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Lipid exposure prediction enhances the inference
of rotational angles of transmembrane helices
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Abstract

Background: Since membrane protein structures are challenging to crystallize, computational approaches are
essential for elucidating the sequence-to-structure relationships. Structural modeling of membrane proteins requires
a multidimensional approach, and one critical geometric parameter is the rotational angle of transmembrane
helices. Rotational angles of transmembrane helices are characterized by their folded structures and could be
inferred by the hydrophobic moment; however, the folding mechanism of membrane proteins is not yet fully
understood. The rotational angle of a transmembrane helix is related to the exposed surface of a transmembrane
helix, since lipid exposure gives the degree of accessibility of each residue in lipid environment. To the best of our
knowledge, there have been few advances in investigating whether an environment descriptor of lipid exposure
could infer a geometric parameter of rotational angle.

Results: Here, we present an analysis of the relationship between rotational angles and lipid exposure and a
support-vector-machine method, called TMexpo, for predicting both structural features from sequences. First, we
observed from the development set of 89 protein chains that the lipid exposure, i.e., the relative accessible surface
area (rASA) of residues in the lipid environment, generated from high-resolution protein structures could infer the
rotational angles with a mean absolute angular error (MAAE) of 46.32˚. More importantly, the predicted rASA from
TMexpo achieved an MAAE of 51.05˚, which is better than 71.47˚ obtained by the best of the compared
hydrophobicity scales. Lastly, TMexpo outperformed the compared methods in rASA prediction on the independent
test set of 21 protein chains and achieved an overall Matthew’s correlation coefficient, accuracy, sensitivity,
specificity, and precision of 0.51, 75.26%, 81.30%, 69.15%, and 72.73%, respectively. TMexpo is publicly available at
http://bio-cluster.iis.sinica.edu.tw/TMexpo.

Conclusions: TMexpo can better predict rASA and rotational angles than the compared methods. When rotational
angles can be accurately predicted, free modeling of transmembrane protein structures in turn may benefit from a
reduced complexity in ensembles with a significantly less number of packing arrangements. Furthermore,
sequence-based prediction of both rotational angle and lipid exposure can provide essential information when
high-resolution structures are unavailable and contribute to experimental design to elucidate transmembrane
protein functions.
Background
Integral membrane proteins participate in diverse cellular
functions such as signal transductions, bioenergetics, ion
transport, cell adhesion, and cell-cell recognition. It has
also been estimated that about 20-30% of a typical genome
encode for proteins with a transmembrane (TM) domain
[1,2]. Despite their biological importance and abundance,
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the mechanism by which TM proteins fold into native
structures remains poorly understood due to a limited
number of solved structures, accounting for less than 1%
of all deposited structures in the Protein Data Bank (PDB)
[3]. Therefore, computational methods play an important
role in deciphering the sequence-to-structure relationships
and advancing our knowledge in this particular class of
proteins.
Though recently solved structures of several amino-acid

transporters, e.g., eukaryotic CLC Transporter (coded as
3ORG [4] in PDB) and potassium ion transporter (coded
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as 3PJZ [5] in PDB) revealed the existence of short helices
in the reentrant region [6], the canonical topologies of TM
proteins can be viewed as pairs of interacting transmem-
brane helices (TMHs), connecting loops and extramem-
braneous domains. In particular, the interaction between
TMHs is an important determinant of folding and stability
by the proposed two-stage model [7,8]. Such an inter-
action is mediated by structural contacts at the helical in-
terfaces with the protein itself, the ligands, as well as the
lipid environment. From the perspective of structural
modeling, the rotational angle of a TMH is a strong deter-
minant of its interacting faces with the rest of the protein
structure and the lipids. At the stage of conformation
space sampling, we could filter out decoys that severely
deviate from the predicted rotational angles. To elucidate
rotational angles, Eisenberg et al. [9,10] showed that
hydrophobic scales can be used to estimate the hydropho-
bic moment direction to approximate the lipid-facing dir-
ection and proposed equations to calculate the rotational
angles of TMHs based on such property. Later, several
hydrophobicity scales or propensities have been proposed
[11-15] to predict exposed residues or faces. To the best of
our knowledge, there have been few advances to use lipid
exposure, specifically the relative accessible surface area
(rASA) in the lipid environment, to predict rotational an-
gles. Henceforth, we use rASA for convenience to repre-
sent rASA in the lipid environment since in this paper we
focus on the residues in such environment.
To determine the rotational angle of each TMH in the

