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Abstract

We briefly identify several critical issues in current computational neuroscience, and present our opinions on
potential solutions based on bioimage informatics, especially automated image computing.
Computational neuroscience is undergoing a transform-
ation. Traditionally, this field has focused on studying
information processing in nervous systems by collecting,
analyzing, and simulating neuronal electrophysiology
data [1,2]. Increasingly, the emphasis is shifting towards
neuromorphological pattern analysis and brain atlas
modeling using advanced microscopy and image com-
puting. One important motivation for this changing
focus is the need to ground our understating of animal
behavior in real three-dimensional (3D) neuronal
morphologies and connectivity. When dynamic imaging
of living nervous tissue is possible, there is an additional
opportunity to investigate the time-dependent molecular
mechanisms in brain tissue in a data-driven manner.
Advances in automated image computing are making
such studies practical and informative.
Image computing is critical for mapping brain
and building neuron databases
A common goal among many current studies is to map
brain anatomy by systematically characterizing the distri-
bution, projection, and connectivity of neurons through-
out a nervous system. Pursuing this ambitious goal is
increasingly practical, due to converging advances in
neuron labeling [3,4], histological preparation [5], multi-
dimensional imaging [6,7], and image computing [8,9].
Several large-scale 3D imaging-based computational neuro-
science initiatives, such as the HHMI Janelia FlyLight
(janelia.org/team-project/fly-light) and FlyEM projects
(janelia.org/team-project/fly-em), the Allen Mouse Brain
“MindScope” [10] and Connectivity Atlas (alleninstitute.
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and the Harvard mouse brain connectome project (cbs.
fas.harvard.edu/science/connectome-project), have been
launched to acquire massive datasets, in which each image
contains hundreds of millions of pixels.
The task of storing, organizing, and disseminating

these vast datasets has driven the development of several
neuronal databases and digital brain atlases. For ex-
ample, NeuroMorpho.Org is a web-accessible database
that allows researchers to share neuron reconstructions,
quantify neuronal morphology in a standardized manner,
mine the resulting morphological features, and use them
in computational modeling and neuronal network simu-
lation studies [11]. The digital representations of light-
level single neurons in NeuroMorpho.Org is associated
with rich metadata, but only coarse information about
the cellular location and orientation relative to sur-
rounding brain structures. In contrast, 3D digital brain
atlases contain rich and integrated information on the
spatial coordinates of 3D reconstructed neurons, gene ex-
pression, functional modules, and networks, all mapped
into a ‘standard’ view of brain anatomy. Examples of re-
cent digital atlases include a C. elegans connectome [12]
produced from electron microscopic images, a large-scale
single-neuron atlas (flycircuit.org [13]) and a stereotypy
atlas of major neurite tracts [14] of the adult fruit fly brain,
both produced from confocal microscopic images, a
genome-wide gene expression map of the mouse brain
produced using wide-field microscopic images (brain-
map.org [15]), and a high-resolution reconstruction of the
rat hippocampus [16].
Producing databases and atlases of neuronal structures

from microscopy data entails a pipeline of image pro-
cessing and analysis (Figure 1) (also see [9]). Key steps
include (1) image pre-processing: correct images for
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Figure 1 Major steps in building digital neuronal databases
and brain atlases. After necessary image processing, the 3D
morphology of a neuronal pattern is reconstructed from microscopy
data. Multiple neuronal patterns need to be organized based on brain
regions and neuronal types. For brain atlases, these reconstructions are
mapped into a common 3D spatial coordinate system. This may
involve an iterative analysis process.
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imaging artifacts and standardize the raw data; (2) regis-
tration: align brain morphology and stitch together sep-
arately imaged brain regions; (3) segmentation and
validation: trace neuron morphology and ensure that the
reconstructions are correct; (4) feature extraction: make
detailed quantitative measurements of traced neurons;
and (5) analytics: model, infer, and predict the identities
of neurons or neuronal patterns using morphology, loca-
tion, genetic, lineage, and other extracted features. Many
of these steps, such as 3D neuron tracing, are also widely
used in smaller-scale analysis of neuronal phenotypes.

