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Abstract

Background: RNAi screening is a powerful method to study the genetics of intracellular processes in metazoans.
Technically, the approach has been largely inspired by techniques and tools developed for compound screening,
including those for data analysis. However, by contrast with compounds, RNAi inducing agents can be linked to a
large body of gene-centric, publically available data. However, the currently available software applications to
analyze RNAi screen data usually lack the ability to visualize associated gene information in an interactive fashion.

Results: Here, we present ScreenSifter, an open-source desktop application developed to facilitate storing, statistical
analysis and rapid and intuitive biological data mining of RNAi screening datasets. The interface facilitates meta-
data acquisition and long-term safe-storage, while the graphical user interface helps the definition of a hit list and
the visualization of biological modules among the hits, through Gene Ontology and protein-protein interaction
analyses. The application also allows the visualization of screen-to-screen comparisons.

Conclusions: Our software package, ScreenSifter, can accelerate and facilitate screen data analysis and enable
discovery by providing unique biological data visualization capabilities.

Keywords: RNAi screening, Data visualization, Database, Data analysis, Data mining
Background
RNA interference (RNAi)-based high-throughput
screening has become an increasingly important and
popular approach to dissect biological pathways through
reverse genetics [1,2]. RNAi is a conserved biological
phenomenon through which gene expression can be si-
lenced by the endogenous cellular machinery at the level
of individual transcripts, with specificity conferred by
the sequence of double-stranded RNA (dsRNA) or
small-interfering RNA (siRNA) [3].
Following completion of genome sequencing of the

human and model organism, it became possible to sys-
tematically screen at the genome level, and this has in-
deed been applied to investigate numerous biological
questions and cell-based processes, with novel insights
revealed for apoptosis, virus infection, membrane traf-
ficking, and the cell [4]. To date, two main screening
modalities have been developed: pooled and arrayed
* Correspondence: fbard@imcb.a-star.edu.sg
1Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673,
Singapore
2Department of Biochemistry, National University of Singapore, 8 Medical
Drive, Singapore 117597, Singapore

© 2013 Kumar et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
screens. In arrayed screens, each gene is targeted indi-
vidually by at least one reagent. Given that the human
genome contains approximately 22,000 protein-coding
genes, a genome-wide screen generates a relatively large
dataset. The analysis of these datasets has drawn inspir-
ation from small molecule screening in terms of data
quality control, normalization approaches and the defin-
ition of significance threshold; i.e. hit identification.
RNAi screening results are also gene-centric; therefore,
hits can be linked to prior biological pathway or protein
network information.
The currently available software applications to

analyze RNAi screen data, however, usually lack the abil-
ity to visualize associated gene information in a dynamic
fashion (Table 1). Here, we introduce ScreenSifter, an
open source desktop application for the convenient
implementation of sequential, user-friendly and ex-
haustive analyses of RNAi screening results. Biologists
with no extensive bioinformatics knowledge can up-
load their screen data in a simple .csv format, and
have access to multiple screen analysis tools, includ-
ing quality control, normalization and hit selection, as
well as the ability to visualize the distribution of hit
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Table 1 ScreenSifter in comparison to related tools

Input file Metadata Data-
base

QC/
Normalization

Hits
Identification

On
target
analysis

Gene
Ontology

Protein-
protein
interaction

Programming
language

Required
programming
knowledge

GUI Operating
system

Output
results

cellHTS [5] Text file Description files need
to be loaded along
with data file

No Yes Yes No Yes No R package Yes No Windows,
Linux, Mac
(R
command)

HTML output,

RNAither [6] Text file No Yes Yes No Yes No R package Yes No Windows,
Linux, Mac
(R
command)

HTML output

Screensaver
[7]

Excel
workbooks

Yes Yes No No No No No Java No Yes Cross-
platform

Excel
workbooks,
SD files

HTSanalyzeR
[8]

Pre-
processed
data from
cellHTS2

No No No No No Yes Yes R package No Windows,
Linux, Mac
(R
command)

Figures,

HTML tables

ScreenSifter CSV file Customized Project,
Screen and Table data
description through
GUI

