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Abstract

Background: Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the
molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput
experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid
approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data
from both protocols are prone to both high false positive and false negative rates. To address these issues, many
methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only
analyze binary experimental data (in which each potential interaction tested is deemed either observed or
unobserved), neglecting quantitative information available from AP-MS such as spectral counts.

Results: We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI
inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that
models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model
the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative
experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate
results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance
comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing
the theoretical bases of existing approaches and identify common aspects that may be key to their performance.

Conclusions: Our sampling framework extends the existing body of work on PPI analysis using binary interaction
data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite
general, and many enhancements are likely possible. Fruitful future directions may include investigating more
sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein
complex prediction methods.

Background
The importance of protein interactions and protein com-
plexes in understanding cellular functions has driven the
generation of comprehensive protein-protein interaction
(PPI) maps. The first large-scale PPI maps were gener-
ated for the model organism Saccharomyces cerevisiae,
initially using yeast two-hybrid screens (Y2H) [1,2] and
subsequently by affinity purification combined with mass
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spectrometry (AP-MS, Figure 1) [3,4]. Similarly, high
throughput approaches have been applied to comprehen-
sively map the Drosophila melanogaster interactome, ini-
tially using Y2H [5] andmore recently by AP-MS [6].With
advances in experimental protocols and decreasing costs,
medium-scale AP-MS studies have become ubiquitous in
proteomics for targeted investigation of specific pathways
or interactions. The PPI networks these analyses generate
have provided exciting insights into biological pathways
and protein complexes, e.g., with relevance to human dis-
ease [7]. However, raw AP-MS data includes many false
positive and false negative interactions, which are serious
confounding factors in their interpretation [8,9].
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Figure 1 A typical AP-MS workflow. A typical AP-MS study consists of performing a set of experiments on bait proteins of interest, with the goal of
identifying their interaction partners. In each experiment, a bait protein is tagged (e.g., using a FLAG-tag or TAP-tag) and expressed in cells. The bait
protein and interacting prey proteins are affinity purified. The resulting mixture of bait and bound prey proteins is trypsinized into peptide fragments,
which are separated by liquid chromatography and passed to a mass spectrometer for analysis. The mass spectrometer produces intensity spectra,
which are matched to peptides to deduce proteins present in the purification. Interacting preys thus identified are assigned semi-quantitative
spectral counts (SpC) indicating the propensity of each prey to bind to the bait. Data is collated from across the experiments into a matrix of
bait-prey spectral counts, which serves as the input to post-processing methods that filter contaminants and identify true interactions.

To address these issues, numerous methods have been
developed to post-process AP-MS data sets. These gener-
ally fall in two classes: spoke andmatrix models (Figure 2).
Spoke models [10-15] produce confidence scores on
bait-prey interactor pairs directly observed in the data
(i.e., those with non-zero spectral counts), whereas matrix
models [6,9,16-18] additionally infer prey-prey interac-
tions that are not directly observed and hence have
broader coverage at the expense of increased false posi-
tives. Development of spoke models has been an intense
area of research from the outset; see Nesvizhskii [19]
for a thorough review. Matrix models rely on analyz-
ing co-occurrences of pairs of proteins across many
experiments and were thus less effective on the ini-
tial medium-scale AP-MS studies first performed. As
larger AP-MS experiments have become more common,
however, matrix models have become increasingly rele-
vant because they can leverage the rich co-occurrence
information in these data sets. For example, Guruharsha
et al. [6] reported significantly improved inference on
the Drosophila melanogaster interactome using a matrix
model approach as compared to state-of-the-art spoke
methods.
The existing literature on matrix approaches has almost

exclusively considered only binary experimental data
(i.e., data sets in which bait-prey interactions are deemed
either observed or unobserved, with no additional infor-
mation about propensity of proteins to interact). An

exception is the HGSCore method [6], which to our
knowledge is the first to use quantitative information
fromAP-MS experiments in the form of bait-prey spectral
counts. In contrast, spoke models have successfully used
quantitative information (e.g., spectral counts [10-14,20]
and MS1 intensity data [15]) to filter contaminants and
assign confidence scores to interactions.
In this study, we propose a novel approach for incor-

