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Abstract

Background: Finding peaks in ChIP-seq is an important process in biological inference. In some cases, such as
positioning nucleosomes with specific histone modifications or finding transcription factor binding specificities, the
precision of the detected peak plays a significant role. There are several applications for finding peaks (called peak
finders) based on different algorithms (e.g. MACS, Erange and HPeak). Benchmark studies have shown that the
existing peak finders identify different peaks for the same dataset and it is not known which one is the most accurate.
We present the first meta-server called Peak Finder MetaServer (PFMS) that collects results from several peak finders
and produces consensus peaks. Our application accepts three standard ChIP-seq data formats: BED, BAM, and SAM.

Results: Sensitivity and specificity of seven widely used peak finders were examined. For the experiments we used
three previously studied Transcription Factors (TF) ChIP-seq datasets and identified three of the selected peak finders
that returned results with high specificity and very good sensitivity compared to the remaining four. We also ran PFMS
using the three selected peak finders on the same TF datasets and achieved higher specificity and sensitivity than the
peak finders individually.

Conclusions: We show that combining outputs from up to seven peak finders yields better results than individual
peak finders. In addition, three of the seven peak finders outperform the remaining four, and running PFMS with these
three returns even more accurate results. Another added value of PFMS is a separate report of the peaks returned by
each of the included peak finders.
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Background
The aim of peak finding in ChIP-seq analysis is identifi-
cation of genomic regions with a high density of mapped
sequence tags relative to a measured or estimated back-
ground. A simple approach to achieving this goal consists
of two steps. Firstly, a sequence of mapped tags along the
genome is extracted. Secondly, every contiguous sequence
of base pairs with more than a predefined threshold num-
ber of tags is selected as an enriched region or binding site.
However, the experimental noise and inherent complex-
ities of the tags require more sophisticated algorithms.
Numerous solutions have been designed following differ-
ent statistical models and enrichment measures, including
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University of Warsaw, Pawińskiego 5a Street, 02-106 Warszawa, Poland
Full list of author information is available at the end of the article

window-basedmodels such as Erange [1], HiddenMarkov
Model-based methods such as HPeak [2] and others, for
example, FindPeaks [3]. Differences in the characteristics
of the algorithms result in identification of different sets of
peaks for the same ChIP-seq data set. These algorithmic
diversities provide an opportunity to analyze ChIP-seq
datasets under different conditions, but the problem of
deciding which method is optimal for a given data set
remains unsolved [4]. Here, in the spirit of protein struc-
ture prediction meta-servers, e.g. [5], we present the first
meta-solution as a method that combines results from
peak-finders chosen by the user.

Implementation
The implemented meta-server collects results from sev-
eral peak finders and from these extracts the final result.
The peak finders currently included in PFMS are: MACS
v1.3.7 [6], CisGenome v2.0 [7], SISSRs v1.4 [8], Erange
v2.1 [1], SeqSite v1.0 [9], FindPeaks v3.1.9.2 [3], and
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HPeak v1.1 [2]. The system can be configured to include
any combination of these peak finders. PFMS is imple-
mented in a multi-threading manner. The peak finders
can be run in parallel, or sequentially depending on user’s
hardware.

Input
PFMS supports three input data formats: BED, BAM, and
SAM. Internally, BAM and SAM formats are converted to
the BED format in the initial step of the analysis in PFMS.
The conversion is performed employing BEDTools [10]
and samtools [11]. The application analyzes one chromo-
some at a time which implies extraction of the tags of the
specified chromosome in a given data set. It is achieved
by employment of FindPeaks split tool [3]. PFMS repeats
the analysis process for all the chromosomes included in
the dataset unless specified otherwise. Although the BED
format is widely used, some of the included peak find-
ers require the data set to be given in custom formats
(e.g. Erange [1]). Therefore, PFMS internally converts the
input data according to the required format of the peak
finders.

Data processing
Seven peak identification methods are currently inte-
grated in PFMS. They are run separately to identify lists
of putative peaks. The peaks are collected, normalized
and converted to either BED or WIG, as selected by the
user. The BED option is more convenient for additional
downstream analysis, while WIG is better for visualiza-
tion purposes since it retains information about the peak
shapes.