Yes Yes Yes Yes Yes Yes Python,
wxPython

No Yes GUI:
Windows,
Mac

Tab-delimited
text file,
visualization
plots

Source
code: Linux
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Table 2 GSEA calculation contingency table

User selected genes
from screen

In genome

In GO category gc Gc

Not in GO category x - gc 22000 - Gc
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genes and graphically compare replicates. This applica-
tion also facilitates comparisons between different screens.
ScreenSifter has visualization tools to plot subsets of
screen data (specific genes or gene groups) and provides
Gene Set Enrichment Analysis (GSEA) and protein-
protein interaction (PPI) information directly from and/or
on hyperlinked plots.

Implementation
ScreenSifter has been developed using Python, wxPython
and MySQL/SQLite3. The Python source code and
executable for Windows are available on SourceForge.
User Guide and examples are available at http://www.
screensifter.com.
ScreenSifter uses SQLite3 with a custom-designed, nor-

malized relational database modeled to store all screen
data and data processing. Data for Project, Screen, and
Screen Data is stored in separate tables that are con-
nected in the relational database model; this organi-
zation can cater for future growth without breaking the
database design and allows rapid retrieval of informa-
tion. A Screen Data Table in ScreenSifter contains a
unique record for a Screen, which stores the values of
individual wells of specific plates. It also has Project ID,
Screen ID, and Screen Data Table ID. When a Screen Data
Table of x number of records (number of plates multiplied
by numbers of well in each plate) is uploaded, deleted, or
derived, the Screen Data Table grows or reduces for x
number of records. Project, Screen and other tables inside
the database are then updated accordingly.
ScreenSifter has several functions for normalization,

visualization, filtering, hit identification, and biological
data mining, many of which are relatively specific to
RNAi screening. For example, four different normali-
zation methods are provided: Log, Z score, B score and
By Control normalizations [9,10]. This allows users to
select the best-suited method for their own data and
thus minimize the impact that systematic errors may
have on hit selection.
In sample-based normalization, the Z score is calcu-

lated for each record using the following formula:

Z ¼ xi−�xð Þ=σxi
Where xi is the value of the well i, �x is average of the

values of all the wells per plate and σxi is the standard
deviation of values of the wells per plate.
The Control normalized score is calculated using the

following formula:

Control Normalized Score ¼ xi−�xp
�xp−�xn

Where xi is the value of well i, �xp is the average of the
values of wells of the user-specified positive controls per
plate and �xn is the average of the values of wells of user-
specified negative controls per plate. If the user selects
only the positive or only the negative control, the for-
mula reduces to fold change e.g.

Fold Change ¼ xi−�xp
�xp

or Fold Change ¼ xi−�xn
�xn

B Score is calculated for each record using the follow-
ing formula:

B Score ¼ Rijp

MADp

Where Rijp ¼ Xijp−FðXijpÞ ¼ Xijp−ð �Xp−Median Rið Þ−Median
ðCjÞÞ
Xijp is the measured value in the well in row i, column

j and plate p, and F(Xijp) is the value fitted by two-way
median polish that estimates systematic measurement
offsets for each row i. Median (Ri) is the median of row i
and Median(Cj ) is the median of the column j.
There are multiple functions for interactive visualization

of biological data; i.e., Gene Set Enrichment Analysis using
the GO database and protein-protein interaction network.
GSEA is calculated using Fisher’s Exact test on a 2×2

contingency table for each GO category:
It returns the odds ratio and p-value. Based on the

user-selected p-value threshold, GO categories are plot-
ted as Bar Charts upon Rectangular Selection of genes
on the plot. The genes selected form the basis of this
contingency table (Table 2). These genes are searched in
the GO database and for each GO category, and the
p-value is calculated using Fisher’s Exact test. In Table 2,
x is the number of genes selected in the rectangular area
on the plot; gc is the total number of user-selected genes
in a particular GO category; Gc is the total number of
genes in a particular GO category; and 22,000 is the total
number of genes in the genome.
The PPI function is available for a single-clicked gene or