porating quantitative interaction information into AP-MS
PPI inference. Our approach aggregates scores over an
ensemble of binary data sets that represents the quan-
titative data, capturing the uncertainty of interactions
with low spectral counts. Importantly, the sampling-
based framework we propose allows us to directly har-
ness previous binary methods without modification, thus
extending previous methods to use quantitative informa-
tion. We validate our results on a large-scale PPI net-
work and two medium-scale networks. Our approach
improves all binary methods that we tested across a
broad range of parameter values. In many cases, the
improved performance is comparable to or better than
state-of-the-art methods that have been developed to
leverage spectral counts. Additionally, in the Discus-
sion we characterize previous approaches and identify
a common mathematical framework that several suc-
cessful approaches have used, providing insights that
may be valuable in continuing to refine PPI infe-
rence techniques.
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Figure 2 Direct and indirect interactions in AP-MS data sets. The
diagram depicts a bait protein bound to a prey protein complex. Solid
lines indicate bait-prey interactions that could be observed in an
AP-MS experiment, while dashed lines indicate prey-prey protein
complex interactions that are not directly observable. Spoke methods
make predictions only on directly observed interactions (e.g., Bait
with Prey A), whereas matrix models infer protein complex
interactions (e.g., Prey A with Prey B). Because the prey proteins do
not necessarily form a single complex that interacts with the bait,
inferences of prey-prey interactions need to be based on the
co-occurrence of pairs of preys across many purification experiments,
which strengthens the evidence for interaction.

Results
Sampling framework
Themotivation behind our approach is that spectral count
values in AP-MS data sets span a very large dynamic
range (from single-digit values to numbers in the thou-
sands - Figure 3), and collapsing this range into binary
values—as is necessary to apply several previous meth-
ods [9,16-18,21]—loses a great deal of potentially useful
information. In particular, our intuition is that bait-prey
interactions observed with high spectral counts are much
more likely to be true interactions than those with spec-
tral counts of only 1 or 2, which might arise through
experimental noise. However, there are exceptions; lower
abundance proteins can be true interactors if they are
pulled-down reproducibly, and high abundance proteins
can be sticky proteins that are not necessarily true inter-
actors.
To model this uncertainty in the bait-prey interaction

data in a way that allows us to harness existing methods
that operate on binary data, we propose a sampling frame-
work that represents the quantitative (spectral count) data
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Figure 3 Histogram of spectral counts in the DPiM data set [6].
Of 438,557 positive spectral counts, 94% are less than 20 (shown) and
nearly half are either 1 or 2. In contrast, the largest spectral count
value is 753.

set using an ensemble of binary data sets (Figure 4). We
do so by first converting each positive spectral count
into a probability that represents the confidence that the
observed interactions were not experimental artifacts.
Then, for each of a specified number of trials, we cre-
ate a binary data set by sampling bait-prey interactions
according to their probabilities, and we apply the existing
method to the binary data set. Finally, we aggregate the
results over the ensemble to produce an overall ranking of
possible PPIs.
Explicitly, our framework takes as input a matrix of

spectral counts (nij), where columns correspond to purifi-
cation experiments and rows to prey proteins. We convert
a spectral count of n to the probability 1− (1− p)n, where
p is a user-defined parameter representing the probability
that a single spectral count is the result of a true obser-
vation, and we view the n observed spectral counts as
arising independently. Using these probabilities, we gener-
ate binary data sets of the same size as the original spectral
count input matrix by putting a 1 in each matrix cell inde-
pendently with probability 1 − (1 − p)nij . The resulting
distribution of alternative binary realizations of the spec-
tral count matrix thus reflects the range of confidences
in different bait-prey interactions, in contrast to the com-
mon approach of converting the spectral count matrix
to a single binary matrix simply by replacing all positive
spectral counts with 1s.
Given an ensemble of alternative binary realizations and

an existing PPI scoring algorithm that operates on binary
data, we apply the PPI scoring algorithm to each realiza-
tion, in each case producing a score for every possible
PPI. We then produce an aggregate score for every PPI by
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Figure 4 Sampling approach: Representing spectral counts with ensembles of binary matrices. A summary of our sampling approach. First,
each spectral count in the AP-MS data matrix is converted to a probability 1 − (1 − p)n , where n is the spectral count. Then, for each cell of the
matrix, we sample an independent Bernoulli random variable according to its probability. We repeat this procedure independently for a desired
number of trials, obtaining an ensemble of binary matrices representing the original quantitative AP-MS data. Each binary matrix is then used as
input to a PPI inference method of choice that operates on binary data, and the results from each trial are aggregated to produce an ensemble
score. Notably, the existing PPI inference method is directly applied to each binary matrix without modification.

taking the mean of the ensemble of scores for that PPI,
possibly after applying an appropriate transformation.
(A slight subtlety can arise in aggregating scores because
depending on the shape of the score distribution, taking
the mean may not be robust. Among the algorithms we
evaluated, we observed that the SAI score [21] could pro-
duce unbounded negative values, so we lower-bounded
SAI scores at 0 before aggregation in order to prevent a
single realization from having an extreme effect on the
ensemble score.)
An additional consideration is the size of the ensem-

ble required to produce stable results. In the tests we
describe below, we ran 120 independent trials and found
reasonable score separation between low, medium and
high confidence interactions (Additional file 1: Figure S7).

