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Abstract

Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells
being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but
we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of
shape changes.

Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop
a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to
fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step
of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are
closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.

Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or
the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks
have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools
provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the
presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the
possibility of eventually combining individual steps in order to speed up computations.
Background
Cell migration is a highly complex process that integrates
many spatial and temporal cellular events [1]. It plays im-
portant roles in embryonic development, tissue repair,
cancer invasion and atherosclerosis [2]. Recent advances
in live-cell imaging yield vast amounts of image data [3],
and a number of image analysis algorithms with high
throughput capability have been developed [4,5]. These
were applied for example to characterize mutants that lack
the ability to sense gradients of a chemoattractant, or con-
tract their cell body less efficiently while moving.
Our current view of moving cells is mostly based on

2D cross-sections through the centre of cells or evanes-
cent wave imaging of the substrate attached cell surface.
Similarly, software developed for cell migration studies
focuses primarily on migration in 2D. Although treating
cells as 2D entities has proven effective in understanding
some aspects of cell locomotion and in identifying
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reproduction in any medium, provided the or
defects in a variety of mutants [6], neglecting the third
dimension [7] results in several misconceptions [6].
Two-dimensional cross-sections give the wrong impres-
sion of cells being flat and uniformly attached, which in
first approximation is adopted in many models of cell
polarity and organization, although it is clear that the
differences between the front and rear of a cell are as big
as those between the ventral and dorsal sides. Secondly,
we falsely tend to assume that small shape changes in
2D cross-sections are accompanied by similarly small
changes in the third dimension. Thirdly, we often ignore
that in vivo cells may crawl through complex 3D envi-
ronments which can dramatically change cell behavior
and the way that cells polarize when compared to 2D
movement in a dish [7].
Recent advances in live cell microscopy have made it

possible to acquire high quality 3D+time volumetric im-
ages of cell migration. Currently, the most widely ap-
plied 3D fluorescence imaging technique is fast spinning
disk confocal microscopy which can typically acquire a
stack of 30 slices within a few seconds and is therefore
This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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capable of imaging cellular deformations on the second
timescale [8]. Since large and complex data sets typically
consist of 5,000–10,000 single images [9], analysis tools
with high throughput capability are needed.
Although cell images can be visualized by methods of

volume and surface rendering, both lack descriptive
power. Ideally we want to characterize global and local
shape features by a manageable number of parameters. A
concise description should allow for accurate comparison
of object shapes in order to find dissimilarities, and for
matching objects to predefined models, as well as for effi-
cient reconstruction and manipulation of objects [10]. The
ultimate goal is to develop automated, efficient and object-
ive methods that can create spatio-temporal maps of sig-
naling transduction and corresponding cell surface
deformations in order to further our functional under-
standing of cell motility in a quantitative way.
The most advanced software for analysing cell shape

and motility of amoeboid cells such as neutrophils or
Dictyostelium is 3D-DIAS [11], which is commercially
available. Models of cell surfaces are mathematically
reconstructed by beta-spline functions. 3D-DIAS allows
visualization of 3D dynamics of cell surfaces, but since it
works with lower contrast DIC images and not fluores-
cence the resolution of the generated surface models is
not optimal. Also, it lacks automated analysis of cell sur-
face deformations and fluorescence. Current commercial
software for quantifying 3D fluorescence images include
Meta-Morph (Molecular Devices, Sunnyvale, USA),
Volocity (Perkin-Elmer, Waltham, USA) and Imaris
(Andor Technology, Belfast, Northern Ireland), but they
offer little in terms of cell shape analysis. Advanced soft-
ware has recently become available for analyzing simple
cell shape changes of plants in 3D [12].
Inspired by the previous works of [4] and [11], we

present a new framework for 3D shape analysis of highly
Segmentation

Shape comparison

Figure 1 The workflow of the proposed approach includes five major
parameterization, shape representation, and shape comparison. Quan
The topology of the segmentation might need fixing to create a simply connec
parameterization. Based on the topology fixed binary volume and the spherical
harmonics are employed to describe cell shapes. After that, measurements of lo
dynamic cells. In [4], 2D time-lapse images of moving cells
were mapped onto the unit disk, which served as a refer-
ence frame both for registering cells across time and com-
paring different cells with varying shapes. Here, we use
spherical parameterization to map cell surfaces onto the
unit sphere. Spherical parameterization has been used ex-
tensively for brain cortex shape analysis [13,14]. Several
open source software toolboxes are available such as
SPHARM-PDM (Point Distribution Models) [15] and
SPHARM-MAT (Modeling and Analysis Toolkit) [16].
Since brain images from different time points or even
from different individuals are quite similar, a normalized
template is often used for shape analysis. In our applica-
tion, however, cell shapes of moving cells usually vary
greatly between different time points, and there is no com-
mon template. Although spinning disk confocal micros-
copy allows acquiring time series of 3D stacks within
seconds, short exposure times result in low signal-to-noise
ratios. Further complications can be inhomogeneous label-
ling (e.g. the intensity of the cell interior is similar to that
of the background), and ambiguous boundaries, making
segmentation non-trivial.
Our proposed framework includes five major steps: cell

segmentation, topology fixing, spherical parameterization,
shape representation, and shape comparison as illustrated
in Figure 1. In this work, we will mainly focus on the first
four steps while only briefly describing the final step for
completeness. We extend our work for segmentation of
individual cells [17] by adding an automatic seed detection
method. A novel topology fixing method is then developed
to create simply connected 3D objects required for spher-
ical parameterization. Both cell segmentation and topology
fixing are formulated using a Laplacian approach. We use
the spherical parameterization method proposed in [10],
and represent cell shape with spherical harmonics
(SPHARM), which are very popular methods in brain
Topology fixing

Spherical
parameterization

Shape representation

steps: cell segmentation, topology fixing, spherical
titative analyses of cell shape firstly require segmentation of individual cells.
ted 3D object, a requirement for the subsequent step of spherical
parameterization result, shape representation techniques such as spherical
cal and global dynamic cell shape changes can be conducted.
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cortex shape analysis. The techniques used for spherical
parameterization and shape representation are again
closely related to the Laplacian operator. Based on the
above four steps, measurements of cell membrane defor-
mations can be finally conducted. Historically, a variety of
solutions have been proposed for each of the above-
mentioned steps. We here employ a common Laplacian
approach. Although currently we are unable to exploit this
feature to connect the different steps in an operative man-
ner, we believe that a unified approach will help working
towards this goal in future.