The challenge of full automation
The long-standing need to automate the laborious and
subjective manual analysis of light-microscopic and
electron-microscopic images has motivated a large num-
ber of bioimage informatics efforts [8,17-21]. The recent
spurt in imaging throughput, combined with the desire
for large-scale computational modeling, has added a
sense of urgency to this need. For instance, manual tra-
cing of neuron morphology is prohibitively expensive for
analyzing image data that is approaching the scale of
terabytes and thousands of image stacks, let alone min-
ing the higher-order associations in these data.
For computational neuroscience, this great demand

motivated several major institutions to conduct the
worldwide DIADEM Challenge (diademchallenge.org) in
2010 as a way to stimulate progress and attract new
computational researchers to join the technology devel-
opment community. The challenge was to develop
algorithms capable of automatically tracing stacks of im-
ages visualizing the tree-like shape of neuronal axons
and dendrites into 3D digital reconstructions. This com-
petition succeeded in stimulating a burst of progress.
Five finalist-teams were selected from more than one
hundred entries. A novel metric methodology was cus-
tom designed to compare automated and manual recon-
structions [22]. While none of the algorithms presented at
the finishing stage reached the official goal of a 20-fold
speed-up in the reconstruction process, all finalists’ soft-
ware programs were made publicly downloadable along
with the challenge data sets and the DIADEM metric,
providing a useful toolbox for continuous and future
development.
To achieve full automation, libraries of computer pro-

grams for neuronal pattern extraction, comparison and
inference must be integrated into toolkits for multi-
dimensional image visualization and analysis (e.g. vaa3d.
org [23]; farsight-toolkit.org). Optimizing each step of
automated image computing (Figure 1) is also important
to ensure a lower error rate compared to humans. In
addition to a metric of precision, automation of image
computing should also be assessed using measures of
the speed-up compared to manual work, as well as the
robustness of the method with respect to changes of its
parameters and the type and level of noise in the data.
These aspects relate to the scalability to large-scale ap-
plications and the generalization to similar or new prob-
lems. The above considerations apply to image data
produced by most imaging modalities. Despite consider-
able progress, many computational problems remain
open. For instance, the DIADEM neuron reconstruction
challenge stands unmet. Part of the reason could be that
only relatively small image data sets on neuron morph-
ology were previously available to researchers. We hope
this situation will change soon due to the availability of
benchmark datasets and the strong demand of very
large-scale single neuron screening projects in the next
five years.

Making computer programs more intelligent
Increasingly, researchers have developed ways to make
some of these algorithms more intelligent. Domain-
specific prior knowledge can be used to improve the
“intelligence” of an algorithm, akin to the observation
that a “supervised” machine-learning algorithm generally
performs better (e.g. predicts more accurately) than an
“unsupervised” one. How to incorporate domain know-
ledge in an algorithm? One way is to code this informa-
tion into explicit rules. For instance, the spatial location
of cells coded as directed graphs has been used as con-
straints in training a nuclear image segmentation and
recognition algorithm [24]. In another example, particu-
lar types of neuron tracing errors could be propagated

http://diademchallenge.org
http://vaa3d.org
http://vaa3d.org
http://farsight-toolkit.org


Peng et al. BMC Bioinformatics 2013, 14:293 Page 3 of 5
http://www.biomedcentral.com/1471-2105/14/293
through a large set of results to identify other potential
erroneous reconstruction loci [25]. However, in many
cases it is hard to enumerate all possible rules and code
them explicitly. Rules may also become contradictory,
biased, or “fuzzy” under different circumstances. There-
fore, another more competent way to provide the do-
main knowledge is needed.
Interesting solutions may originate from comprehen-

sive neuron databases and brain anatomy atlases. The
reciprocal relationship that links neuroscience databases
and atlases with image computing methods offers a syn-
ergistic opportunity to improve both of them iteratively.
In both atlases and databases, it is possible to quantify
neuronal patterns from many samples statistically. The
statistics provide good “rules” or “priors”, and new para-
digms, for improving image-computing algorithms. For
example, since an atlas of cells is a comprehensive model
of the expected yet spatially deformed objects (cells) in
the observed image data, a model-based search approach
can be designed to achieve registration, segmentation,
and recognition at the same time. An automated algo-
rithm for simultaneous cell segmentation and recogni-
tion of C. elegans cells [26] uses a standard 3D nuclear
atlas of this animal to achieve much better performance
than the more intuitive approach of performing these
tasks in separate steps.
When neuron locations are stereotypical, atlas-based

image-computing methods can be powerful to design
novel biological experiments. The spatial variation of
most nuclei, including many neurons, in freshly hatched
C. elegans is about 2 microns [24], just about the average
size of a nucleus. For adult fruit fly brains, this variation
for the major neurite tracts is merely ~3 microns, orders
of magnitude smaller than the dimensions of an entire
brain [14]. Therefore, it is possible to design new
computer-driven instruments to repeatedly target the
same neuron or neurite tract, locally perturb the neur-
onal circuits of these animals in real time experiments,
and observe the response of the nervous system. Among
ongoing efforts, the Janelia SmartScope project aims at
leveraging new image-guided computer programs to
drive a 3D laser-scanning-microscope to target and
stimulate single cells precisely in 3D and observe their
downstream activities, using optogenetics and calcium
imaging.