BED option
PFMS selects an integrated list of significant peaks from
the combined results by any of the followingmethods: vot-
ing mechanism, minFP or minFN. The first method does
not use any normalization, while the other two use nor-
malized scores of peaks obtained from the individual peak
finders. The normalization is carried out using one of five
different normalization methods described below.

WIG option
WIG files store information about the shape of the peaks.
Firstly, peaks are divided into steps and any operation on
the file is in fact done at the level of steps, not the whole
peaks. Therefore PFMS normalizes the peak scores using
the Average or NaiveQuantile method as described below.
Ranking the steps or normalizing them using Normal
method does not make sense from the statistical point of
view, thus these two methods have not been implemented
for WIG option. Finally, PFMS integrates the overlapping
peaks and sums up their scores. The results are easy to
visualize using genome browsers, such as UCSC Genome

Browser either inWIG or BED format. An overview of the
implemented procedure is shown in Figure 1.

Peak-score normalization
The peaks detected by the individual peak finders are
usually scored by various enrichment measures. Due to
different ranges of the scores, weighting of the selected
peaks may be biased to the peaks ranked with higher
scaled scores. To overcome this drawback, the output
from each peak finder is normalized; five normalization
methods are implemented.

Normal normalization
The program calculates the mean value and the standard
deviation of the peaks scores identified by the selected
peak finders. The peak scores are then transformed to
have mean value of the normal_shift parameter and unit
standard deviation. The remaining negative peak scores
are set to 0, while they are kept in the down-stream analy-
sis for voting. Any default value for the normal_shift
parameter is set to 3 (1). The negative peak scores are con-
sidered as outliers since they are more than 3 (or the given
normal_shift value) standard deviations from the mean
value and can be set to 0 without any significant impact on
the analysis. The fraction of such peaks for normal_shift of
3 is around 0.13%, provided the scores in the file have nor-
mal distribution. However, in real datasets, peak scores
rarely exhibit normal distribution, and so few if any peak
scores are set to 0. The scores are then multiplied by the

Figure 1 PFMS block diagram. The diagram of the algorithm of the
PFMS. Peak finders 1, . . . , N are run independently, then selection of
significant peaks may be done in three different ways -minFP,minFN
and Voting. If Voting is selected then the normalization step is
skipped. Normalization can be done in five different ways: Normal,
Naive Quantile, Average, Rank, and Top Rank.
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maximum number of peaks taken from all peak finders
and rounded up.

normalized_peak_score =
[
peak_score − peak_score

sd

+ normal_shift
]

∗ max_no_of _peaks

(1)

where:

normalized_peak_score - score of the peak after Normal
Normalization
peak_score - original score of the peak
peak_score - the mean score in the results of the cur-
rently normalized peak finder
sd - standard deviation of scores in the results of the
currently normalized peak finder
normal_shift - themean value of the scores after normal-
ization
max_no_of_peaks - maximal number of peaks returned
by the peak finders

For example, five peaks with scores (2, 4, 4, 8, 12) were
obtained from SISSR, while 10 peaks were obtained from
MACS, which was the highest number of peaks from a
single peak finder. The mean value was 6 and the standard
deviation was 4. After applying Normal Normalization,
the SISSR scores were normalized to (20, 25, 25, 35, 45).
This normalization type may be used with BED option
only.

Naive quantile normalization
The user defines which quantile is to be used for nor-
malization (e.g. quantile 0.75.) The peak scores are sorted
within the files with original scores from selected peak
finders and the specified quantile is selected. Then, each
peak score from the currently normalized peak finder is
divided by the value of the selected quantile and, as in the
previous method, multiplied by the maximum number of
peaks in the results of the peak finders and rounded up (2).

normalized_peak_score = peak_score
quantilen

∗ max_number_of _peaks
(2)

where:

normalized_peak_score - score of the peak after Naive
Quantile Normalization
peak_score - original score of the peak
quantilen - the n-th quantile of the peak scores from the
currently normalized peak finder
max_no_of_peaks - maximal number of peaks returned
by the peak finders

As an example, SISSR returned five peaks with scores
(2, 4, 4, 8, 12), while 10 peaks were obtained from MACS,
which was the highest number of peaks from a single peak
finder. By using quantile 0.8, the peak scores of SISSR were
normalized to (2.5, 5, 5, 10, 15), and rounded up to (3, 5, 5,
10, 15). Naive Quantile Normalization type may be used
with the BED and WIG options.