Methods
Segmentation
The segmentation of volumetric cell scans yields a
partitioning in the form of binary 3D stacks. We begin
by briefly explaining notations. Given an image with N
voxels, a weighted undirected graph GS = (V, E, AS) with
vertices v ∈ V and edges e ∈ E is constructed. Each voxel
corresponds to a vertex v, and each pair of neighbouring
vertices is connected by an edge e. The connectivity is 6
or 26 for 3D images. AS ∈ RN×N is a weighted adjacency
matrix, which maps changes in the image structure to
edge weights. The weighting function is defined as

As
ij ¼ exp − Si−Sj

�� ��2=σS− Ii−I j
�� ��2=σ I� �

ð1Þ

where Ii is the image intensity value at vertex vi, and Si in-
dicates its spatial position. The graph Laplacian matrix is
then given by Ls = Ds - As where Ds is a diagonal matrix
with elements given by the degree of vertices ds

i ¼ ∑j∈VA
s
ij.

Care should be taken if the voxel spacing in z is different
from that in x and y, and any anisotropy should be
corrected by appropriate scaling factors. As we work with
images which are downsampled in x and y (as detailed
below) voxel spacings in x, y and z are almost identical
and no correction is applied. When imaging dynamic pro-
cesses, voxels within a given z-plane are theoretically more
likely to be correlated since planes are acquired sequen-
tially with some delay. In principle this could result in
higher affinity values within a single plane, but as it is un-
clear how to quantify this effect we ignore it for now.
It is worth to note that the graph Laplacian matrix L

plays a key role in our framework. By building problem
specific L, such as Ls the Laplacian matrix for segmenta-
tion, and exploring its intrinsic eigenstructures, not only
segmentation but also the subsequent steps including
topology fixing, spherical parameterization, and shape
representation can be performed.

Random walker method
The random walker method proposed in [18] is a semi-
automatic method, which requires the user to provide
seeds indicating foreground or background. It has many
nice characteristics, including trivial generalization to
simultaneous multi-region and 3D segmentation, robust-
ness to noise, weak boundaries detection, a sound theor-
etical basis, and a probabilistic output that can be
employed to identify areas of uncertainty. The probabil-
ities of unseeded nodes are found by

min
x

xTLsx ¼ ∑
eij∈E

As
ij xi−xj
� �2 ð2Þ

where xi represents the probability of pixel i being fore-
ground or background. Based on the provided seeds, Eq.
(2) can be decomposed into

min
x

xTM xTU
� � LsM B

BT LsU

	 

xM
xU

	 

ð3Þ

where the nodes in Ls and x are ordered such that seed
nodes come first and unseeded nodes second, xM and xU
correspond to the probabilities of seeded and unseeded
nodes respectively, B is a submatrix of Ls. The
optimization problem of Eq. (3) can be solved by the fol-
lowing linear equation:

LsUxU ¼ −BTxM ð4Þ
This is a large linear system for 3D segmentation of a

cell image. Although Eq. (4) is a sparse, symmetric and
diagonally dominant system, solving it directly will still
be slow requiring O(U) running time, U representing the
total number of unseeded nodes.

Downsampling
Obviously, if we reduce the number of unseeded nodes,
the time for solving Eq. (4) can be reduced. The problem
is how to reduce the number of equations without sacri-
ficing accuracy. We first downsample the image using
the bilinear method to make it substantially smaller.
Since the resolution in z is much lower than in x and y,
we do not downsample in z. The random walker method
is then applied to the downsampled stack, with many
fewer equations to be solved.

Automatic seeds detection
Both the original random walk [18] and our previous
method [17] require manual seeds for segmentation.
Here we propose an automatic seeding method, which is
inspired by the recent advances on saliency detection
via Fourier domain analysis [19,20]. Working in the fre-
quency domain is simple and fast, but more importantly
these methods usually involve downsampling the image
which is in line with our segmentation approach.
The downsampled image Id is firstly transformed into

the Fourier domain F(Id). Amplitude AI(F(Id)) = |F(Id)|
and phase P(F(Id)) = angle(F(Id)) spectra are then calcu-
lated. The log spectrum is obtained by
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LS Idð Þ ¼ logAI F Idð Þð Þ ð5Þ
A Gaussian kernel h is used to smooth out the spikes

in the log spectrum

As F Idð Þð Þ ¼ LS Idð Þ � h ð6Þ
The saliency map of the downsampled image Id can

then be computed as

S Idð Þ ¼ F−1 exp As F Idð Þð Þ þ iP F Idð Þð Þð Þð Þ� �2 � h ð7Þ
where the smoothed log spectrum in Eq. (6) and the ori-
ginal phase spectrum are combined to compute the in-
verse Fourier transform.
The motivation behind the above approach is that if

we divide the image into small patches, the majority of
them will consist of background with similar patterns,
which show up as spikes in the log spectrum after
transforming the image into the frequency domain [19].
These spikes, and with it the background, are suppressed
by applying a low-pass Gaussian filter.
Based on the saliency map obtained in Eq. (7), a simple

two-level threshold method is proposed to detect foreground
and background seeds, respectively. The first level threshold
values for foreground and background are calculated as

Tf 1 ¼ mean S Idð Þð Þ þ 2std S Idð Þð Þ ð8Þ
Tb1 ¼ mean S Idð Þð Þ þ std S Idð Þð Þ ð9Þ

The first level foreground and background are obtained
below

F1 ið Þ ¼ Id ið Þ if S ið Þ > Tf 1

0 otherwise

�
ð10Þ

B1 ið Þ ¼ Id ið Þ if S ið Þ < Tb1

0 otherwise

�
ð11Þ

The second level threshold values for the foreground
and background are

Tf 2 ¼ mean F1 ið Þð Þ ð12Þ
Tb2 ¼ mean B1 ið Þð Þ þ 2std B1 ið Þð Þ ð13Þ

The second level foreground and background are com-
puted via

F2 ið Þ ¼ 1 if Id ið Þ > Tf 2

0 otherwise

�
ð14Þ

B2 ið Þ ¼ 1 if Id ið Þ < Tb2

0 otherwise

�
ð15Þ

which are used as the input of seeds for the cell segmen-
tation in Eq. (4).
The above method for seed detection works well for

cell images with only one stain. We threshold the
saliency map by estimating an initial foreground and
background as deviations from the mean intensity and
then refine these estimates. Instead of using a single
threshold value for the segmentation, we use two clearly
separated threshold values, one for foreground and the
other for background to be on the safe side. This is used
as input for a more accurate segmentation employing
the random walker method. The threshold selection is
not sensitive in our algorithm. Using Otsu’s method [21]
for the initial estimation of foreground and background
of Eqs. (10 and 11) similar results were obtained.
The proposed method has also been applied to a differ-

ent cell type (Dictyostelium cell with LimE tagged by
mRFP, and Coronin fused to GFP, combining two channels
in one, see Additional file 1: Figure S1, volume size:
389×292×73). In this case we need to slightly tune the sec-
ond level threshold values of Eqs. (12 and 13) as the stand-
ard deviation of the combined two channel images is much
bigger than that of the single labelled neutrophil images.