Studying dynamics and functions of neural circuits
Functional connectivity and dynamics of neuronal con-
nections are two other important topics of computa-
tional neuroscience. Neuronal dynamics are reflected in
structure and activity at a variety of temporal scales, ran-
ging from arbor growth and cell migration (days to years),
through dendritic spine twitching and axonal bouton
crawling (minutes to hours), to neuron firing (milliseconds
to seconds). Intravital imaging [27] provides excellent
means to visualize these temporal changes. The dynamics
can then be studied using four-dimensional computational
image analysis. For instance, tracking the 3D morpho-
logical change of neurons over time from time-lapse im-
aging data offers great opportunity to improve neuronal
classification and characterize the structural plasticity of
growing, degenerating, or regenerating neurons [20].
Anchoring corresponding branching points of varying
neuron morphology and detecting persistent and variable
structures (branch tips, boutons, spines) from multi-
dimensional image series are useful steps to analyze neur-
onal dynamics. Although the automation of these image
analysis tasks is still new, it is highly desired to quantita-
tively study these problems at large scale.
In another example, 3D segmentation and tracking of

somatic calcium imaging data provide a powerful way to
study neuron activity patterns. Computational causal
analysis might also enable interesting analysis of synaptic
connections [28] (see however [29]). Imaging neuronal
firing with possibly genetically encoded voltage-gated
dyes or fast calcium indicators could enable the co-
detection of neural network structure and activity. Using
brain atlases and computational image-guided ana-
lysis, it is possible to pinpoint the firing sites in vivo
and record the firing patterns in real-time experi-
ments. This approach could complement the recent
non-image-guided automatic whole-cell patch-clamp
electrophysiology [30].
Correlative analysis of microscopic image data of neu-

rons and other functional data, such as electrophysiology
and optical-physiology recording and behavioral assays,
can become a powerful approach to gain useful informa-
tion and knowledge from a large amount of data, and
may lead to the ultimate understanding of how individ-
ual neurons and their networks work. For instance,
digitization of the dragonfly descending neurons’ morph-
ology from confocal images has been correlated with the
electrical recording and measurement of the receptive
fields of these neurons [31]. This analysis led to a new
finding that the average population vector of the neur-
onal response of a surprisingly small number of de-
scending neurons actually precisely controls the wings of
the animal in targeting preys [31]. On the other hand,
for behavior assays, systematic video-analysis based
high-throughput studies have yielded powerful new ways
to associate the neuronal circuits of both insects and
mammals with either the stimuli (such as the mouse
whisker system [32]) or the behavior output (such as the
Drosophila trajectories [33]). In the work of [33], a ma-
chine learning system enables biologists to automatically
annotate the behaviors of animals in each frame of a
video. It can be used to detect a wide variety of social
and locomotion behaviors across flies, mice, and larvae.
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Recent years have witnessed an acceleration of the on-
going transformation of computational neuroscience due
to image computing automation. For example, neurite
outgrowth assays employing automated reconstruction
of neurons in high-throughput high-content environ-
ments are now common, and are used for testing hy-
potheses, screening, and toxicology studies [34-36]. At a
more advanced level, new high-throughput methods for
accurate neurite reconstruction [37] have allowed ana-
lysis of the specific wiring underlying computation of
direction-selectivity in retinal circuits [38]. More gener-
ally, these kinds of structural neurobiology studies may
systematically provide the much needed mechanistic un-
derstanding of neural computation [39] if employed in
large-scale automated applications [40] of new tech-
niques for the anatomical and molecular interrogation of
intact biological systems [41].
Future prospects
We are optimistic that in the next five years more auto-
mated and intelligent computer programs for analyzing
large-scale brain images will yield tangible advancements
in computational neuroscience. The neuron anatomy
projects for various model animals will start to deliver
integrated data sets, organized in neuron databases and
brain atlases. This will provide invaluable data resources
for the research community to analyze. This may lead to
a paradigm shift similar to the massive rise of mining
and reanalysis of ‘secondary’ (archived) data following
the sudden abundance of genome sequences 10 years
ago. Neuron databases and brain atlases are also going
to incorporate more dynamic and functional informa-
tion, such as from time-lapse and calcium imaging
of interacting neurons. More realistic computational
models of neurons and their networks may foster a
deeper understanding of the functioning mechanisms of
nervous systems, paving the path to re-create a brain in
silico.
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