Average normalization
This normalization is very similar to the Naive Quantile
Normalization. The only difference is that instead of
selecting a certain quantile, the mean value of all the
scores is used. Average Normalization is performed
according to 3.

normalized_peak_score = peak_score
peak_score
∗ max_number_of _peaks

(3)

where:

normalized_peak_score - score of the peak after Average
Normalization
peak_score - original score of the peak
peak_score - mean peak score in the currently normal-
ized peak finder results
max_no_of_peaks - maximal number of peaks returned
by the peak finders

As an example, SISSR returned five scores (2, 4, 4, 8,
12), while 10 peaks were obtained fromMACS, which was
the highest number of peaks from a single peak finder.
The mean value of SISSR peak scores, which was 6, was
used to normalize the peak scores of SISSR to (3.33, 6.66,
6.66, 13.33, 20), after rounding (3, 7, 7, 13, 20). Average
Normalization type may be used with the BED and WIG
options.

Rank normalization
After sorting the lists of the peaks detected by the peak
finders, the peaks are clustered using their scores, so that
all peaks with the same score are in the same cluster.
Next, each cluster gets a rank computed according to the
following equation (4).

Cluster_scorei =
[
no_of _peaksi

2
+

i−1∑
k=0

no_of _peaksk

]

∗ max_no_of _peaks
no_of _peaks_from_PF

(4)

where:

Cluster_scorei - rank (score) for all peaks in the cluster i
no_of_peaksi - the number of peaks in cluster i
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max_no_of_peaks - maximal number of peaks returned
by the peak finders
no_of_peaks_from_PF - number of peaks returned by
the currently normalizing peak finder

For example, five peaks with scores (2, 4, 4, 8, 12) were
obtained from SISSR, while MACS produced 10 peaks,
which was the highest number of peaks obtained from a
single peak finder. After applying the rank normalization
method the SISSR peak scores were normalized to 1, 4, 4,
7, 9. Rank Normalization type may only be used with BED
option.

Top rank normalization
In contrast to the previous normalization methods, Top
RankNormalization assumes that themethods that return
fewer peaks also return a smaller fraction of False Pos-
itives. In this method, similarly to Rank Normalization,
after sorting the lists of the peaks detected by the peak
finders, the peaks are clustered using their scores, so that
all peaks with the same score are in the same cluster. The
clusters are sorted starting with the highest-scoring clus-
ter and ending with the lowest-scoring one. Next, each
cluster gets a rank computed according to the following
equation (5).

Cluster_scorei = max_no_of _peaks

−
[
no_of _peaksi − 1

2
+

i−1∑
k=0

no_of _peaksk

]

(5)

where:

Cluster_scorei - rank (score) for all peaks in the cluster i
no_of_peaksi - the number of peaks in cluster i
max_no_of_peaks - maximal number of peaks returned
by the peak finders

For example, five peaks with scores (12, 8, 4, 4, 2) were
obtained from SISSR, while MACS produced 10 peaks,
which was the highest number of peaks obtained from a
single peak finder. After applying Top RankNormalization
method the SISSR peak-scores were normalized to 10, 9,

7.5, 7.5, 6, and rounded up to 10, 9, 8, 8, 6. Top Rank
Normalization may be used with BED option only.

Result generation
BED option
Prior to peak-selection, overlapping regions of the peaks
obtained from each peak finder are aggregated and
weighted by summing up the normalized scores of the
regions. Apart from the aggregated score, the number
of votes for each region is kept. The number of votes
is defined as the number of peak finders that called the
region. Finally, the consensus peaks are selected based on
one of the following methods.

In-degree Centrality Voting Mechanism Is our sim-
plest mechanism of peak selection. All the aggregated
regions are considered as candidate sites. A putative bind-
ing site is reported if the number of votes for a region is
higher than or equal to a predefined threshold (min_rank).
Note, that in this method the scores generated by the peak
finders are not utilized. For example, given a set of regions
1A: [0 - 7], 1B: [9 - 15], 2: [5 - 25], and 3: [10 - 20] generated
by PF 1, PF1, PF2 and PF3, respectively, with the thresh-
old value 2, the regions [5 - 7] and [9 - 20] are reported
as binding sites. If the threshold was set to 3, the output
region would be [10 - 15] (Figure 2).