Then we further verified that increasing the ensemble
size by a factor of four had a negligible impact on the
results, indicating that 120 trials was sufficient to average
out the stochasticity of the method. Although the mini-
mum number of trials required will vary with the specific
data set, our experiments suggest that in general, such
a number of trials should sufficiently explore the space
of binary realizations without presenting a computational
burden, especially because the ensemble computations
can be easily parallelized.

Validation on three AP-MS data sets
We benchmarked our method by producing predictions
from three AP-MS data sets: the recently published
Drosophila Protein interaction Map (DPiM) [6] which
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includes over 3000 baits, a medium-scale human data set
(TIP49) with 27 baits [10], and a Drosophila study focus-
ing on the MAPK pathway with 21 baits [14]. On each
evaluation data set, we applied our sampling framework
to three previously published binary matrix methods for
PPI inference: Hart et al. [16], PE [9], and SAI [21]. Each
method produced a ranked list of interactions.
A standard approach to evaluating inferred interac-

tions is to compare predictions with a high-confidence
gold standard set. However, such a reference is challeng-
ing to construct. Few large-scale databases are available,
and even the largest are understood to be incomplete
and include false positive interactions. In light of these
concerns, we follow the validation strategy used in
Guruharsha et al. [6] of considering the overlaps between
multiple curated data sets, obtaining subsets of PPIs with
increasingly stringent thresholds on the number of sup-
porting sources. The idea is that we can have high con-
fidence in interactions supported by multiple lines of
medium-confidence evidence, reducing the false positive
rate in the gold standard data set (with the caveat that
this approach may be biased toward well-studied path-
ways). We applied this procedure to create validation data
sets from the Drosophila Interactions Database (DroID)
[22] for Drosophila PPI predictions and BioGRID [23] for
human PPI predictions. (SeeMethods for details.)
For eachmethod, we compared the top 25,000 predicted

interactions for the DPiM data set and the top 2,500 pre-
dicted interactions for the TIP49 and MAPK data sets
to gold standard interactions supported by increasing
numbers of sources, as in Guruharsha et al. [6]. Our
sampling framework produced robust improvement to
the binary methods across all levels of support and all
data sets (Figure 5). Moreover, the improved methods
perform better than or comparably to state-of-the-art
methods that use spectral count data (HGSCore [6] and
SAINT [13]). The choice of cutoff at the top 25,000
and 2,500 interactions was arbitrary, and the results are
similar at different cutoffs (Additional file 1: Figures S1,
S2, S3).
The sole parameter in our method is the probability p

that represents the reliability of a single peptide obser-
vation. We suggest a default value of p = 0.3, but the
performance improvements obtained using our sampling
framework are robust across a wide range of values of p
(Figure 6; Additional file 1: Figures S4, S5) and for different
confidence cutoffs (Additional file 1: Figure S6).

Discussion
The literature of published methods for PPI inference
from AP-MS data is substantial, and in continuing to
develop methodological improvements, it is valuable to
understand the similarities and differences among existing
approaches and identify key ideas.

Characterization of methods
Broadly speaking, methods can be broken down into
two classes of models—spoke and matrix models—and
by their scoring method. Spoke models make predictions
solely on bait-prey interactions, while matrix models infer
prey-prey interactions as well. Because prey-prey relation-
ships are never directly observed, matrix models use the
co-occurrence of pairs of proteins over multiple experi-
ments to make inferences. Methods can also be character-
ized by their scoring functions, which generally fall into
two classes: evidence-based scoring and null model-based
scoring. In evidence-based scoring, models are built that
estimate the likelihoods of observations under interacting
and non-interacting pairs. Typically, a log likelihood ratio
is then summed across experiments, implicitly assuming
independence. Evidence-based scoring approaches, such
as the PE [9] and C2S [18] scores, can easily combine
direct bait-prey observations and prey-prey observations
in the same model. However, because likelihood models
for interacting and for non-interacting pairs must be con-
structed, these scores tend to have more tuning param-
eters that must be estimated from scarce gold standard
validation data. In null model based approaches, such as
Hart et al. [16], HGSCore [6], and SAI [21], a model for
non-interacting pairs is assumed and fit from the data.
This forms an empirical null distribution under which
observations can be scored. The advantage of such an
approach is that only the null distribution has to be tuned,
so in many cases tuning with gold standard validation sets
is unnecessary.
An additional consideration for any method that com-