Edge-preserved upsampling
The random walker method of Eq. (4) is applied to the
downsampled image Id with automatically detected seeds.
The obtained downsampled probability is extrapolated by
a cubic method to the original image size. The upsampled
probability qci at pixel i is calculated in the following form:

qci ¼
1

neighb ið Þj j þ 1
∑

k∈ neighb ið Þ;if g
w Ii; μ

c
seed

� �
pci þ η
� � ð16Þ

where c is the class indication of cell or background, Ii is
the intensity at pixel i of the original image, μcseed is the
mean intensity of seeds, pci is the extrapolated probability
of class c at pixel i, and η is a scalar parameter to balance
the importance of the weight w Ii; μcseed

� �
given by

w Ii; μ
c
seed

� � ¼ 1− Ii−μcseed
� �

=τ
� �2� �2

Ii−μcseed
�� ��≤τ

0 otherwise

(
ð17Þ

where τ is a scale parameter in the intensity domain to con-
trol the influence of Ii. Eq. (17) gives higher weight to pixels
with intensities similar to the mean intensity of seeds. If the
intensity difference is bigger than τ, the weight is set to
zero. The final segmentation is obtained by assigning the
pixel i to the class corresponding to maxc qci

� �
.

The effect of Eq. (17) is similar to Tukey’s biweight
edge-stopping function introduced in [22] for robust an-
isotropic diffusion. The discrete diffusion equation
governing the value Itþ1

i is

Itþ1
i ¼ Iti þ

α

neighb ið Þj j ∑
k∈neighb ið Þ

g Itk−I
t
i

� �
Itk−I

t
i

� � ð18Þ

where t is the time step, the constant α is a scalar value
that determines the rate of diffusion, and g(∙) is an edge-
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stopping function. The choice of g(∙) can greatly affect
the extent to which discontinuities are preserved. A var-
iety of edge-stopping functions have been used such as
Lorentz, Gauss, and Tukey’s biweight function [22],
which are plotted in Additional file 2: Figure S2. It is
helpful to understand how an edge-stopping function
deals with outliers. We can see that the Lorentz function
gives more influence to outliers than the Gauss and the
Tukey functions. More robust results can be achieved by
Tukey’s biweight function, as it completely prevents dif-
fusion across edges.
In [22], the intensity difference is calculated between

the pixel i and its neighbouring pixels as seen in Eq.
(18). For regions of piecewise constant intensity, aniso-
tropic diffusion is equivalent to averaging intensities of
neighbour pixels. For an image region that includes
boundaries, the influence of “outliers” is low as the value
of g(∙) is small for large intensity differences. However,
our method computes intensity differences between
pixel i and the mean of seeded pixels, instead of its
neighbouring pixels. To make it more clear, Eq. (16) can
be rewritten as

qci ¼
1

neighb ið Þj j þ 1ð Þ seedcj j ∑
k∈ neighb ið Þ;if g

∑
j∈seedc

w Ii; I
c
j

� �
pci þ η
� �

ð19Þ

where |seedc| is the cardinality of the set seedc, the seeds
of class c. Here, the edge-stopping property is nicely
kept, and “outliers” can be explained explicitly as pixels
belonging to a class other than c.
The final segmentation result will contain some small

spurious objects due to a few high intensity pixels in the
background. The morphological close operator can be
used to remove those falsely detected small objects.

Topology fixing
The subsequent step of spherical parameterization re-
quires cell surfaces to have spherical topology, i.e. a
genus zero surface [23], the value of a surface’s genus is
equal to the number of “holes” it has. The surface of an
ideal cell can be considered as genus zero. Limitations in
practice are that cells often exhibit thin protrusions,
which can cross, or fluorescent markers are not distrib-
uted evenly, each of which can result in holes in the
segmentation.
The two open-source SPHARM softwares, SPHARM-

PDM [15] and SPHARM-MAT [16] provide tools for
fixing the topology of 3D binary objects. Our results
show however that these tools fail to fix the topology of
cells with complex protrusions. We also tried morpho-
logical operators such as dilation and close, which can
fix topology to some extent, but at the expense of alter-
ing the original binary volume significantly. All the
methods mentioned above fix topology based on binary
volumes.
Here we present a new method for fixing cell topology

which minimizes aliasing artefacts. Instead of operating on
the binary volume directly, we treat it as a set of hard con-
straints imposed on the separating surface that encom-
passes the centres of all foreground voxels. A non-binary
underlying embedding function is obtained by solving a
constrained convex optimization problem. Based on the
embedding function, protrusions are detected and those
causing ill topology are identified. The identified ill protru-
sions are then fixed, while leaving other parts of the vol-
ume unaffected. Such a strategy has several advantages
over using the binary volume directly, including the ease
of fixing topology as well as minimizing aliasing artefacts.

Non-binary embedding
We are looking for a continuous embedding function,
the zero-isosurface which is compatible with the original
binary volume. There are many choices of the embed-
ding that meet the hard constraints imposed by the bin-
ary volume. The work of [24] took a constrained area
minimization approach in the implicit level set frame-
work. Lempitsky (2010) [25] suggested a method that
operates within the implicit framework as well and mini-
mized a higher-order smoothness criterion imposed on
the embedding function. Here we follow the idea of im-
posing the first-order smoothness on the embedding
function for image segmentation as outlined in the last
section. Given a binary volume, we build a graph Gt from
the discrete grid domain of the binary image. A graph
Laplacian matrix Lt of Gt is constructed in a similar way to
the last section. However, each element At

ij of the adjacency

matrix At of the graph Gt is computed differently as

At
ij ¼

1 if vivj∈E
0 otherwise

�
ð20Þ

First-order embedding
A general optimization-based regularization formulation
for finding the embedding function F with first-order
smoothness minimizes the following p-Dirichlet integral
functional

min∫Ω

1
p
∇Fj jpdΩ s:t:vijk fijk≥0 ð21Þ

where fijk ∈ R denotes the value of F on each vertex of
the graph. The value on each vertex vijk is +1 if it belongs
to foreground, otherwise −1. Minimizing the integral of
the p-power of the variation forces the embedding func-
tion to remain smooth. The set of hard constraints en-
forces its fidelity, so that the function is compatible with
the original binary volume. The different values of p lead
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to different formulations for optimizing the energy of
Eq. (21).
For p=1, Eq. (21) becomes

min∫Ω ∇Fj jdΩ s:t:vijk fijk≥0 ð22Þ

where ∇Fj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂F=∂xð Þ2 þ ∂F=∂yð Þ2 þ ∂F=∂zð Þ2

q
is the

Ll norm of the gradient magnitudes. Eq. (22) corre-
sponds to the total variation minimization of the embed-
ding function F in a domain Ω. In this case, the area of
the zero-isosurface is minimized, leading to “shrinking
bias”, i.e. bias towards smaller surfaces [25]. Eventually,
the optimizer converges to an empty surface, which is
the unique global solution of such regularization.
If we substitute p=2 into Eq. (21), it minimizes the