tertiary structure of a TM protein requires the information
of lipid-facing direction, which has been defined differently
in the literature. Pilpel et al. [12] described the lipid-facing
direction as the vector opposite to the bisector of the acute
angle formed by the two lines from the geometric center of
the target TMH pointing to the geometric centers of the
two nearest TMHs in the whole molecule. Stevens and
Arkin [16] defined lipid-facing direction of a TMH as the
vector connecting the geometric centers of the target helix
and the whole molecule. The molecule could be a single
chain or the complete protein. Dastmalchi et al. [15] ac-
cepted both the above definitions for lipid-facing direction.
Lipid exposure of each TMH has been shown useful in

distinguishing between surfaces and interior interfaces,
identifying potential functional residues buried in the
protein core and exposed residues for protein-protein
interactions [14,17], and therefore facilitates the predic-
tion of helix-packing conformations [17,18]. In this
work, we propose to use predicted rASA to estimate
lipid-facing direction and then determine rotational an-
gles of TMHs.
In order to train machine learning models by observed

rASA from solved structures, we calculated the accessible
surface area (ASA) by rolling a spherical probe along the
van der Waal’s (VDW) surface of a protein molecule [19].
The observed rASA for each residue is defined as dividing
ASA by its reference value in an extended Gly-X-Gly
tripeptide conformation. Several methods have been pro-
posed to predict ASA instead of rASA in the lipid environ-
ment. For example, ASAP [20] uses evolutionary profiles
to predict solvent accessibility by the support vector re-
gression (SVR) and reports a Pearson correlation coeffi-
cient (PCC) of 0.62 for ASA prediction. The MPRAP [21]
uses the support vector machine (SVM) to predict ASA of
complete TM proteins by evolutionary profiles and residue
distance from membrane center [22]. A number of me-
thods have been proposed to predict the burial or exposed
status of each TM residue, where the status is determined
by rASA whether below a predefined threshold. Several
methods predict the status of TM residues directly from
sequences without predicting their ASA; most of them
rely on sequence conservation or knowledge-based pro-
pensities, including kPROT [12], ProperTM [11], TMLIP
[13], MO [14] and TMX [23]. RHYTHM [24] predicts the
burial status of TM residues by matrix-based helix-helix
contact prediction and sequence conservation, but this
method requires prior knowledge of TMHs such as mem-
brane coils or transporter/channels.
In this paper, we present TMexpo, a method to predict

rotational angles of TMHs. For each TM residue, TMexpo
first predicts rASA by SVR and predicts the burial or ex-
posed status by SVM; both models use evolutionary pro-
files, sequence conservation, helix insertion energy and
biochemical properties as features. Next, TMexpo deter-
mines rotational angles of TMHs based on the predicted
rASA. In rotational angle prediction, TMexpo outper-
formed predictors using hydrophobicity scales and pro-
pensities by at least 19.2˚ in terms of mean absolute
angular error (MAAE) on the independent test set of 21
protein chains. Notably, the prediction results showed that
rotational angles of TMHs could be better inferred by
predicted rASA than by existing scales. We expect the ro-
tational angle prediction could benefit the structure pre-
diction, especially for free modeling of transmembrane
protein structures due to its difficulty and the necessities
of reducing the number of packing arrangements.

Results and discussion
Observed rASA can better infer the lipid-facing direction
than hydrophobicity scales and lipid-facing propensities
The packing mechanism in which TM protein assembles
in the lipids is not fully understood. One significant ad-
vance in this area is seen in the mechanism of the Sec
translocon which demonstrates how TM proteins enter
the membrane [25-27]. A commonly accepted model of
TM protein folding is the two-stage model [7]. Later,
White and colleagues extended the two-stage model by
including a four-step thermodynamic cycle of folding en-
ergy description [28]. Several scales and propensities
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were developed to understand the lipid-facing direction
of TMHs based on sequence analysis or knowledge-
based information; however, using these scales to predict
the rotational angle of TM proteins often results in low
prediction accuracy. Therefore, we investigated whether
an environment descriptor such as lipid exposure could
better infer a geometric parameter such as the rotational
angles of TMHs.
To gain insights into the relationship between lipid ex-

