to state which data points are well
described by the model. No conclusions should be made
for data points where ESV is low, because these data
points are poorly described by the model.
n of number of components for principal component analysis (PCA)
es are the mean of 10 repeated iterations. The standard deviations are
r archetypal analysis are very small and therefore not visible.
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Characterization of archetypes
Each archetype was characterized based on its specific gene
profile. This was done by identifying genes with statistically
significant transcriptional changes. Genes with more than
a two-fold change in expression value, compared to the
mean expression of the respective gene for all samples,
were indicated as up-regulated whereas genes with less
than 0.5-fold change were indicated as down-regulated.
Genes were assigned to 26 different gene ontology (GO)
classes based on the gene annotation for P. aeruginosa
PAO1 from the Pseudomonas Genome Database [25]. If a
gene was assigned to more than one GO class it was re-
assigned to the most overall GO class (Additional file 1:
Table S1). GO classes that were over-represented within
the group of up-or down-regulated genes were identified
by the Hypergeometric distribution test with significance
level p = 0.01 [26].

Matlab code
The methods mentioned above were implemented in
Matlab unless otherwise stated. The Matlab Code for
AA is available online at http://www.mortenmorup.dk.
This code estimates C and S using a projected gradient
descent iterative approach initialized by the FurthestSum
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Results and discussion
To explore the value of Archetypal Analysis in gene ex-
pression studies, we assembled microarray data from five
separate studies of clinical P. aeruginosa sampled from
CF lung infections [16-19]. These studies measured global
gene expression of different clonal P. aeruginosa isolates
under diverse in vitro growth conditions. The studied
bacterial isolates exhibited different clinically relevant
phenotypes such as mucoidy and hypermutability, were
different clone types, and were isolated from patients
at different time points in relation to disease progression
(Table 1).

Defining archetypes in the data set
AA was performed on a data set with 188 samples in total
(sum of duplicates and triplicates) using the code provided
in [5] and additional codes that are available online (see
Methods section). Seven archetypes were identified for the
integrated data set. The contribution of the individual ar-
chetypes to each sample is visualized as a heat map of the
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gene profiles of the seven archetypes is shown in a den-
drogram based on hierarchical clustering (Figure 3).

Archetypal analysis separates study 2 into two groups
representing adapted and non-adapted isolates
respectively
Archetype 1, 2 and 5 represent samples from study 2.
This appears from Figure 3 by these samples having co-
efficients close to one (100%) in one of the three arche-
types. Study 2 is composed of samples that were isolated
from cystic fibrosis patients from the Danish CF clinic
between 1973 and 2008 [17]. The samples from this study
can be divided into two groups; one group representing
isolates from early infection (hereafter referred to as ‘non-
adapted’ isolates), and one group representing isolates from
long-term chronic infection (hereafter referred to as
‘adapted’ isolates). Archetype 1 represents non-adapted iso-
lates from study 2 including the reference strain PAO1 and
an isolate called CF510-2006 that is considered as an an-
cestor to many of the isolates from study 2 [27]. CF510-
2006 has phenotypic characteristics similar to wild type
environmental P. aeruginosa strains [27]. Archetype 2 rep-
resents adapted isolates from study 2. One of the isolates
from study 2 (triplicate samples #78-80) is best explained
by archetype 2, although it was isolated in 1973 and is con-
sidered as an early isolate with respect to time of isolation.
However, from genomic studies of study 2 it is known that
this isolate has two mutations located in the genes rpoN
and mucA and these mutations are common to the
adapted isolates and they are associated with an adapted
phenotype [23]. This isolate therefore can justifiably be
considered to belong to the group of adapted isolates. The
archetypes 1 and 2 thereby successfully cluster study 2 into
two distinct groups based on adaptation level.
Some of the samples from both groups of study 2 are

also, to a greater or lesser degree, based on archetype 5.
These samples all have a mucoid phenotype characterized
by an over-production of alginate. The transition from a
non-mucoid to a mucoid phenotype is often observed dur-
ing adaptation of the bacteria to the CF lung and this shift
is important for establishment of chronic infections [28].