for a list of genes chosen by Rectangular Selection on the
plot. If a point is clicked on the dense cloud of points,
ScreenSifter first captures the nearest point based on the
xy coordinates of the points. It then makes a pair of points
with each other point on the plot, and each pair of points
(genes) is searched in the PPI database. If a pair of genes is
found in the database, then a line is drawn to connect
them, indicating a PPI (Figure 1C). Similarly, for Rect-
angular Selection of genes, all possible combinations of

http://www.screensifter.com/
http://www.screensifter.com/


Figure 1 ScreenSifter overview. (A) Data structure in Explorer Panel, (B) Graphical User Interface (GUI) and database connection, and (C) Main
data analysis modules.
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two genes in the list are searched in the database and the
PPIs found are highlighted by connecting lines on the plot.
Additionally, if Cytoscape is open and a connection to it is
enabled within ScreenSifter through the Cytoscape-RPC
plugin, while creating interactions on the plot, ScreenSifter
also creates a network of the same interacting points in
Cytoscape.
The function called Multi Reagent Analysis lets the

user analyze genes targeted by multiple RNAi reagents
in different wells. When a user applies this function on
any Data Column, ScreenSifter makes a sorted plot of
this Data Column. When the user then sets a threshold
on this plot interactively, all the RNAi reagents (Reagent
ID Column in ScreenSifter Data Panel interface) that
pass the threshold are mapped to their target genes. For
each of these mapped genes, the number of Reagents
passing the threshold is counted, and the genes are plot-
ted in descending order. This method provides a quick,
objective way of validating potential hit genes, and is a
common practice in RNAi screening to validate genes of
interest [11,12].
ScreenSifter also provides Z’ factor calculation through

the Quick Analysis function; this provides a good indica-
tion of the separation of positive and negative controls in
the screen. It is calculated using the following formula:

Z’ factor ¼ 1−
3 σp−σn
� �

μp−μn
���

���

Where σp is the standard deviation of the positive con-
trols, σn is the standard deviation of the negative con-
trols, μp is the mean of the positive controls and μn is
the mean of the negative controls.
ScreenSifter uses a local database for GO and PPI ana-

lysis. The database can be updated automatically by
connecting to NCBI from ScreenSifter through a single
click. During updating, important fields are indexed for
faster retrieval.

Results and discussion
In ScreenSifter, data is organized first by Project, which
can house multiple screens and is usually defined by a
specific biological question. Each Screen is defined as a
specific screening experiment, corresponding to specific
physical plates and including replicates. A primary data
file is uploaded for each Screen and forms a primary
Data Table; subsequently derived Data Tables can be
saved under the same Screen. Projects, Screens, and
Screen Tables are presented hierarchically in ScreenSifter
(Figure 1A).
In addition to Data Tables, each Project, Screen, and

Screen Table can be linked to descriptive metadata.
The Project Description would specify project name,
the biological question being addressed and the general
experimental strategy used; an image file summarizing
the project can also be uploaded. The Screen Descrip-
tion can contain specific information about the assay
and reagents used, including siRNA library, species,
and cell line(s). The Screen Table description specifies
its name in ScreenSifter and the uploaded file name, its
creation date, its nature (raw or derived) and, if de-
rived, its parent table as well as a log of its derivation.
In addition to the data uploaded by users, ScreenSifter

stores gene ontology and protein-protein interaction
data retrieved from the NCBI websites on all human and
mouse protein coding genes (Figure 1B).
The graphical user interface (GUI) is composed of four

panels: the Explorer Panel allows navigation of the data
structure; the Data Panel displays all metadata and data
from Data Tables; the Plot Panel houses up to four plots
simultaneously and includes a Plot Control Panel that al-
lows customization; and the Log Panel displays the ac-
tions executed in ScreenSifter, as well as any results
associated with the actions (Figure 1B).
The application contains several RNAi screen specific

workflows, such as a Quality Control (QC) and Norma-
lization module; a Threshold/Hit Definition module; a
Multi Reagent Analysis module for the comparison of
multiple siRNAs targeting the same gene and the elimin-
ation of off-target effects; and finally Gene Ontology and
Protein-Protein Interaction modules for biological data
mining (Figure 1C).