Dirichlet integral defined as

min
1
2
∫Ω ∇Fj j2dΩ s:t:vijk fijk≥0 ð23Þ

A combinatorial formulation of Eq. (23) using the graph
Laplacian matrix Lt has the following form

min
1
2
f TLtf s:t:vijk fijk≥0 ð24Þ

The regularization and the hard constraints of Eq. (24)
would lead to a trivial optimal solution of F ≡ 0. We use
a similar method as in [25] where we add a margin mijk

to separate the resulting embedding function from the
zero solution. Thus, Eq. (24) changes to

min
1
2
f TLtf s:t:vijk fijk≥mijk ð25Þ

where the margin mijk is calculated as the Euclidean dis-
tance to the set B of boundary nodes in V:

mijk ¼ min
x;y;zð Þ∈B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i−xð Þ2 þ j−yð Þ2 þ k−zð Þ2

q
ð26Þ

Implementation
To solve the convex quadratic problem of Eq. (25) we ap-
plied a simple optimization scheme based on projected
Jacobi iterations similar to [26]. The matrix Lt is factorized
into the diagonal part Dt, where Dt

ii ¼ Ltii , and Dt
ij ¼ 0 for

i ≠ j, and the off-diagonal part Ct = Dt - Lt with zero diago-
nals. The iterations are based on the following formula:

f kþ1
Jacobi ¼ − Dtð Þ−1Ctf k ð27aÞ

f kþ1
step ¼ λ⋅ f kþ1

Jacobi þ 1−λð Þf k ð27bÞ

f kþ1 ¼ min h; max l; f kþ1
step

n on o
ð27cÞ

where the scalar λ is the step length set to 0.5 in our ex-
periments, parameters l and h are the lower and higher
bounds on the values of f derived from the margin in-
equality that are taken element-wise. To speed up the al-
gorithm, we define a narrow band S of vertices obtained
by thresholding the margin mijk:

i; j; kð Þ mijk < t
�� �� ð28Þ

where the threshold t is the half-width of the band. The
computation is confined to the narrow band S, i.e. only
those vertices near the surface within a certain distance
are considered instead of performing the computation on
the full grid.

Fixing ill topology
The goal of the non-binary embedding is to estimate a
continuous function from binary segmented data that re-
tains fine details presented in the original segmentation.
To fix any ill topology, we suggest to proceed in a re-
verse manner with respect to the non-binary embedding.
We treat the binary volume as a threshold of a discrete
sampling of the obtained embedding function F, and re-
cover it in a divide and conquer approach. Here, we first
propose a method for protrusion detection based on the
embedding function F, and then those protrusions that
cause the ill topology are fixed.

Protrusion detection
The assumption we make here is that ill topologies are
caused by cellular protrusions. We observe cells that
undergo spreading, which mean they are initially spher-
ical when attaching to a coverslip, and correspondingly
the segmented binary volumes have a well defined spher-
ical topology. However, when cells start adhering more
firmly to the substrate and start migrating they develop
thin protrusions, more precisely filopodia and retraction
fibres. These often create holes when crossing each other
so that topology fixing is required before one can
proceed with further processing, such as spherical
parameterization.
The embedding function F we obtained is similar to

that in [24], where the constrained minimal area
optimization problem is solved in the implicit level-set
framework. As seen in Figure 2, the estimated embed-
ding function F is in the form of a level set of a grey-
scale volume. The benefit of interpreting the embedded
function as level-set implicit representation is the ele-
gant handling of changes in topology such as detecting
or filling-in of holes. Thus, we are able to evaluate the
topology of a given cell from inner layers (levels with
high value) to outer layers (levels with low value). The
basic idea is to march through the level sets and pro-
gress towards a desired one whose thresholded binary
volume has a spherical topology.



(a)

(c)

(b)

Figure 2 Non-binary embedding of a 3D stack of a neutrophil
cell. (a-c) are the 5th, 8th, and 11th slices. The estimated
embedding function is in the form of a level set of a grey-scale
volume. This representation facilitates detecting or filling-in of holes.
Topology is evaluated starting from inside (levels with high value)
and progressing towards the outer layers (low values) to find the
largest thresholded binary volume with spherical topology.
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We start initially outside, with low level sets, where F
is thresholded with a value of 1.5 yielding a binary vol-
ume. To ensure it has spherical topology, its topology is
evaluated by computing the Euler-Poincaré characteris-
tic. If not, we increase the threshold and repeat the
above procedure. We obtain a binary volume A that can
be considered as a shrunk version of the original vol-
ume. After that we gradually enlarge the surfaces of the
binary volume A via simple morphological dilation. The
size of the structuring element is related to the narrow
band width S as defined in Eq. (28), initially set as
(t+1)×(t+1)×(t+1), and could be changed adaptively. Pro-
trusions are detected by simply subtracting the dilated
binary volume from the original one. We only keep
subtracted results with values higher than 0 to make it
consistent with the original binary volume. Besides pro-
trusions, we also obtain the remaining binary volume B,
which consists of the main cell body.
The above procedure in some ways mimics low-pass fil-

tering, such as Gaussian filtering. The volume B can be
considered as low frequency content, while protrusions
represent high frequencies. However, our method is fun-
damentally different from the Gaussian filtering approach.
It is unknown how to choose the kernel size for the
Gaussian filtering approach, so that the filtered binary vol-
ume has spherical topology. Furthermore, since the fil-
tered result is incompatible with the original binary
volume, it is unlikely that the fine details smoothed out by
the filtration contain all portions that cause ill topology.
Fixing ill protrusions
In general, only a few protrusions contribute to ill top-
ologies. We evaluate them one by one by adding them
back to the binary volume B. If a protrusion does not
violate the genus zero topology requirement, we merge
it back into the binary volume B. In this way, we identify
those protrusions that cause the topology change and a
binary volume C that is the combination of the binary
volume B and those protrusions with spherical topology.
After the identification of ill protrusions, we treat each

individual one as a single binary volume. Again, we
embed each protrusion into a non-binary function using
the method detailed before. Thanks to the level set form
of the obtained embedding function it is easy to fix the
topology. We simply expand each protrusion by using a
low level set, -0.1-sets to start with. We check the top-
ology of the expanded binary volume, and decrease the
threshold value if the binary volume still violates spher-
ical topology.
As protrusions are usually very small compared to the

original volume, the fixing procedure is very efficient.
Once protrusions are fixed, we merge them back to the
binary volume C. Finally, we obtain a binary volume with
spherical topology, where only a small portion containing
fixed protrusions has been modified, while the majority of
the binary volume is unchanged.