bines spoke and matrix information is the balance
between information from direct bait-prey observations
and prey-prey co-occurrences. These sources of informa-
tion are clearly distinct, so the weighting between the
two must be carefully calibrated, potentially requiring
gold standard validation data. Proper calibration is criti-
cal to performance and may explain why Hart et al. and
HGSCore, which seemingly sub-optimally ignore spoke
information, perform significantly better on our tests than
SAI [21], which uses both spoke and matrix information.
For experiments with a handful of baits, we expect that

methods relying on spoke information will have the best
performance because matrix methods rely on analyzing
co-occurrences of pairs of proteins across many experi-
ments. However, even for the medium-scale experiments
that we analyzed, methods that rely solely on matrix infor-
mation performed competitively with methods that used
spoke information. We foresee that as experiment sizes
grow, matrix relationships will be increasingly informa-
tive, so it will be crucial to consider both spoke andmatrix
information. Although our approach is applicable to any
binary method, in our experiments, we found that for
nearly all experiments PE was the top performer amongst
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Figure 5 Performance comparison of PPI inference methods. Performance of our sampling approach applied to PPI inference methods that
operate on binary bait-prey interaction data (Hart et al. [16], PE [9], and SAI [21]), and compared to state-of-the-art methods that make use of
spectral counts (HGSCore [6] and SAINT [13]). For each method that operates on binary data, two curves are plotted: (i) a dashed curve that shows
the performance of the method when applied to a direct binarization of the spectral count data (i.e., converting all nonzero spectral counts to
1s)—a common approach—and (ii) a solid curve showing performance upon applying our sampling approach with p = 0.3. We evaluate
performance according to the number of PPI inferences (out of the highest-confidence 25,000 or 2,500) validated on gold standard tests, as
explained in the main text. The plot shows performance relative to a baseline method of simply ranking PPIs in decreasing order of observed
spectral counts. All methods were run using default parameter settings.

the binary methods. In addition, because PE uses spoke
and matrix information, we recommend using it in our
framework.

Low rank plus sparse matrix framework
Interestingly, several methods (e.g., Hart et al. [16],
HGSCore [6], SAINT [13]) can be understood under a
common “low rank plus sparse matrix” framework. Hart
et al. [16] considered a null model in which interaction
partners are chosen independently at random in propor-
tion to the number of interactions each partner protein
was observed in. Although Hart et al. [16] used a hyperge-
ometric distribution, for large-scale studies, the score for
interaction between proteinsA and B is well approximated
using a Poisson cumulative distribution function (CDF),
taking the form

− log
(
1 − PoissonCDF

(
XAB; λ = NA

N
× NB

N
× N

))
,

where XAB is the number of experiments that protein A
and protein B co-purify in, NA (resp. NB) is the num-
ber of co-purifying pairs that protein A (resp. B) is
observed in, and N is the total number of co-purifying
pairs.
In the above form, λ factors as a rank-1 matrix, so that

the method can be seen as modeling the co-occurrence
matrix XAB as the sum of a rank-1 “background” matrix
(blurred by Poisson noise) and a sparse matrix indi-
cating true interactions. Notably, XAB ignores quantita-
tive information, simply counting experiments in which
proteins were co-purified. HGSCore [6] is an exten-
sion of the Hart et al. score that incorporates spectral
count information through a transformation of the spec-
tral counts (instead of directly using the co-occurrence
matrix) and then analyzes the pseudo co-occurrence
matrix in a similar manner. For the same reasons as
above, we can view HGSCore as a rank-1 null model plus
sparse true interactions, where the rank-1 component is
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Figure 6 Sensitivity of performance to sampling parameter p.
We plot the improvement in performance, as a function of p,
achieved by applying our sampling approach vs. applying methods
to direct binarizations of spectral count data. Performance is
measured using the same setup as in Figure 5. For figure readability,
we show results for just the validation sets consisting of interactions
supported by at least 3 pieces of evidence; similar results hold for the
other validation sets.

estimated from a transformation of the spectral count
data.
Similarly, SAINT [13] uses a probabilistic formulation

to decompose a matrix of observed counts as a sum of:
a rank-1 matrix, a sparse true interaction matrix, and
generalized Poisson noise. Interestingly, SAINT decom-
poses the matrix of spectral counts—as opposed to co-
occurrences—and has an entirely different justification for
using a low rank model. Hart et al. and HGSCore assume

that interaction partners are chosen at random in the null
model, which gives rise to a low rank structure in the co-
occurrence observations. Alternatively, SAINT assumes
that contaminant proteins produce similar spectral counts
across all bait experiments, which gives rise to a low rank
structure in the spectral count observations. SAINT uses
solely spoke evidence while Hart et al. and HGSCore use
only co-occurrence evidence, suggesting that some com-
bination of these approaches under a common framework
may be an interesting direction for future investigation.