Demonstration datasets
We highlight some analytical capabilities of ScreenSifter
using datasets from genome-wide RNAi screens on the
intracellular traffic of ribosomal-inactivating toxins in
mammalian cells [13]. The Pseudomonas exotoxin A
(PE) and Ricin proteins are unable to cross the plasma
membrane. To reach their cytosolic targets, these toxins
hijack the cells’ retrograde membrane traffic processes
and, after endocytosis, move from endosomes to the
Golgi complex and then to the endoplasmic reticulum
(ER) where they can translocate to the cytosol and
inhibit their ribosomal targets, causing inhibition of pro-
tein translation and eventually cell death [14].
The aim of these screens was to identify and compare

human host genes required for PE and Ricin intoxi-
cation. To measure the capacity of either PE or Ricin toxin
to reach their cytosolic target, protein synthesis was mea-
sured using a short half-life firefly luciferase (Figure 2A).
HeLa cells stably expressing the luciferase were treated with
siRNAs from a library consisting of 21,121 siRNAs. After 3
days, either PE or Ricin toxin were applied to the cells for 8
hours, and luciferase levels measured using luminescence.
Luciferase expression thus served as a measure of the integ-
rity of the retrograde pathway and knockdown of an
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Figure 2 (See legend on next page.)
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Figure 2 Screen quality control and normalization. (A) Overview of intoxication assay represented in the demonstration dataset. HeLa cells
stably expressing a short half-life luciferase (Luc2CP) were treated with PE or Ricin toxins. After binding at the cell surface, both toxins are
internalized into endosomes and transported to the Golgi and then to the ER, where they translocate to the cytosol. Both toxins then inhibit
translation and luciferase production. The three highlighted genes, CLTC1, STX16, and KDELR1, act on endocytosis, transfer to the Golgi, and Golgi
to ER traffic, respectively. (B) Workflow of the genome-wide screen: Cells were seeded in 384-well plates pre-printed with siRNA for reverse
transfection and incubated for 72 hr, then challenged with PE or Ricin for 8 hr before luciferase signals were measured. (C,D) Scatter Plot, with
controls highlighted (C), and Box Plot of controls (D) of Replicate 1 of raw PE luciferase signal using the Quick Analysis module. (E) Plot of
Replicate 1 versus 2 of raw PE luciferase signals. (F) Scatter Plot of Replicate 1 of raw PE luciferase signal with STX16 positive control highlighted.
(G) Average Z-score-normalized PE luciferase signals with STX16 highlighted. (H) Average control (STX16)-normalized PE luciferase signals with
STX16 highlighted.
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important gene would result in a higher luminescence read-
ing than that in the wild type cells (Figure 2B).
The library (siGENOME SMARTpool, Thermo Fisher)

was arrayed in 384-well microplates, in which each well
contained a pool of four different siRNA sequences
targeting one unique gene and the two toxin screens
were run in duplicate. Three positive controls consisted
of siRNA targeting membrane trafficking regulators: the
SNARE Syntaxin16 (STX16), the Clathrin heavy chain
(CLTC) and the KDEL-Receptor 1 (KDELR1). Other
controls were an siRNA targeting the Polo-Like Kinase 1
(PLK1), which induces extensive cell death and the green
fluorescence protein (GFP) (Figure 2B). Further details
of the screening procedure are described elsewhere [13].
The data used here is provided in the downloadable
ScreenSifter package (www.screensifter.com).
To demonstrate the utility of ScreenSifter in handling

more complicated data such as those from high-content
screens, we also include in the ScreenSifter package a
dataset from a high-content screen of Golgi morphology
[15]. A tutorial demonstrating manipulation of this dataset
is included in the software (Help > ScreenSifter Help) and
on our website. It guides the user through filtering of mul-
tiple features of high-content screen data to identify hits,
compiling a table of hits based on multiple features, and
visualizing the hits using the hierarchical clustering plot
function in ScreenSifter.