Spherical parameterization
The objective of spherical parameterization is to embed
the cell surface in the unit sphere while minimizing the
distortion of the surface net in the mapping. Generally, a
good mapping attempts to either minimize length, angle,
or area distortions. For comparisons between cell shapes
acquired at sufficiently close enough time points we as-
sume the total cell surface area to change only minim-
ally, and consider an equiareal mapping as justifiable:
Here, a particular region on one cell surface is always
compared with the corresponding region at a subse-
quent point in time, where both regions have the same
area [27].
Spherical parameterization creates a continuous, uni-

form mapping from the cell surface onto the unit
sphere. The result is a bijective mapping between each
point p on the cell surface M and a pair of spherical co-
ordinates:

p θ;φð Þ ¼ x θ;φð Þ; y θ;φð Þ; z θ;φð Þð ÞT ð29Þ

where the polar angle θ ∈ [0,π] is the angle between the
positive z-axis (north pole) and the vector corresponding
to p. φ ∈ [0,2π] is the azimuthal angle between the posi-
tive x-axis and the projection of p onto the x-y plane.
We have tried to use several different spherical
parameterization methods [10,27-29], among them the
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method presented in [10] turned out to perform best for
our application. Here we briefly describe the key idea be-
hind the algorithm and highlight that the method is
closely related to the graph Laplacian matrix L.
The topology fixed binary volume is converted into a

voxel surface, which is the input for the spherical
parameterization. Based on the surface graph, two Laplacian
matrixes are constructed for initial parameterization of two
polar coordinates, latitude θ and longitude φ, respectively.
After the initial parameterization of latitude and longitude, a
non-linear constrained optimization method is used to
minimize the area and topology distortions of the surface
net in the mapping. Additional file 3: Figure S3 shows how a
distinctly labelled protrusion is mapped onto the sphere.

Shape representation
Let Ω be a unit sphere, embedded in ℝ3. The spherical
Laplacian ΔΩ operator on Ω satisfies

ΔΩY
m
l ¼ −l l þ 1ð ÞYm

l ð30Þ
where Ym

l are spherical harmonics (SPHARM). Eq. (30)
indicates that SPHARM are the eigenfunctions of ΔΩ

with eigenvalue of λl = − l(l + 1) [30]. Denote the space of
square integrable functions with respect to Ω as L2(Ω).

Define Spharml ¼ span Ym
l

� �l
m¼−l as a subspace of all

SPHARM of the same degree l, and let Spharm0;…n ¼ ⊕n
l¼0

Spharml . Then it can be rigorously proven that the closure
of Spharm0,…n converges to the space L2(Ω) as n→∞ [31].
Therefore, SPHARM form a complete set of orthonormal
basis functions in space L2(Ω), analogue to unit basis vec-
tors. Similarly as vectors can be described by projections
onto each axis (scalar product between vectors), expansion
coefficients (scalar product between functions) can be used
for the description of functions [32]. Any spherical function
can be expressed by an infinite series of SPHARM
coefficients.
The cell surface M defined on L2(Ω) can be expressed

as a set of SPHARM coefficients. Each function on the
right side of Eq. (29) can be independently decomposed
in terms of SPHARM as

x θ;φð Þ ¼
X∞
l¼0

Xl

m¼−l

cmlxY
m
l θ;φð Þ ð31Þ

y θ;φð Þ ¼
X∞
l¼0

Xl

m¼−l

cmlyY
m
l θ;φð Þ ð32Þ

z θ;φð Þ ¼
X∞
l¼0

Xl

m¼−l

cmlzY
m
l θ;φð Þ ð33Þ

This expansion is exact, but errors are introduced
when restricting Spharm0,…n to a finite space with a
certain degree of l, which is required in numerical
implementations. A truncated SPHARM series can be
effectively used to fit relatively smooth functions and
model surface protrusions and intrusions [14].
In constructing the SPHARM representation of Eqs.

(31, 32 and 33), we need to estimate the coefficients cmlx ,
cmly , and cmlz . There are three major techniques for esti-

mating those coefficients: The simplest method is to nu-
merically integrate the Fourier coefficients over a high
resolution triangle mesh [33], which is computational
expensive. The second method is based on the fast Fourier
transform [34], in which a predefined regular grid system
is required. The most widely used method is based on
solving a system of linear equations that minimize the
least square problem [35]. The estimated coefficients
approximate the full underlying surface, and can be used
to represent and reconstruct the surface.
Shape comparison
The concise representation of cell shape using SPHARM
allows for local measurements of cell membrane deform-
ation. However, there are two additional issues to be
addressed, one is registration, and the other is re-
sampling. In order to obtain more accurate results, it is
usually necessary to register two cell surfaces before the
comparison can be conducted. The registration process
removes arbitrary rigid motions and brings each cell into
the same coordinate system. The surface registration
step is an optional one depending on the application,
which can be performed before the segmentation, dir-
ectly on the intensities of image voxels, or after the
shape representation on the mesh. There are a variety of
registration methods available in the literature [10,36].
Normally, the size of the cell mesh varies. It needs to

be re-sampled to make the number of vertices in the
model for each cell the same. This can be achieved by
using the regular mesh in the parameter space for recon-
struction. Subsequently, pairwise comparisons between
different surface models can be conducted. The corres-
pondence between SPHARM models is implied by the
underlying parameterization: two points with the same
parameter pair (θ, φ) on two surfaces define a corre-
sponding pair.
SPHARM allows cell shapes to be well-characterized,

both in a static and a dynamic manner [37], and is able
to extract a wide range of qualitative and quantitative
parameters, such as individual outliers, most commonly
occurring shapes, and spatiotemporal patterns of surface
deformations. Temporal analysis of SPHARM coeffi-
cients has been used to detect major deformation
phases, and to identify temporal events of interest such
as the formation of blebs as well as patterns of deform-
ation [37]. Fundamental features of cell shape dynamics
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can be extracted from time series images, which is es-
sential to understand the biophysical mechanisms of cell
migration. For the purpose of illustration, we use co-
efficients to identify five major phases of deformation
as shown in Additional file 4: Figure S4, and estimate
the temporal local deformations (Additional file 5:
Figure S5) of the cell membrane by subtracting cellular
models at different time points.