posure and rotational angles, we analyzed a dataset of
110 multi-spanning protein chains with high-resolution
structures, which were divided into a development set of
89 protein chains and an independent test set of 21 pro-
tein chains (described in Methods). We first used the
NACCESS program [19,29] to determine the observed
rASA of each TM residue. We then calculated the rota-
tional angle of each TMH by the rASA moment (Equa-
tions 6, 7, 8, 9 described in Methods) derived from the
observed rASA and compared it with the rotational
angle calculated from existing hydrophobicity scales or
propensities. The comparison results on the dataset in
terms of MAAE are shown in Table 1. It can be ob-
served from Table 1 that the rotational angle calculated
from the observed rASA achieves the best MAAE,
outperforming the propensity-based methods by at least
25.15˚ on the development set and 21.96˚ on the inde-
pendent test set. It demonstrates that the observed rASA
could better infer the rotational angles of TMHs.
The success of determining the rotational angle via the

observed rASA calculated by NACCESS may be due to the
following two reasons. First, the description of observed
rASA is derived from known protein structures, but the
descriptions of hydrophobicity and lipid-facing propen-
sities are derived from the sequence. Therefore, hydropho-
bicity and lipid-facing propensities alone are insufficient
for accurate inference of helical packing, thereby rendering
worse rotational angle estimation. Second, researchers had
a simplified view of membrane proteins being “inside-out”
Table 1 The MAAE of rotational angles determined by variou

Methods MAAE in development set (55

NACCESS (observed rASA) 46.32°

ES 72.85°

kPROT 74.26°

ProperTM 76.59°

TMLIP1H 81.02°

TMLIP2H 81.33°

TMLIP1C 73.24°

TMLIP2C 74.23°

MO 71.47°

TMexpo (predicted rASA) 51.05° (LOOCV)

Comparison of mean absolute angular errors (MAAE) of rotational angles obtained
proteins, which have interior polar core and exterior apolar
surface [30,31]. However, this paradigm was challenged
since biased distribution of hydrophobic residues could
not be detected in every membrane protein [32]. As more
solved structures become available, statistical analyses on
these structures also support the above finding [33-36].
The canonical view of the “inside-out” property of mem-
brane proteins based on hydrophobicity is challenged. On
the contrary, observed rASA is a structural environment
descriptor of helical packing and better infer the rotational
angle.

Relative accessible surface area predicted by TMexpo can
also better infer the lipid-facing direction than
hydrophobicity scales and lipid-facing propensities
To evaluate the capability of our proposed method for
TM proteins with unknown structures, we used rASA pre-
dicted by TMexpo to determine the rotational angles of
TMHs. Then we evaluated how predicted rASA could
infer the rotational angle in terms of MAAE by the follow-
ing two experiments. First, we used the development set
of 89 chains to develop the TMexpo prediction model and
tested on the independent test set of 21 chains. Second,
we performed leave-one-out cross validation (LOOCV) on
the development set. The results of both experiments are
shown in Table 1. Both rASA prediction results of the de-
velopment set and the independent test set are provided
in the Additional file 1: Dataset S1. Particularly, detailed
prediction results of 188 TMHs in the independent test
set are reported in the Additional file 2: Table S1. Notably,
44 of 188 TMHs had the angular error less than 15˚
and their rotational angles were predicted precisely by
TMexpo.
Observed from the first experiment, TMexpo-predicted

rASA is shown to be comparable to the observed rASA
derived from NACESS for inferring the rational angles;
the predicted rASA achieved an MAAE of 48.31˚, slightly
worse than the MAAE of 45.55˚ achieved by the observed
s approaches

4 TMHs) MAAE in independent test set (188 TMHs)

45.55°

68.35°

68.84°

70.69°

76.35°

76.90°

67.51°

68.27°

69.43°

48.31°

by different methods on the development set and the independent test.
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rASA. Nevertheless, TMexpo-predicted rASA achieved
much better MAAE than the other predictors using dif-
ferent hydrophobicity scales and propensities, including
Eisenberg et al.’s consensus hydrophobicity scale (ES) [10],
kPROT [12], ProperTM [11], TMLIP [13], and MO [14] by
at least 19.2˚. The second experiment reported consistent
results with the first experiment. Specifically, performing
LOOCV on the development set resulted in the MAAE of
51.05˚, slightly worse than that inferred by the observed
rASA, but better than the compared predictors by at least
20.42˚. Our results show that without known structures,
TMexpo can effectively infer the rotational angle within a
close margin to that inferred by the observed rASA and
improve the prediction compared to hydrophobicity scales
or lipid-facing propensities.