Data upload and export capabilities
A primary .csv data file can be uploaded for each screen
and will form a primary Data Table. This primary data
table must contain the following fields: Plate number,
Well, Well type, Gene symbol, and Entrez Gene ID. For
some analyses, such as Multi Reagent Analysis, a Reagent
ID entry is also required and up to 100 data columns can
be included. Table Columns can be mathematically ma-
nipulated or analyzed by clicking on the respective column
header. Data Tables can be exported or saved as a new
Derived Table by right-clicking on the top-left corner.
Undo/redo options are also available in this menu.
With the example dataset, we uploaded one .csv file for

each toxin screen, each containing raw luminescence sig-
nals from the two replicates. Derived Tables were then
created from these, containing normalized and averaged
data. Guidance on how to upload data and save screen in-
formation is available in the help file of the software.

Screen quality control and normalization
The raw data can first be assessed using the “Quick
Analysis” module, which automatically generates scatter
and box plots (Figure 2C, D), as well as a Z’ factor for
all pairwise combinations of positive and negative con-
trols. The Z’ factor is a common metric used to evaluate
the quality of an assay with given positive and negative
controls [16].
The Quick Analysis Scatter Plot highlights the distribu-

tion of controls among all screening wells. In our example
dataset, this operation revealed a good separation between
the STX16 positive control and the GFP negative control
(Figure 2C). The separation is also readily observable in
the box plot arranged by Well Types (Figure 2D).
To assess the reproducibility of the screens, the raw rela-

tive luminescence readouts of both replicates can be plot-
ted, revealing a high Pearson correlation coefficient of 0.92
for both toxins (Figure 2E). This coefficient and associated t
test statistics can be found in the Log Panel. In the Plot
Panel, the data used for each plot is indicated on the plot
by the title, which specifies the Screen Table used, and the
axes labels, which correspond to the column titles.
The scatter plot also revealed significant variation

among the control values across all plates of the screen
(Figure 2C, F). This common phenomenon in large-scale
screens requires data normalization to be applied.
Visualization of whole plate-based z-scores revealed sig-
nificant fluctuation in STX16 z-score values across the
different plates (Figure 2G). This was found to be due to
an inordinate number of outliers in some plates deriving
from the non-random organization of the siRNA library.
The use of a control-based normalization instead re-
solved this issue (Figure 2H) and from this point on,
analyses were done using control (STX16)-normalized
values.

Hit identification
To determine a threshold for hit identification, ScreenSifter
allows different ways to determine a cut-off using the Select

http://www.screensifter.com/


Kumar et al. BMC Bioinformatics 2013, 14:290 Page 8 of 12
http://www.biomedcentral.com/1471-2105/14/290
Cut-off module. The module offers the possibility to use
the average value and standard deviation of the samples or
any controls to define a cut-off (Figure 3A). A simple cut-
off can also be selected by clicking on a point in the
ordered plot, or by directly entering a cut-off value. This
approach is commonly used by screeners and is easy to
implement. The module allows the user to test different
combinations and to rapidly visualize hit lists.
The Visualize With Current Cut-off function generates

a scatter plot of the data with the threshold, as well as a
list of genes above the cut-off (Figure 3B). The Finalize
Threshold function then generates a new column in the
Screen Table, scoring each gene as a hit (1) or not (0). In
both the PE and Ricin screens, the cut-offs used were
values ≥60% of the average STX16 control. This also ap-
proximates the average value for the CLTC intermediate
positive control (Figure 3B). After setting a threshold for
each toxin and removing genes with any GO annotations
containing the term “proteasome” (because these have
a direct effect on the assay that does not reflect mem-
brane trafficking events), over 2000 genes were identified
to be potential significant regulators of either toxin’s
trafficking.