Characterization of archetype 1, 2 and 5
We next studied the up-and down-regulated genes within
each archetype to find patterns that would suggest specific
biological properties associated with archetype 1, 2 and 5.
Figure 4 shows the distribution of significantly up- and
down-regulated genes with respect to GO classes for these
three archetypes. GO classes that were over-represented
within the group of up-or down-regulated genes were
identified by Hypergeometric distribution test [26].
A full list of up-and down-regulated genes for all arche-

types can be found in Additional file 1: Table S1. From
the archetype characterization in Figure 4A, it appears
that the early strains represented by archetype 1 have a
high expression of genes belonging to the GO class
“Motility and Attachment”. At the same time, they have
a low expression of genes related to “Amino acid bio-
synthesis and metabolism”. The adapted strains repre-
sented by archetype 2 are characterized by up-regulation
of genes related to “Antibiotic resistance and suscep-
tibility”, “Two-component regulatory systems” and genes
“Related to phage, transposon and plasmid” (Figure 4B).
Down-regulated genes belong to the functional classes
“Adaptation, Protection” and “Secreted factors”. These ob-
servations are in agreement with earlier studies examin-
ing the phenotypic differences between non-adapted and
adapted isolates [17,23,24,29]. Archetype 5 was primarily
characterized by a strong up-regulation of genes related to
alginate biosynthesis belonging to the GO class “Secreted
factors” (Figure 4C). This is in agreement with the mucoid
phenotype, characterized by overproduction of alginate
that is observed for all the samples that have an apparent
coefficient for this archetype. This archetype is also charac-
terized by up-regulation of many genes encoding hypothet-
ical proteins and down-regulation of genes involved in
“Motility and Attachment” and “Protein secretion”.
AA succeeds in clustering study 2 into biologically

meaningful groups. At the same time, it is easy to ex-
tract biological features important for all groups. So far,
the AA analysis is verified since the characteristics of the
archetypes 1, 2 and 5 are consistent with results from
genotypic and phenotypic studies of study 2 [23].
The identification of these genes thereby validates this

model and we are able to find biological characteristics
of the different samples by analyzing the archetypes.
For each of the archetypes the lists of up-and down-
regulated genes also include genes encoding hypothet-
ical proteins and it is possible that such genes are also
involved in the adaptation process. For archetype 5
there are a large proportion of up-regulated genes be-
longing to the GO class “hypothetical proteins”. Fur-
ther experimental studies are required to understand
the function of these genes and their relation to the adapta-
tion process.

Parallel adaptation processes are observed between
study 1 and study 2
Archetype 3 is defined close to a subset of samples (#1-10)
from study 1. These samples all have the same genotype
(clone A) and they are considered as non-adapted since
they were isolated early during the infection history of
the patient (cf. Table 1) [16]. This archetype is charac-
terized by up-regulation of genes belonging to the GO
classes “Motility and attachment”, “Protein secretion” and
“Secreted factors” and many of these genes are related to
type III secretion and pilin biosynthesis. Archetype 3 is
characterized by down-regulation of “Antibiotic resistance
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respectively. The values on the x-axes are number of genes.
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and susceptibility” and genes “Related to phage, transposon
and plasmid” (Figure 5A).
Archetype 1 and 3 represent early isolates from study 2

and study 1 respectively. The two archetypes share charac-
teristics with respect to up-regulation of “Motility and at-
tachment” and down-regulation of genes with relation to
“Adaptation and antibiotic resistance”. Hierarchical clus-
tering of the seven archetypes also groups archetype 1 and
3 together shown in a dendrogram in Figure 3A.
Samples #11-15 are the earliest isolates of another

clone (clone B) from study 1 and they are also closely
related to archetype 3. Samples #25-30 represent early
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isolates of two other clones (clone Ca and Cb) from study
1 and they are best described by archetype 3. However,
they also show recognizable coefficients (weak bands in
Figure 3A) for archetype 1, which also indicates the simi-
larity between the non-adapted samples from study 1 and
study 2. This also applies to samples #9-10 that are the lat-
est isolate of the clonal group A from study 1. The refer-
ence strains PA14 and PAO1 are included in study 1 and
they are best described by archetype 1 that also represents
PAO1 samples from study 2. Differences between data
from study 1 and study 2 are therefore most likely to be
due to different clonal lineages more than experimental
differences. Samples #17-24 are late isolates of clone B
from study 1. Unfortunately, the samples are poorly de-
scribed by the model, as indicated by the low ESV values.
However, the samples show similarity to archetype 2
representing the adapted isolates from study 2. Together
these findings suggest that the adaptation processes from
the two studies 1 and 2 are parallel.
Samples #5-6, #9-10, and #27-30 are reported as mu-

coid but they do not appear to be similar to the mucoid
isolates from study 2, where archetype 5 identified all the
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mucoid isolates. However, archetype 5 succeeds in iden-
tifying the mucoid isolates for samples #20, #23-24 (weak
indication) and #33-34.