Comparison of relative accessible surface area
prediction methods
The proposed method TMexpo is capable of predicting
not only the rotational angles of TMHs but also rASA of
TM residues. We evaluated real-number rASA and bin-
ary classification of burial and exposed status predicted
by TMexpo on the independent test set of 21 protein
chains. At first, we demonstrated the performances of
TMexpo in which TM residues participate in interchain
contacts were excluded from the independent test set.
The results are shown in Table 2, where exposed resi-
dues defined by observed rASA ≥5% are regarded as
positive cases for evaluating the classification perform-
ance. TMexpo achieved an overall PCC of 0.66, mean
absolute error (MAE) of 0.12 and root mean squared
error (RMSE) of 0.16 in predicting rASA. With respect
to the binary classification, TMexpo achieved an overall
MCC, accuracy, sensitivity, specificity, and precision of
0.51, 75.26%, 81.30%, 69.15%, and 72.73%, respectively.
Next, we compared TMexpo’s performance of pre-

dicting rASA with existing methods, including TMX
[23], RHYTHM [24] and MPRAP [21]. One distinction
among these methods is that RHYTHM requires prior
knowledge of protein types as membrane-coil or channel
for prediction. For comparison, we retrieved the predic-
tion results for TMX, RHYTHM and MPRAP from their
web servers by using their default parameters. Table 2
Table 2 Comparison of different methods for classifying expo
interface TM residues

Measurements TMexpo MPRAP TMX

MCC 0.51 0.35 0.44

Sensitivity 81.30% 64.24% 75.60

Specificity 69.15% 70.31% 67.99

Precision 72.73% 68.48% 68.69

Accuracy 75.26% 67.27% 71.66

The boldface indicates the best performance among various methods.
shows that TMexpo outperforms the compared methods
across most of the measures except a slightly lower spe-
cificity compared to MPRAP by 1.16%. The specificity of
TMexpo is lower than its sensitivity by 12.15%, and most
of the predictors except MPRAP have the same trend as
TMexpo’s results. This observation implies that the de-
tection of buried residues may be more difficult than
that of exposed residues in the TM domains. To further
gain insights into this issue, we extracted buried residues
in our dataset of 110 chains from the helix-packing data-
base TMPad [37], and found that over 77% residues have
at least one interhelical contact. This suggests that pre-
diction of buried residues could very likely be improved
by detecting contacts of interhelical interactions; how-
ever, TMexpo and most of the compared predictors re-
trieve features by local information of subsequences only.
Interestingly, interhelical contacts may be conserved in se-
quences and discovered from evolutionary information
such as PSSM profiles [38]. We consider that evolutionary
information is an effective feature for capturing interhe-
lical interactions that contributes to rASA/burial status
prediction; however, interhelical interaction prediction is
still a challenging problem.
Moreover, since we excluded TM residues that partici-

pate in interchain contacts, i.e., interface TM residues, in
the training of TMexpo (as described in Model Develop-
ment of the subsection entitled “An SVM-based pre-
dictor for lipid exposure of TM helices” in Methods), we
also compared the methods for classifying burial status
of each interface TM residue in the independent test set.
After removing TM residues with missing atoms, there
are 392 interface TM residues out of the remained entire
3,553 TM residues in the independent test set of 21 pro-
tein chains. Since observed rASA derived from subunit
structure and complete structure, respectively, can be
different for interface TM residues, we used both the ob-
served rASA to determine the “true” status of each re-
sidue. We reported the performance of each method
based on the “true” observed rASA for both the 392
interface TM residues and the 3,553 entire TM residues
in Table 3 and Table 4, respectively. The tables demon-
strate that most rASA predictors, except MPRAP, have
lower specificity than sensitivity. For the 392 interface
sed/buried residues on the independent test set without

Rhythm (membrane-coil) Rhythm (channel)