Hit validation by multi reagent analysis
To test a subset of genes for the possibility of off-target
effects, the top 200 hits in each screen were selected
and re-tested using four individual siRNAs instead of a
pool. Because individual siRNAs tend to be less potent
than pools, validated individual siRNAs were defined as
those having a threshold signal of 30% of that of the
STX16 pool, and validated genes as those having at least
two validated individual siRNAs. The Multi Reagent
Analysis module was applied on the validation datasets
(PE Deconvoluted Raw and Ricin Deconvoluted Raw),
with a 0.30 cut-off, to determine the number of vali-
dated genes. The module generated a plot of genes
ranked according to the number of validated individual
siRNAs (Figure 3C), as well as a list of the number and
identity of validated siRNAs for each gene. The Finalize
Threshold function created new columns in the Data
Table: the first identifying each siRNA as validated
(value “1”) or not (“0”), and the second specifying the
number of validated siRNAs for that gene.

Biological data mining
The toxins we tested must undergo membrane traffic
before they can intoxicate cells. Thus, to test if this
process is relevant in our hit list, we used the search
function in the Data Table by searching the term “mem-
brane transport” in “GO BP (Biological Process)”, which
highlighted the results in the Data Table and the current
Plot (Figure 4A). We also mined the subcellular localiza-
tions of genes using more specific search terms such as
“Golgi”, “ER” or “vesicle” in “GO CC (Cellular Compart-
ment)” (Figure 4A). By checking the Label option in the
Plot Control Panel, genes could be identified directly on
the scatter plot (Figure 4B).
We also performed a Gene set enrichment analysis

(GSEA) of the validated hit genes using a threshold p
value of 0.01. This showed, among other results, a statis-
tically significant enrichment of genes with an associ-
ation with the Golgi apparatus (Cellular Compartment
Gene Ontology) (Figure 4C), consistent with the requi-
rement of the Golgi apparatus for PE intracellular
trafficking.
To assess known relationships between genes of inter-

est, PPIs between genes can be identified by checking
the “Find PPI” option for Clicking Points, or checking
the “Find PPI in Selected Area” option for Rectangular
Selections in the Plot Control Panel. Each PPI and its as-
sociated information are listed in the Log Panel. We
performed a PPI search using Rectangular Selection of
all genes with “membrane” GO annotation to reveal the
interconnectedness of these genes, with 46 unique PPIs
identified among 360 unique hit genes (Figure 4D).

Screen comparisons
To compare the results for the two toxins, the average
control-normalized Ricin luciferase signal was plotted
against that of PE (Figure 5A). The controls were
highlighted on the plot using the “Highlight Controls”
function in the Plot Control Panel. The plot revealed a
significant divergence between the two toxins, while
highlighting the remarkably consistent similar require-
ment for STX16 (red dots in the plot).
The toxin specificity of a gene was thereafter defined

as a 2-fold difference between the two toxins. Toxin-
specific gene lists were generated by using the Filter and
Add/Subtract/Multiply/Divide column functions and
saving the results in separate Data Tables corresponding
to toxin specificities. This demonstrated that there were
more toxin-specific hit genes (757 and 1058 for PE and
Ricin, respectively) than common ones (262). The gene
lists in these tables were then used to highlight toxin
specificities in the plot by color codes, using the High-
light Genes function (Figure 5B).
Because hit threshold selection ultimately has an elem-