Archetypal analysis groups the samples from study 5
together with its clonal relatives from study 2 despite
different experimental conditions
Archetype 2 and 5 best describe study 5. The samples
that have a coefficient close to one for archetype 5 are
mucoid and this is consistent to the results for study 2.
The non-mucoid isolates are close to archetype 2, which
represents non-mucoid isolates from study 2 sharing the
same clonal type as the isolates in study 5. This shows
a strong consistency between study 2 and 5, although
study 5 was performed under experimental conditions
similar to those in study 3.
The five analyzed studies were performed under di-

verse experimental conditions including different media
types. We compare the characteristics of the seven de-
scribed archetypes and some of the differences are most
likely due to the effect of the different media. This study
does not account for how the different media alone
affect the transcriptome. However, when we compare the
different archetypes we have seen that the samples cluster
more into groups of clonally related bacteria than into
clusters of samples exposed to the same experimental pro-
cedure e.g. PAO1 in study 1 and study 2 and the samples
from study 2 and study 5. The effect of the diverse media
types does therefore not override the real biological rela-
tion between the bacteria and we justify comparing the
samples from the five studies despite different experimen-
tal procedures. Future investigations of clonally related
bacteria may further examine the effect from the media
alone on the transcriptome.

A single archetype represents hypermutators for study 3
and study 4
Archetype 4 mainly represents study 3. Study 3 is also
composed of samples derived from the Danish CF clinic
representing adapted isolates as for study 2. However,
the samples share another clonal type (DK1) and the ex-
periments are performed under different conditions than
those used for study 2. The differences between arche-
type 2 and 4 are most likely due to clonal differences
more than experimental differences since the same dif-
ferences in experimental conditions did not separate
study 2 and study 5 in this analysis. A plot of enriched
gene ontology classes for archetype 4 similar to plots in
Figure 4 is accessible in Additional file 3. The samples
from study 3 differ from each other as some of them
have a minor recognizable coefficient in archetype 5 or
archetype 6. Archetype 5 represented the mucoid iso-
lates from study 2. All the samples from study 3 that
have a recognizable coefficient for archetype 5 are in fact
mucoid. In this case, knowledge from one study can be
transferred to another study despite the different experi-
mental conditions and clonal types between the two
studies. Archetype 6 represents samples from study 4.
The samples that are closest to this archetype are all
hypermutators.
The samples from study 3 with recognizable coeffi-

cients for archetype 6 are also hypermutators. One of
the hypermutator samples in study 3 is not identified as
having a recognizable coefficient for archetype 6. However,
this sample stands out from the rest of the hypermutators
by also being mucoid. The analysis thereby suggests an
archetype that is able to characterize hypermutators in
general. The similarity of the hypermutators could be due
to similar selective pressures present in the lung environ-
ments of CF patients. This analysis could suggest that the
hypermutators follow the same path of evolution despite
many changes arising as a consequence of mutations.
Hypermutation is often due to mutations in the mutS

or mutL genes that are part of the mismatch repair sys-
tem [30]. The hypermutator trait is often observed for
adapted strains of P. aeruginosa [18,19,31,32] and the
high mutation rate is thought to be advantageous in the
changing host environment due to acceleration of adapta-
tion [18,30]. A reason for the hypermutators to develop a
similar adaptive phenotype, but different from the adapted
non-mutators, could be the chance of obtaining a combin-
ation of multiple adaptive mutations at one time, which is
less likely for strains with a normal mutation rate [32]. An-
other possibility is that the mutS gene or the mutL gene
possesses a regulatory function that is altered due to the
mutation in the respective gene. There is some evidence
that bacteria can sense the missing mismatch repair func-
tion and this will influence transcriptional regulation [33].
This would make a fingerprint on the gene expression
profiles for the hypermutators resulting in similarity be-
tween the gene expression profiles. A third possibility is
that the mutation targets of the hypermutators are biased
due to for example a preference of specific transversions
and transitions and other phenomena [34]. This analysis
suggests that there is a common phenotypic trait between
the hypermutators. The underlying reason needs further
investigation.