0.32 0.29

% 73.53% 67.25%

% 58.03% 61.80%

% 65.02% 65.17%

% 66.01% 64.61%



Table 3 Comparison of different methods for classifying exposed/buried residues on 392 interface TM residues of the
independent test set by rASA derived from both subunit structure and complete structure (in parentheses)

Measurements TMexpo MPRAP TMX Rhythm (membrane-coil) Rhythm (channel)

MCC 0.14 (0.22) 0.12 (0.25) 0.13 (0.17) 0.08 (−0.06) 0.19 (0.28)

Sensitivity 73.11% (81.25%) 56.29% (67.23%) 66.17% (72.78%) 67.72% (63.22%) 66.10% (77.97%)

Specificity 48.57% (38.50%) 64.71% (57.59%) 55.88% (43.98%) 45.00% (30.77%) 64.29% (49.32%)

Precision 93.55% (55.91%) 94.00% (59.50%) 93.70% (55.04%) 90.68% (46.61%) 93.98% (55.42%)

Accuracy 70.92% (59.44%) 57.07% (62.23%) 65.23% (57.95%) 65.17% (46.63%) 65.91% (62.12%)
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TM residues, most predictors have better MCC cal-
culated from complete structure than that calculated
from subunit structure. Furthermore, Table 4 shows that
TMexpo achieved slightly better MCC, sensitivity, and
accuracy on the 3,553 entire TM residues.

Rotational angle can help in determining helical packing
in transmembrane proteins
Harrington and Ben-Tal [39] characterized five structural
features of interhelical interactions, namely, aromatic in-
teractions, hydrogen bonds, salt bridges, and two inter-
actions from packing motifs, that are useful for helical
packing. They proposed an algorithm to pack the TMHs
of TM proteins, as follows: First, the algorithm ordered
the TMHs by the sequence from the N-terminus, and
then iteratively grouped sequential TMHs by a scoring
function based on the five types of interactions. They
demonstrated helical packing on 15 diverse proteins,
and the average RMSD of Cα in the native structure of
the 15 reconstructed TM proteins ranged from 0.51 Å
to 1.35 Å. In this subsection, we reexamined these pro-
teins to study the rotational angle of TMHs and its rela-
tionship to helical packing. Since the protein 1AFO
discussed in their work contains only one TMH, we ex-
cluded this protein in our analysis.
Table 5 shows angular error of the 14 proteins. The

MAAE of all 73 TMHs of the 14 proteins is 41.04˚, and
60% of all TMHs were predicted with MAAE ≤43˚. The
worst MAAE (113.71˚) was found in protein 2OAR, and
the best case is 2UUH (10.47˚). Out of all 73 TMHs, 13
TMHs were predicted with angular errors less than 10˚.
With further investigation, we observed some common
Table 4 Comparison of different methods for classifying expo
independent test set by rASA derived from both subunit stru

Measurements TMexpo MPRAP TMX

MCC 0.49 (0.48) 0.33 (0.34) 0.41

Sensitivity 79.79% (81.29%) 62.85% (64.55%) 73.70

Specificity 68.70% (65.69%) 70.19% (68.93%) 67.71

Precision 75.56% (70.45%) 71.53% (67.40%) 72.18

Accuracy 74.78% (73.51%) 66.20% (66.74%) 70.90
features from TMPad. First, most of TMHs are linear or
curved, and three TMHs are slightly kinked in their struc-
tures. Second, we observed strong interhelical interactions
constrained in a single helical interface in most of these
cases. For example, in the acid-sensing ion channel 2QTS:
A [40], its TMH1 (curved) shares 7 contact pairs with
TMH2. The second example is an avian mitochondrial
complex II (2H88:C) [41], where its TMH3 (curved)
shares 13 contact pairs with TMH2. Lastly, in the struc-
ture of aquaporin-0 (2B6O:A) [42], its TMH6 (linear) as-
sociates with TMH4 via a dense cluster of 16 contacts.
Based on the above findings, regular TMHs with strong
and constrained interhelical interactions in a single helical
interface reveal periodicity in rASA of their residues, thus
making rotational angle prediction highly accurate.
On the other hand, since rotational angle prediction is

strongly correlated with the periodicity of a helix, pre-
dicted rotational angles may not work well for packing
of helices that deviate from regular periodicities of
rASA, such as those severely kinked, disrupted, highly
tilted, or associated with a reentrant loop. Six out of all
73 TMHs were poorly predicted with angular errors over
100.29˚. We observed these six TMHs being classified as
kinked or containing partial non-helical structure in the
TM domain, and therefore the moment-based prediction
performed poorly.