Results
The experiments were performed using unoptimized
Matlab code running on an Intel(R) Core(TM) 2.3 GHz
with 6 GB of RAM. In principle, the proposed frame-
work can be used for any 3D cell shape analysis. To
demonstrate its performance, ten neutrophil cell se-
quences were acquired, which were labelled with cell
mask orange dye to stain the plasma membrane. The
neutrophils are quiescent, then stimulated by application
of fMLP which prompts cell spreading and movement.
Cell movements are imaged by spinning disk confocal
microscopy. The acquisition speed is about 80 ms per
slice (4 secs/stack). The size of the stack is 180×283×24,
and its scale is 0.16x0.16x0.5 microns per voxel.

Cell segmentation
We use raw data to test our segmentation method,
which are more challenging than deconvolved data. Al-
though deconvolution usually generates smoother data,
it is prone to generate artefacts. We compared both the
segmentation quality and the time complexity of our
method with the random walker [18] and the level set
method [38]. For the random walker method, the seeds
are detected automatically similarly to the method de-
scribed in Section 2.3 using the original image without
downsampling. We extended the code from [18] to 3D
image segmentation. For the level set method, we manu-
ally set a region of interest with a right prism and then
run the algorithm with 50 iterations using the code from
[38]. We use the subsampling rate of 1/4 for all the test
image stacks.
Figure 3 shows the results for the segmentation of one

of the example stacks (Row 1), the saliency map (Row 2),
and its ground truth (Row 6). Compared to the raw image,
the saliency map is much less noisy, which facilitates
thresholding. The random walker method was unable to
obtain a proper result (Row 3), possibly because of
the noise in the image and the inhomogeneous inten-
sity distribution. We also tried to use the bilateral filter to
denoise the slices first before segmentation, but still without
much improvement. Our method (Row 5) is comparable to
the level set method (Row 4) with respect to dealing with
noisy cell boundaries. Regarding efficiency, our method
took only 2.62s, while the random walker method and the
level set method took 17.82s and 32.09s, respectively. In
[17], we manually entered seeds in the middle of the cell
image, and similar segmentation results were obtained.
Figure 4 shows segmentation results of three other
stacks using our method. It can be seen that currently
our method struggles to segment very fine cell processes
(retraction fibres), which deserve further study.
The global F-measure [39] is calculated to evaluate the

segmentation results quantitatively. The ground truth of
the whole cell was obtained by using the semi-automatic
software ITK-SNAP. Firstly, we imported a real cell
image into the software for semi-automatic segmenta-
tion. An initial segmentation result was obtained by
using the active contour method. The binary segmenta-
tion was subjected to manual post-processing to fill
holes and remove artefacts. Ten segmented cell stacks
and corresponding original images are available on
the authors’ website [40]. As the random walker
method cannot segment the entire cell, we only com-
pare our approach with the level set method. Our
method achieves a better F-measure value of 0.9,
when compared with the level set method (0.83). Visual
inspection of more than 10 sequences with 230 time
points each, showed that the obtained automated
segmentation is well within the limits of expected
interobserver error.

Topology fixing
Seventy-two stacks of neutrophil cell images were ran-
domly chosen and segmented. Among them 64 had no
spherical topology. An example stack with ill topology is
shown in Figure 5(a), whose Euler number is −5. Three
holes that can be seen from this viewpoint are
highlighted by red circles. We embed the binary volume
into a function with first-order smoothness (see Figure 2
for three slices of the embedding results).
Theoretically, the p value in Eq. (21) can be varied

from 1 to ∞. However, the p =∞ case is more complex
and computational expensive, and will be a matter of fu-
ture work. In this paper, we fix the p value to 2 since it
has been demonstrated in [18] that the p=2 case
achieves better results with less “shrinking bias”. Fur-
thermore, the convex quadratic problem of Eq. (25) can
be solved easily and efficiently by using a number of
convex optimization algorithms. The final result of top-
ology fixing should be similar with respect to the choice
of different p values. We also employed the embedding
function with second-order smoothness in our experi-
ments, and find that there is not much difference for the
current application.
Figure 5(b) shows the binary volume A that is 1.5-sets

of the embedding function F. Our experiments show
that the choice of the threshold value of the level is not
sensitive in this application. The remaining binary vol-
ume B without fine protrusions is shown in Figure 5(c).



Figure 3 Comparison of segmentation methods. Row 1: Original, Row 2: saliency map, Row 3: random walker method, Row 4: level set
method, Row 5: our method, Row 6: manually segmented ground truth. The saliency map is used to automatically generate seeds for both the
random walker method and our method. Columns 1–3 are the 1st, 4th, and 7th slices of the image stack. The random walker method was
unable to obtain proper results, possibly because of noise and inhomogeneous intensity distributions. Our method is comparable to the level set
method with respect to dealing with noisy cell boundaries. Regarding efficiency, our method took only 2.62s, while the random walker method
and the level set method took 17.82s and 32.09s, respectively. Scale bar: 10 micron.
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It has spherical topology. Initially, protrusions that pos-
sibly violate topology are not detected accurately and
contain many false positives as shown in Figure 5(d).
However, that will not affect the final result of topology
fixing in our application. Nevertheless, it might serve as
a good starting point for protrusion detection. The key
point here is that the detected protrusions must contain
everything that causes a topology violation. Figure 5(e)
can be considered as the largest volume we can obtain,
which has spherical topology without fixing. In compari-
son with the original volume of Figure 5(a), it can be
seen that only a very small portion of the volume con-
tributes to topology violation. We will leave Figure 5(e)
as it is, and only modify a few small protrusions. As
demonstrated in Figure 5(f ), the modification is almost
negligible in the final result with only 0.42% difference
between the fixed and the original volume.
Figure 5(g-h) shows the topology fixing results

obtained by two open-source softwares, SPHARM-PDM
[15] and SPHARM-MAT [16]. The SPHARM-MAT
method introduced 0.06% artefacts, which is better than
our method (0.42%) and the SPHARM-PDM method
(0.83%). However, none of the holes has been filled by
the SPHARM-MAT method (Figure 5(h)), while only
two of them were filled by the SPHARM-PDM method
(Figure 5(g)). We compare the average rates for



Figure 4 Segmentation results using our method for three other stacks (Rows 1–3). Columns 1–3 are the 1st, 4th, and 7th slices of the
image stack. It can be seen that currently our method struggles to segment very fine cell processes (retraction fibres). Scale bar: 10 micron.
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successful topology fixing of the 64 binary volumes with-
out spherical topology, which are 69%, 4%, and 95%, for
SPHARM-MAT, SPHARM-PDM and our proposed
method, respectively. The amount of introduced arte-
facts are 0.21%, 0.96% and 0.94%, respectively.