Amino acid biosynthesis and metabolism are important
for adaptation to the cystic fibrosis lung
The characteristics of archetype 6 might be used to bet-
ter understand the features shared by the hypermutators.
However, the experimental procedure used for study 4 is
markedly changed since the samples are harvested in
late-logarithmic growth phase (optical density read at
600 nm ≥ 3) compared with exponential growth condi-
tions for study 1, 2, 3 and 5. The observed up-and
down-regulated genes can therefore be ascribed to changes
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Figure 6 Comparison between archetypal analysis, principal component analysis and k-means clustering. Visual representation of a
seven-component analysis using archetypal analysis (AA), principal component analysis (PCA) and k-means clustering (K-means). Explained sample
variance (ESV) for each analysis is included. For each PCA component the contribution to explained variance is indicated. The explained variance
for a seven component analysis is indicated in brackets for each analysis.
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during the transition from exponential to stationary growth
phase more than to changes due to accumulated muta-
tions. In order to exclude effects due to the growth phase,
archetype 6 is compared to archetype 7. Both archetypes
represent samples from study 4. Archetype 7 is mainly rep-
resented by non-hypermutators that constitute isogenic
pairs to the samples represented by archetype 6.
For archetype 7 many GO classes are overrepresented

by either up-or downregulated genes (Figure 5C). This is
most likely due to the different growth conditions in
study 4 compared to the other four studies. The profile
of archetype 7 is very different from the other studies
suggesting significant changes in the transcriptome due to
the change in growth conditions. If we consider archetype
6 (Figure 5B), we do not observe the same dramatic
changes. This can also be seen from the dendrogram in
Figure 3 where archetype 6 is closer to the remaining ar-
chetypes than archetype 7. This could indicate that the
hypermutators represented by archetype 6 are not that
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groups and carriers’) suggesting that these are important
during adaptation of P. aeruginosa to the CF lung for
the hypermutators.
These findings are to a certain extent similar to what
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adaptation together with other metabolic pathways [18].
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the transcriptomic profiles directly, whereas in this analysis
the two proposed archetypal gene expression profiles
for archetype 6 and 7 are compared, where archetype
6 represents hypermutators and archetype 7 represents
non-mutators. We suggest that the characteristics of the
archetype 6 are representative for general hypermutator
characteristics, since archetype 6 accounts for hyper-
mutators across different clonal types and across differ-
ent experimental conditions (study 3 and 4). The gene
expression profile of archetype 6 therefore most likely
can be linked to the hypermutator trait and its influence
on adaptation in the CF lung.

Archetypal analysis supplements principal component
analysis and k-means clustering
Results of k-means clustering and PCA of the data set
are illustrated together with the results of AA in Figure 6.
The results of k-means clustering show how samples are
divided into seven groups. The clustering pattern is similar
to the pattern from AA but each sample is assigned to
only one cluster making k-means clustering rigid com-
pared to AA.
PCA captures most of the explained variance in the

first three components (50.3%). However, the compo-
nents do not give an apparent grouping of samples in
Figure 6. PCA solutions are often visualized by plotting
the first two components in a two-dimensional scatter
plot as shown in Figure 7. Together the first two compo-
nents account for 40.7% of the variance present in the
data set. From the scatter plot it is neither possible to
see any grouping correlated to the mucoid phenotype
nor the hypermutator phenotype as identified by AA.
This illustrates the value of AA compared to PCA. For
the present analysis we were fortunate to know some
phenotypic traits (mucoidy and hypermutability) of the
samples in the data set. These properties were captured
by AA. Even if this information was not available it
would still be possible to suggest similarities within the
data set based on AA. A drawback of AA and k-means
compared to PCA is that the choice of the number of
components influences how the components are defined
while the iterative estimation procedures for extracting
the components may terminate at suboptimal solutions.
As the archetypes are constrained to be convex combi-
nations of the observations AA relies on the presence of
observations that well represent the distinct aspects in
the data.

Conclusions
This is the first time Archetypal Analysis has been ap-
plied to analysis of gene expression data. Seven arche-
types were able to extract the main characteristics of the
dataset. The results show that Archetypal Analysis is
successful in clustering of data into biologically meaningful
groups. At the same time, the analysis is strengthened by
matrix factorization making it possible to describe data
points as a combination of archetypes.
Archetype 1 and 2 represent non-adapted and adapted

isolates respectively, and characterization of the two ar-
chetypes identifies the main changes during adaptation
of the bacteria to the CF lung. In this study, it is shown
that one archetype represents a group of hypermutators
(result of clustering) and other data points share charac-
teristics with this group (result of factorization) enabling
identification of hypermutators from another group. The
analysis provides results that are easy to interpret and
we suggest that this analysis could be used to supple-
ment current methods of gene expression analysis.
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