Rotational angles prediction based on both predicted
topology and predicted relative accessible surface area
To illustrate the capability of the proposed method for ro-
tational angle prediction based on predicted topology in-
formation, we submitted sequences of independent test set
sed/buried residues on 3,553 entire TM residues of the
cture and complete structure (in parentheses)

Rhythm (membrane-coil) Rhythm (channel)

(0.41) 0.30 (0.27) 0.29 (0.29)

% (73.70%) 72.43% (72.36%) 67.07% (68.18%)

% (67.71%) 57.64% (54.64%) 61.86% (60.42%)

% (72.18%) 68.43% (62.57%) 68.45% (64.06%)

% (70.90%) 65.91% (63.71%) 64.74% (64.37%)



Table 5 Rotational angle prediction on the protein chains from Harrington and Ben-Tal’s work

PDB:Chain
(MAAE)

TM helix sequence Observed
angle

Predicted
angle

Angular
error

M̂
�� �� PDB:Chain

(MAAE)
TM helix sequence Observed

angle
Predicted
angle

Angular
error

M̂
�� ��

1BL8:A HWRAAGAATVLLVIVLLAGSYLAVLA 199.55° 203.38° 3.83° 1.46 2H88:D VSALLLGLLPAAYLYPG 229.60° 234.10° 4.50° 1.06

(30.86) WGRCVAVVVMVAGITSFGLVTAALAT 240.88° 298.78° 57.90° 1.87 (27.22) AVDYSLAAALTLHGHWGL 8.24° 354.67° 13.57° 0.95

1C3W:A IWLALGTALMGLGTLYFLVKGMG 318.98° 355.18° 36.19° 3.38 GLYVLSAITFTGLCYFNYYDV 334.89° 271.30° 63.59° 1.49

(42.28) KFYAITTLVPAIAFTMYLSMLL 262.69° 313.32° 50.63° 2.74 2OAR:A VAVVIGTAFTALVTKFTDSIITPLINRIG 319.36° 203.39° 115.96° 0.37