minFP peak selection method Attempts to minimize
the number of false positive peaks, at the cost of losing
some true positive peaks. In this method the user defines
min_rank, which is the minimum number of votes that a
region has to receive in order to be identified as a putative
peak. We calculateMaxP, the highest score of a peak hav-
ing fewer thanmin_rank votes. Each peak that has a score
higher thanMaxP is reported as a putative binding site.

minFN peak selection method Attempts to minimize
the number of false negative peaks, at the cost of includ-
ing some false positive peaks. min_rank is defined as
in minFP. MinP is the lowest score of the peak having
min_rank ormore votes. Each peak that has a score higher
thanMinP is reported as a putative binding site.

Figure 2 PFMS BED output generation. An example of PFMS output generation process for BED files in a short fragment of a genome. Output
Region 1 is reported if the threshold is set to 3 and Output Region 2A and 2B are returned if the threshold is set to 2.
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WIG option
With the WIG option, peaks are divided into steps, each
characterized by a score. The number of scores and the
step size determine the width of the peak. All step sizes
are unified to the smallest value among all WIG files
returned by individual peak finders. All identified peaks
are collected and the overlapping regions integrated. The
integrated regions are weighted with the normalized score
of the overlapping peaks. Optionally, the highest weighted
peaks may be selected from the list of the integrated
regions by setting a cut-off value. The goal is to select the
regions that are called by the majority of the peak finders
and that have high scores. This leads to a set of enriched
regions that are easy to visualize.

Results and discussion
Our method was evaluated against the benchmark
datasets published by Rye et al. [12]. They analyzed
ChIP-seq reads of three transcription factors (MAX,
NRSF and SRF) using five different peak finders (MACS,
SISSRs, PeakSeq, FindPeaks and QuEST). Furthermore,
the authors visually inspected a number of detected
peaks, classifying them as True Positive, False Posi-
tive or Ambiguous, providing an excellent resource for
evaluation of peak finder performance. In our analysis

we ran all seven peak finders included in PFMS on the
three datasets incorporating control data with those peak
finders that support experimental background measure-
ments. PFMS with various combinations of parameters
and peak finders was evaluated. The peaks obtained by
the peak finders and by PFMS were intersected with the
Rye’s results using BEDTools [10], keeping track of counts
of True Positives and False Positives for each data set and
parameter setting. The performance results of all runs are
shown in Figure 3.
In order to clearly compare the performance of single

peak finders and various configurations of PFMS three
different measures were applied. Firstly, we calculated
Euclidian distance of the points on the Figure 3 to point
(0,1) for each of the investigated TFs. Secondly, for each
configuration, we calculated Average Euclidean Distance
for the three TFs results (see Additional file 1: Table S1).
However, in the first measure the largest impact on the
overall output have the results for the most ‘difficult’
TF. A ranked-based approach was applied to compen-
sate for this factor. We ordered increasingly the Euclidean
distances separately for each TF. For each configuration
we summed up the ranking position from all three TFs
obtaining Combined Ranking Score. The third measure
implemented in order to compare the performance of the
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Figure 3 PFMS versus single peak finders performance comparison. Performance of the seven peak finders included in PFMS and PFMS itself
with different settings. “PFMS voting”, “PFMS minFP” and “PFMS minFN” show results of PFMS with various combinations of peak finders, various
minrank values but with voting,minFP andminFN options respectively. The orange “+” sign shows the results of the method we identified as the
optimal one for finding peaks in the transcription factor ChIP-seq datasets. PFMS with voting option andmin_rank parameter set to 2 using
following peak finders: CisGenome, MACS, SISSR was the best choice. The purple points represent performance of PFMS with various parameters
and various sets of peak finders included in the analysis.
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peak finders and various configurations of PFMS was the
Average Normalized Distance. To calculate this measure
we applied studentization on the distances for each of the
TF datasets. Then, for each peak finder and PFMS config-
uration we calculated mean value of the measure for the
three datasets. For all three measures, the lower the score,
the better configuration is.
In our validation analysis, the peak finders were ran