ent of arbitrariness, and because of various experimental
factors resulting in assay noise and variation, genes of
significant relevance to a biological process may some-
times be narrowly missed by falling under the Hit Selec-
tion cut-off. In these situations, ScreenSifter is useful
for identifying potentially important genes that may
be near-threshold. This can be illustrated by Ricin-
specific hits that have been linked to ER translocation
(Figure 5C). ER translocation is an essential step in
the traffic of PE and Ricin toxins, which have long been
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Figure 3 Screen hit identification. (A). Threshold selection for primary hit identification on a ranked plot of the average control-normalized
luciferase signal of PE. (B) Scatter plot of average control-normalized luciferase signal of PE, with threshold indicated and hits above threshold
identified. Controls are highlighted by color codes. (C) Multi Reagent Analysis of PE hits: top genes ordered according to the number of validated
siRNA reagents.
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Figure 4 Screen biological data mining. (A) A search in the Plot for various GO terms highlights the relevant genes in the plot. (B) Zoom of
the same Plot in (A), with the gene labeling option enabled. (C) GO enrichment analysis of validated hits showing significant enrichment (p <
0.01, Fishert. exact test) of the hits in membrane trafficking-related categories. (D) Highlighting of genes (black labels) having protein-protein
interactions (PPIs; green lines) among genes with genes with GO annotation.
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suspected to use the machinery of ER Associated
Degradation (ERAD) to translocate. Surprisingly, some
ERAD-related genes, such as NPLOC4 and UFD1L,
appeared to be toxin specific. Searching for additional
likely players in this process, we used PPI plotting again
to identify Valosin containing Protein (VCP) and a co-
factor of VCP, ERLIN2, which were below our signifi-
cance threshold values. This type of finding could, for
example, warrant re-testing these genes with different,
perhaps more potent, knockdown reagents.
Among the genes that appeared strongly positive and
toxin specific, we noticed the cullin 4B gene (CUL4B).
To quickly identify partners of this protein, we employed
the “PPI Display” option in the Plot Control Panel in
conjunction with the Plot Search function, which revealed
that ring-box 1, E3 ubiquitin protein ligase (RBX1),
F-box protein 4 (FBXO4), F-box and leucine-rich repeat
protein 6 (FBXL6), kelch-like ECH-associated protein 1
(KEAP1), Cullin 3 (CUL3) and F-box protein 31
(FBXO31) were present in the dataset of PE-specific
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Figure 5 Screen comparison. (A) Scatter plot of average control-normalized luciferase signals of PE vs Ricin, with controls highlighted. (B)
Scatter plot of average control-normalized luciferase signals of PE vs Ricin, color-coded according to toxin-specificity. (C) ERAD protein-protein
interaction network displaying Ricin specificity, demonstrating the identification of a gene below but close to the chosen threshold (ERLIN2), and
a potential false negative gene (VCP). (D) Cullin-Ring Ligase complex protein-protein interaction network displaying PE specificity.
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hits, and are well-connected by PPIs (Figure 5D). All
these proteins have been shown to interact in Cullin-
Ring Ligase (CRL) complexes. These multi-subunit ubi-
quitin ligases are known to regulate various aspects of
cell physiology but had not been previously implicated
in retrograde traffic. The identification of several PE-
specific subunits reinforced and highlighted their func-
tional importance for PE trafficking.

Conclusions
Through these examples, we have illustrated the main fea-
tures of the ScreenSifter application. As a dedicated appli-
cation to RNAi screening, ScreenSifter facilitates rapid and
intuitive quality control for the analysis of screen data. As a
desktop application working with downloaded biological
databases, ScreenSifter allows a very interactive interplay
between the screener, their screening dataset and publicly
available gene-centric data. This flexibility and a user-
friendly visual interface will favor a quick and iterative
process of data exploration, with the ability to rapidly gen-
erate customized tables and graphs for reports and
publications.

Availability and requirements
Project name: ScreenSifter
Project home page: http://www.screensifter.com
Operating system(s): Win 7, Win XP, Mac, Linux
Programming language: Python, wxPython, MySQL/
SQLite3
Other requirements: Please cite this publication if
used for data analysis and figure generation
License: GNU GPL
Any restrictions to use by non-academics: None

Files (installers and source code) are available for down-
load at: http://sourceforge.net/projects/screensifter/. For
each version the executable file is provided with or

http://www.screensifter.com/
http://sourceforge.net/projects/screensifter/
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without database. The executable with database has
preloaded databases of Gene ontology, protein-protein
interaction from NCBI. (ftp://ftp.ncbi.nlm.nih.gov/gene/
GeneRIF, file name interactions.gz). ScreenSifter software
will work without the biological database as well. If you
download ScreenSifter without database, you can add
the database anytime directly from ScreenSifter under Con-
nection -> Update ontology and Interaction database.
Downloading and indexing the database may take a few
hours. The datasets included in the software are from
genome-wide RNAi screens on the intracellular traffic
of ribosomal-inactivating toxins in mammalian cells
[13] and a high-content kinome-wide RNAi screen of
Golgi morphology [15].
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