WARYADWLFTTPLLLLDLALL 118.84° 44.89° 73.95° 1.60 (113.71) TIDLNVLLSAAINFFLIAFAVYFL 105.75° 354.30° 111.46° 1.06

GTILALVGADGIMIGTGLVGAL 357.99° 332.94° 25.05° 2.80 2QTS:A VWALCFMGSLALLALVCTNRIQ 285.04° 280.66° 4.38° 2.32

RFVWWAISTAAMLYILYVLFFGF 154.03° 169.74° 15.71° 2.25 (11.07) AGLLGDIGGQMGLFIGASILTVL 41.15° 23.39° 17.76° 2.22

FKVLRNVTVVLWSAYPVVWLIG 133.56° 164.23° 30.67° 2.70 2RH1:A WVVGMGIVMSLIVLAIVFGNVLVITAIA 253.60° 259.99° 6.39° 1.71

ETLLFMVLDVSAKVGFGLILLRS 214.98° 278.73° 63.75° 1.93 (35.73) YFITSLACADLVMGLAVVPFGAAHIL 293.99° 341.90° 47.91° 1.06

1OKC:A LSFLKDFLAGGVAAAISKTAVAPIER 24.46° 46.33° 21.87° 1.59 WCEFWTSIDVLCVTASIETLCVIAV 279.34° 285.10° 5.77° 0.68

(65.78) NLANVIRYFPTQALNFAFKDKYKQIFL 207.77° 114.64° 93.14° 1.75 RVIILMVWIVSGLTSFLPIQMHWYR 88.76° 102.09° 13.33° 1.93

WRYFAGNLASGGAAGATSLCFVYPLDFART 112.40° 70.30° 42.09° 1.32 FTNQAYAIASSIVSFYVPLVIMVFVYS 158.19° 84.71° 73.47° 1.88

YQGFNVSVQGIIIYRAAYFGVYDTAKGMLP 179.94° 59.44° 120.50° 1.40 LGIIMGTFTLCWLPFFIVNIVHVIQ 106.50° 159.31° 52.82° 1.40

HIIVSWMIAQTVTAVAGLVSYPFDTVRR 264.34° 315.20° 50.85° 0.98 IRKEVYILLNWIGYVNSGFNPLIYC 271.42° 321.81° 50.39° 1.50

AWSNVLRGMGGAFVLVLYDEI 172.16° 105.90° 66.25° 1.87 2UUH:A AAVTLLGVLLQAYF 60.17° 77.84° 17.67° 1.38

1ORS:C VELGVSYAALLSVIVVVVEYTMQL 268.82° 191.51° 77.31° 0.70 (10.47) SEYFPLFLATLWVAG 96.55° 80.38° 16.17° 0.77

(62.09) LVRLYLVDLILVIILWADYAY 167.76° 133.29° 34.46° 1.71 AALCGLVYLFARLR 191.79° 197.96° 6.17° 2.39

KKTLYEIPALVPAGLLALIE 27.58° 321.07° 66.51° 0.72 LYASARALWLLVALAAL 116.59° 118.45° 1.86° 2.57

LVRLLRFLRILLIISRGSKFLSAIA 233.80° 303.87° 70.07° 0.62 2Z73:A SLGIFIGICGIIGCGGNGIVIY 276.78° 317.73° 40.94° 3.01

2B6O:A RAIFAEFFATLFYVFFGLGAS 308.42° 335.32° 26.90° 1.44 (35.30) FIINLAFSDFTFSLVNGFPLMTI 206.68° 252.82° 46.14° 1.12

(33.01) LQVALAFGLALATLVQAVGHIS 59.48° 65.56° 6.07° 1.17 VYGFIGGIFGFMSIMTMAMISI 303.09° 339.23° 36.14° 0.80

LRAICYVVAQLLGAVAGAAVLYSV 354.70° 13.71° 19.01° 2.35 FIMIIFVWLWSVLWAIGPIF 99.36° 72.24° 27.11° 2.67

GQATIVEIFLTLQFVLCIFATY 61.06° 71.11° 10.05° 1.58 NILCMFILGFFGPILIIFFCYF 270.54° 293.89° 23.35° 2.49

GSVALAVGFSLTLGHLFGM 342.15° 109.29° 127.14° 1.21 SIVIVSQFLLSWSPYAVVAL 127.57° 154.75° 27.18° 2.12

WVYWVGPVIGAGLGSLLYDFLL 49.77° 58.65° 8.88° 1.58 QLPVMFAKASAIHNPMIYSV 60.63° 106.85° 46.22° 2.01

2BL2:A VLAMATATIFSGIGSAKGVG 45.15° 105.31° 60.16° 0.99 3B9W:A YSINILAMLLVGFGFLMV 232.00° 229.10° 2.90° 0.63

(41.83) LPGTQGLYGFVIAFLIFI 285.84° 259.80° 26.04° 1.70 (33.25) ATTGTYLVVATGLPLYILL 193.50° 227.23° 33.73° 0.87

LGASLPIAFTGLFSGIAQ 82.57° 87.25° 4.68° 1.39 IYAEFAVATGLIAMGAVL 221.13° 199.82° 21.31° 0.05

MVETYAILGFVISFLLVL 7.10° 290.64° 76.46° 1.13 FQYALLALFIVPVYLLNE 11.39° 35.81° 24.42° 1.15
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Table 5 Rotational angle prediction on the protein chains from Harrington and Ben-Tal’s work (Continued)