with the default settings. However, tuning settings of
the peak finders for the given datasets may improve
the results. Configuration of the individual peak finders
may be easily modified within PFMS (for detailed infor-
mation see http://bioinf.icm.uu.se/~pfms/). CisGenome,
MACS and SISSR were found to perform much better
than the remaining four peak finders. Not surprisingly,
PFMS performed best with only the three peak finders
included. The top three choices for transcription factor
dataset analysis utilize only these three peak finders with
the min_rank parameter set to 2. We recommend either
voting or minFP with Rank Normalization or Top Rank
Normalization as these three configurations outperform
each of the single peak finders as well as any other con-
figuration of PFMS. Depending on the quality measure,
one of the three configurations was the optimal one. How-
ever using any of the three quality measures the above
mentioned configurations make the top three choices.
As predicted, the minFP option returns results with only
few False Positives but quite often misses True Positives.
Apparently, this leads to a very high specificity and can
be useful for applications such as selecting the strongest
putative TF target genes for biological validation [13]. We
recommend using the minFP option with CisGenome,
MACS, SISSR and optionally with SeqSite.
In contrast, minFN has very high sensitivity, i.e. it

returns most of the True Positives at the cost of includ-
ing a considerable number of False Positives. This option
also performs best with the four peak finders. The choice
of normalization type did not seem to be crucial for the
quality of the results when usingminFN orminFP. Never-
theless, we do not recommend using the Normal Normal-
ization unless one is certain that the peak scores obtained
from all peak finders have a bell-shaped distribution. Oth-
erwise, it is much safer to use Naive Quantile Normaliza-
tion (e.g. quantile 0.75), Average or Rank Normalization.
These methods do not require any assumptions about the
distribution of the scores.
The configurations described in this section proved to

be the best for transcription factor ChIP-seq datasets.
Other types of ChIP-seq data such as histone modifi-
cations were not tested. Further investigation needs to
be carried out and more validated datasets have to be
provided to reveal the optimal settings for both PFMS
itself as well as the individual peak finders. As an exam-
ple, histone modifications ChIP-seq datasets are likely to

have varying peak widths and shapes depending on the
pattern of the modification (e.g. single or consecutive
nucleosomes) and the density of the chromatin. There-
fore, different approaches and options might be better for
different cases.
PFMS can be used as a single interface for analyzing

ChIP-seq datasets employing several peak finders simul-
taneously since users may choose a set of peak finders
amongst the ones currently integrated in this application.
In addition to the list of putative peaks identified by PFMS,
the results of each peak finder may be stored in the output
directory of PFMS.

Conclusions
We present Peak Finder Metaserver - a novel tool for
finding peaks in ChIP-seq data. The tool combines the
results from various widely used methods and gener-
ates consensus results. We investigated seven peak finders
and identified three that perform best for transcription
factor ChIP-seq datasets, i.e. CisGenome, MACS and
SISSR. Applying only these three peak finders and set-
ting the voting peak selection method and the minrank
parameter to 2. To the best of our knowledge this is
the best method of finding peaks in transcription fac-
tor ChIP-seq datasets. Meta-Server approach proved to
be successful and PFMS with the above mentioned set-
tings generates results of a better quality than any of the
individual peak finders. Different configurations of our
tool can be optimal for different types of analyses, but
identification of optimal settings requires other validated
datasets.

Availability and requirements
• Project name: Peak Finder MetaServer
• Project homepage: http://bioinf.icm.uu.se/~pfms/
• Operating system(s): Linux, MacOS
• Programming language: python
• Other requirements: Python 2.6 or higher, GCC

compiler, Perl, JRE 1.6
• License: GNU
• Any restrictions to use by non-academics: none

Additional file

Additional file 1: Table S1. An .xls file containing Table S1. Can be
viewed with Microsoft Excel or similar software. Table S1 - The comparison
of the results obtained from individual peak finders and various PFMS
configurations. The Table contains results of the three quality measures for
individual peak finders and various PFMS configurations. ‘Distance’ means
the Euclidian distance of a point from (0,1). ‘Ranking’ corresponds to the
Ranking quality measure described above. ‘Normalized Distance’ is the
Euclidean distance after studentization within the results for a certain TF
dataset. The three last columns contain measures combined for all three TF
datasets. The user may compare the performance of each peak finder and
PFMS configuration by sorting appropriate columns.

http://bioinf.icm.uu.se/~pfms/
http://bioinf.icm.uu.se/~pfms/
http://www.biomedcentral.com/content/supplementary/1471-2105-14-280-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-14-280-S1.xls
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