Spherical parameterization and shape representation
We have compared the performances of several spher-
ical parameterization methods [10,27-29] and their re-
sults of shape representation using SPHARM. The
method proposed in [10] and implemented in [41]
performed best in our application (results not shown),
and will be used in the rest of this paper. The root
mean-squared error (RMSE) was utilized to quantify the
performance of shape representation results. The RMSE
is computed by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1 M pið Þ− ~M pið Þ� �2

N

s

where M indicates a true cell surface and ~M its
SPHARM representation, which is evaluated at N sam-

pling points pif gNi¼1 . The average error for all the tested
cell images is reported for each method.
An important aspect of measuring a cell’s migratory

behaviour is the quantification of local cellular protru-
sions and retractions. In order to evaluate our method’s
ability as regards to what extent small local shape varia-
tions can be detected, we artificially synthesized a cell by
introducing a controlled local shape deformation using
the open source software ITK-SNAP [42]. We imported
the ground truth segmentation of a real cell image into
the software and manually added a ball to simulate a cel-
lular protrusion by using the paintbrush tool of ITK-
SNAP (see Additional file 6: Figure S6).
From the mesh and its spherical parameterization, the

SPHARM description can be computed according to
Eqs. (31, 32 and 33), which is essentially a set of coeffi-
cients weighting individual spherical harmonic basis
functions. This description is then sampled into a trian-
gulated surface via an icosahedron subdivision of the
spherical parameterization. We ask how many coeffi-
cients are necessary to represent local deformations for
a given cell shape. Figure 6 shows SPHARM models of
the simulated stack with degrees of 10, 20, 30, and 42,
respectively. As we expected, it is not sufficient to use
degrees up to 10. From the models with degrees 20 on-
wards, we can easily identify the artificial ball. However,
the models with degrees 20 and 30 are unable to repre-
sent the details exhibited in the simulated stack. The
SPHARM models of one of the real cell images is shown
in Figure 7, with high degrees up to 42. Similarly, the
performance is improved as the degree increases. For
good quality results we suggest to use models with de-
gree 42 for typical cell shapes, which requires solving
5547 Fourier coefficients in total.
Table 1 reports the average values of RMSE, and the

average expansion and reconstruction times for shape
representation of cell images using SPHARM. The typ-
ical mesh size in the current study is 20426. RMSE de-
creases from 0.81 to 0.39 as the degree increases from
10 to 42. Theoretically, RMSE can be reduced further by
using high enough degrees of SPHARM. However, the
running time will be enormous as the number of coeffi-
cients to be estimated will increase quadratically. The
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Figure 5 Topology fixing of an example stack with Euler
number −5. (a) The original binary volume; (b) 1.5-sets of the
embedding function; (c) The binary volume without fine protrusions;
(d) The detected protrusions; (e) The binary volume (c) merged with
the protrusions that have spherical topology; (f-h) The final topology
fixing results by our method (f), results obtained by SPHARM-PDM
(g), and SPHARM-MAT (h). Three holes, each of which was fixed by
our method, can be seen from this viewpoint, highlighted by red
circles and black arrows. The modification is small, with 0.42%
difference between the fixed (f) and the original volume (a). While
SPHARM-MAT introduced even fewer artefacts (0.06%), and SPHARM-
PDM 0.83%, none of the holes were filled by SPHARM-MAT (h), and
only two of them were filled by SPHARM-PDM (g).

(a) (b)

(d)(c)

(e) (f)
Figure 6 Synthesized cell where an artificial ball has been
inserted into the membrane and its corresponding shape
representation with SPHARM. (a) Synthesized cell, (b-f) SPHARM
degrees of 10, 20, 30, 42, and 78. It is not sufficient to use degrees
up to 10. From the models with degrees 20 onwards, we can easily
identify the inserted ball and reconstructions improve with
increasing SPHARM degrees.
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total running time increase from 4.29 s to 216.12 s when
the degrees of SPHARM increase from 10 to 42, where
the majority of time is consumed for expansion, i.e. to
obtain the coefficients.

Discussion
In this paper, we develop algorithms for different steps
in our framework in a formalized way using Laplacian
approaches. Each method can be viewed from the per-
spective of exploring eigenfunctions of the Laplacian
matrix. Although different affinity matrices are used for
the first three steps, i.e. the weights defined are
application-driven, all of them are symmetric (A(i, j) =A
(j, i)), positive preserving (A(i, j) ≥ 0) and positive semi-
definite (for all x in RN, x′Ax ≥ 0). In addition all
minimize a quadratic distortion measure, naturally lead-
ing to the eigenfunctions of Laplacian-type operator
[43]. In the fourth step, we use SPHARM for shape rep-
resentation, which are eigenfunctions of the spherical
Laplacian ΔΩ. Therefore, all the techniques used in the
first four steps are closely connected. Indeed, it was
shown in [44] that the Laplacian of a graph is the
discrete analogue of the Laplace-Beltrami operator on
manifolds. The spherical Laplacian ΔΩ is the Laplace–
Beltrami operator on the unit sphere Ω.
As the affinity matrix for cell segmentation satisfies the

conditions of symmetry and pointwise positivity, the pair-
wise similarities can be interpreted as edge flows in a
Markov random walk on the graph [45]. To perform the
random walk segmentation, instead of solving the linear
system of Eq. (4), one may precompute several eigenvectors
of the Laplacian matrix and use this information to pro-
duce an approximation of the random walker segmentation
algorithm [46]. The approximation can be viewed from the
standpoint of distance in the “spectral coordinates” space
defined by the weighted generalized eigenvectors.
Furthermore, all the methods used in the four separate

steps are closely related to the problem of heat diffusion.
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Figure 7 Original real cell image (a) and its shape
representation with SPHARM degrees of 10, 20, 30, 42, and 78
(b-f). The performance is improved as the degree increases. For
better results, we suggest to use the model with degree 42 for a
typical cell shape.
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The random walk segmentation method can be consid-
ered as a diffusion approach [47], where the seeded pixels
are treated as the heat sources and the background acts as
a sink. After reaching equilibrium the image can be seg-
mented according to the temperature at each pixel.
The top eigenfunctions of Markov matrices (describing

local transitions, or affinities in the system) permit a
low-dimensional embedding, so that the ordinary Euclid-
ean distance in the embedding space measures intrinsic
diffusion metrics on the data [43]. The non-binary em-
bedding approach for the topology fixing can be viewed
as a diffusion process subject to the hard constraints. An
iterative scheme is used, where the constraints are
enforced and diffusion restarted using the new solution.
The initial parameterization of the latitude and longi-

tude are obtained from heat diffusion [10]. Latitude
grows smoothly from 0 at the north pole to π at the
south pole. In a physical analogy, the south pole is
heated up to temperature π, while the north pole is
Table 1 Average RMSE values and average running times
for shape representation of cell images using SPHARM