Moving toward complexes
As protein biology is ultimately driven by the interac-
tions of protein complexes—not just pairwise protein
interactions—recent work has begun inferring protein
complexes directly from AP-MS data [10,24-28]. Tradi-
tionally, methods have first inferred PPIs and then clus-
tered proteins into complexes (e.g., Guruharsha et al. [6]);
however, information may be lost in this two-step pro-
cedure that first post-processes the data into high-
confidence pairwise interactions. As with matrix models,
some recent methods that bypass this first step have con-
sidered only binary experimental data [24,25], whereas
others have successfully used spectral count information
[10,26-28]. A similar sampling approach could be used to
extend methods that consider only binary data to leverage
spectral counts.

Conclusions
As large-scale AP-MS experiments have become more
common, an opportunity to leverage indirect co-
occurrence information for PPI inference has arisen. Our
sampling framework harnesses existing matrix methods
for PPI inference that could previously only be applied to
binary interaction data, achieving robust improvements
across a range of data sets and enabling comparable or
better performance versus current state-of-the-art meth-
ods. This framework extends the existing body of work
on binary interaction analysis to apply to richer spectral
count data now commonly available. Moreover, it is suffi-
ciently general to have potential for future application in
related protein interaction inference studies.

Methods
AP-MS data sets
The main data set we analyzed, DPiM, is a large-scale
AP-MS study of the Drosophila proteome with 3485
experiments, which collectively pulled down 4927 dis-
tinct proteins ([6], Table S1). The DPiM data set is unique
among publicly available AP-MS data sets because of its
large size, which gives us confidence that the results we
observed are not the result of random noise or overfit-
ting. We also tested our approach on two medium-scale
AP-MS data sets. One is another Drosophila study that
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focused on the MAPK pathway [14]; this data set con-
tained 63 experiments, which collectively pulled down
1078 distinct proteins and included 9 control experiments.
The other is a human data set referred to as TIP49 and
originally published in Sardiu et al. [10]. We obtained
the interaction data set, consisting of 35 experiments,
which collectively pulled down 1207 distinct proteins and
included 9 control experiments, from Choi et al. ([13],
Table S1).

Validation data sets
To validate Drosophila PPI inferences, we used the
data sets in the DroID database [22]. We excluded the
Perrimon co-AP complex and DPiM co-AP complex data
sets to avoid contaminating our test sets with training
data, leaving 7 other PPI data sets that we used in the
above validation procedure. The validation set contained
58,657 interactions supported by at least one source,
3,310 interactions supported by at least two sources, 289
interactions supported by at least three sources, and 67
interactions supported by at least four sources.
To validate human PPI inferences, we used BioGRID

v3.1.79 [23], which contains 40,680 interactions supported
by at least one source, 11,054 interactions supported by at
least two sources, 4,879 interactions supported by at least
three sources, and 2,271 interactions supported by at least
four sources.

Implementation
We re-implemented the SAI [21], PE [9], Hart et al. [16],
and HGSCore [6] methods; each is described in its ref-
erence but code is not provided. The PE score uses two
parameters, r, representing the probability of detecting a
true association in a purification experiment, and npseudo,
the number of pseudocounts added for each prey. Since
Collins et al. [9] estimates values of r = 0.51, 0.62,
and 0.265 on three example data sets and suggests using
npseudo = 20, 10, or 5, we set r = 0.3 and npseudo =
10. We downloaded and ran SAINT [13] with default
parameters.
We also implemented the C2S score [18] but found its

performance to be highly sensitive to the tpr (true positive
rate) parameter; some values of tpr—including the default
0.6 in at least one of our tests—result in inferred values
of the probabilistic parameters rbp and rpp that exceed
1, causing improper values in subsequent calculations
(e.g., logarithms of negative numbers). We therefore
excluded C2S from our analysis.
When we applied our sampling framework to data

sets containing replicates, we treated columns corre-
sponding to replicates independently. When we tested
all of the methods on data sets containing controls,
only SAINT, which explicitly models control data, used
the controls.

Availability of supporting data
The C++ code for our implementations is provided in
Additional file 2.

Additional files

Additional file 1: Supplementary figures.

Additional file 2: C++ implementation.We have included the C++
code for our implementations and documentation in a zipped archive file.
The archive contains a readme file with instructions to compile the code
and several sample files to illustrate usage.
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