SPHARM RMSE Expansion
time(s)

Reconstruction
time(s)

Total
time(s)

degree10 0.81 3.88 0.41 4.29

degree20 0.53 16.38 2.29 18.67

degree30 0.44 61.43 6.67 68.09

degree42 0.39 199.78 16.35 216.12
cooled down to temperature 0. The parameterization re-
sults are obtained as the stationary temperature distribu-
tion on the heat conducting surface.
Fourier series have long been used for solving diffusion

problems analytically. Similarly, the spherical diffusion
equation kΔΩu(φ, θ, t) = ∂ tu(φ, θ, t) can be solved by ex-
pressing u(φ, θ, t) as SPHARM expansion. SPHARM can
be used in isotropic heat diffusion via the Fourier trans-
form on a unit sphere as a means of hierarchical surface
representation [34].
Such a perspective can help the reader to better

understand the commonalities behind seemingly differ-
ent techniques. It can also open a door for further im-
provement of the methods. By exploiting structural
similarities of the different approaches, it should be pos-
sible to integrate for example the topology fixing step
into the cell segmentation process, which will be a future
work of our research.
As an illustration of the technique, we have applied it

to neutrophil cell shape analysis. The presented methods
can be used for modelling arbitrarily shaped but simply
connected 3D objects. They are suitable for surface com-
parison and are able to detect protrusions and invagina-
tions, and quantify their dynamics. Shape plays
important roles in many biological processes, such as bi-
molecular recognition and the problem of protein bind-
ing pocket and ligand comparison [32], where the
presented methods have potential to extract functional
information from protein structures, locally and globally.
One of the limitations of the framework is that it can

only be used to represent genus-zero objects, which is true
for the cell surface, but not for more complex intracellular
structures like the endoplasmatic reticulum. As of now
segmentation and spherical parameterization of our
method are unable to cope with very thin protrusions.
Currently, we process every frame independently

irrespectively of prior knowledge of previous time
points, which could be used to initialize segmentation of
the current frame. However, since in our application
cells moves quite fast, the overlap between the mem-
brane marker at consecutive time points is too low.

Conclusions
This report presents a framework for 3D+time cell shape
analysis, which includes five major steps: cell segmenta-
tion, topology fixing, spherical parameterization, shape
representation, and shape comparison. We formalize the
algorithms for the first four steps using Laplacian ap-
proaches. All the methods can be viewed from the per-
spective of exploring eigenfunctions of the Laplacian
matrix, and are closely related to the problem of heat
diffusion. We developed a fast random walker method
for cell segmentation, which is based on the Laplacian
matrix generated from the discrete grid domain and the
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affinities defined by a Gaussian kernel. It is faster than the
other two popular methods with comparable segmentation
quality. The novel topology fixing method we proposed is
also based on the Laplacian matrix generated from the
discrete grid domain, but the affinity matrix contains unit
weights. It is able to fix the topology of complex cells with
a high success rate while introducing only minor artefacts.
The spherical parameterization method we applied is based
on the Laplacian matrix generated from the surface graph
and unit weights are assigned to each entry of the affinity
matrix with some special modifications. For the shape rep-
resentation, we directly explore the eigensystems of spher-
ical Laplacian without constructing the Laplacian matrix
explicitly. The spherical parameterization and the shape
representation methods are used for both simulated and
real cells, achieving satisfactory results. By analyzing the
temporal Fourier spectrum, we are able to identify major
deformation phases. The temporal local deformations of
the cell membrane can be estimated by subtracting cellular
models at different time points. In the future, we will apply
our framework for 3D+time neutrophil cell shape analysis
to study in detail how dynamic distributions of phospho-
lipids correlate with membrane dynamics.

Additional files

Additional file 1: Figure S1. Segmentation results using our method
for a Dictyostelium cell labelled with two markers for Lim (mRFP, red) and
Coronin (GFP, green). Row 1: original images (courtesy of G. Gerisch, M.
Ecke, MPI Biochemistry, Martinsried). Row 2: segmentation results.
Columns 1–3 are the 11st, 17th, and 23rd slices of the image stack. For
segmentation the two channels have been combined into one.

Additional file 2: Figure S2. Comparison of edge-stopping functions. A
variety of edge-stopping functions have been used such as Lorentz,
Gauss, and Tukey’s biweight function. The Lorentz function enhances
outliers when compared to the Gauss and the Tukey functions. More
robust results can be achieved by Tukey’s biweight function, as it
prevents diffusion across edges completely.

Additional file 3: Figure S3. Spherical parameterization of a cell
surface with protrusions. Nodes within the protrusion are highlighted by
red markers (a) to demonstrate how a particular region is mapped onto
the sphere (b).

Additional file 4: Figure S4. Temporal analysis of SPHARM coefficients
can be used to distinguish different phases of cellular deformations. (a)
Temporal SPHARM coefficients of a sequence with l=2, m=±2. (b-f)
Characteristic deformation phases at time points 18, 46, 56, 71, and 116,
which differ in cell roundness and symmetry.

Additional file 5: Figure S5. Visualising dynamic local deformations for
time points 18 to 23 in corresponding Additional file 4 (a-f). Cell
deformations are estimated by subtracting surface reconstructions at
different time points. The distance between surfaces is colour coded
(black: no deformation, red: protruding regions, blue: retracting regions).

Additional file 6: Figure S6. Synthesized cell with local shape
deformation (green ball) using the open source software ITK-SNAP. After
importing the ground truth segmentation (red) of a real cell image a ball
(green) was manually added by using the paintbrush tool to simulate a
well defined protrusion and assess the quality of surface reconstructions.
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