2BS2:C WQSATGLFLGLFMIGHMFFVST 285.17° 308.25° 23.08° 1.79 GSIAIHAFGAYFGLGVSIA 208.92° 309.21° 100.29° 0.73

(51.33) IVVSFLAAFVFAVFIAHAFLAMR 55.33° 17.57° 37.76° 2.89 FSMLGSMVLWLFWPSFA 284.14° 287.41° 3.27° 1.16

LWWIQAMTGFAMFFLGSVHLYIMMTQP 188.56° 222.27° 33.71° 1.48 VNTLLALCGATLATYFLSAL 36.54° 3.47° 33.07° 1.57

WMWPLYLVLLFAVELHGSVGLYRLAV 192.12° 322.45° 130.33° 1.38 VDMANAALAGGVAIGSVC 138.00° 55.95° 82.05° 0.24

RANLKKLKTLMSAFLIVLGLLTFGAYV 185.58° 153.82° 31.76° 3.30 VGAFVIGLLGGAISVVGF 11.05° 21.65° 10.60° 1.90

2H88:C HRGTGVALSLGVSLFSLAALLLP 123.28° 203.88° 80.60° 1.69 TCGVHNLHGLPGLLGGFSAIL 112.57° 156.18° 43.61° 0.92

(45.70) LIYSAKFALVFPLSYHTWNGIR 307.08° 253.07° 54.01° 0.39 LTGIGITLALALIGGVIAGALIKLT 103.20° 92.65° 10.55° 2.58

VVVLILTLLSSAAIASE 74.04° 71.55° 2.50° 2.05

The columns are protein chain, sequences of transmembrane helices, observed rotational angles from structures, predicted rotational angles by TMexpo, angular errors, and predicted rASA moment lengths ( M̂
�� ��).
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to three web servers including SVMSignal [43], TOPCONS
[44] and MemBrain [45]. As a pre-processing step, we re-
moved predicted N-terminal signal peptide sequences by
SVMSignal. For all predicted TMHs, a correctly predicted
TMH is defined as a one-to-one overlap with the observed
TMH of PDBTM, and the minimum residue number of
overlaps between predicted TMHs and observed TMHs of
PDBTM is eight. Within 188 TMHs of independent test
set, the recall and precision of TOPCONS is 93.09% (175/
188) and 100% (188/188), respectively. The recall and pre-
cision of MemBrain is 97.87% (184/188) and 95.34% (184/
193), respectively. For fair comparison in rotational angles,
we only discuss 175 TMHs that have been predicted well
by both of the two topology predictors. Prediction results
from SVMSignal, TOPCONS and MemBrain are available
in the Additional file 3: Dataset S2.
To obtain observed rotational angles corresponding to

each predicted TMH, we removed atoms which were
predicted outside the membrane by the topology predic-
tion for each protein chain, and then we followed the
definition in this work to calculate the rotational angles.
Specifically, we did not directly assign rotational angles
calculated by TMH of PDBTM to predicted TMHs, but
we recalculated rotational angles based on atoms of pro-
tein structure selected by predicted topology within the
TM region. There are two reasons to do that. First, since
the sequence of a predicted TMH is not identical to that
defined by PDBTM and the definition of rotational angle
depends on the helical principal axis and the Cα vector of
the first residue to its lipid-facing direction vector, we can-
not simply assume their structural property is similar. Sec-
ond, for a predicted 3D protein structure, the TM region
information comes from the topology predictor, and the
rotational angle of each TMH is established on the atoms
within predicted TM region, not from the PDBTM.
Therefore, we have to recalculate the rotational angles of
predicted TMH for comparison. Finally, we ignored any
predicted TMH which includes residues that do not have
structural data within PDB entity, and 155 TMHs were left
for comparison.
The Additional file 4: Table S2 and the Additional file 5:

Table S3 provide sequences of predicted TMHs corre-
sponding to TMHs annotated in PDBTM, observed angle
defined by residues of predicted topology, predicted angle,
and moment lengths. For all 155 TMHs, the MAAE of
TOPCONS is 43.04˚ and MAAE of MemBrain is 56.59˚.
These two tables demonstrate the ability of TMexpo to
predict rotational angles based on predicted topology.
Interestingly, the MAAE of 155 TMHs based on topology
predicted by TOPCONS has better results than topology
annotated in PDBTM. There are two possible explanations
for this observation. First, TMHs predicted by TOPCONS
is longer than annotated in PDBTM, and this may help
calculating the helical principle axis. Second, we excluded
TMHs that have partially incomplete structural data, and
the performance of 155 TMHs would differ from the
dataset of 188TMHs. We conclude that rotational angles
calculated by both predicted TMHs and predicted rASA
are still consistent with the observed rotational angles
defined by the predicted TMH. Therefore, while TMH
boundary is not perfectly predicted, the predicted rota-
tional angle can still provide useful information to the in-
terior side of a TM protein and constrain decoys of
predicted 3D structure.

An application to an amino acid antiporter, AdiC
We selected from our independent test set an amino
acid antiporter, called AdiC, of E. coli strain O157:H7 to
demonstrate how predicted rASA and rotational angle in
the helical wheel presentation of TMHs facilitate the
analysis of TM proteins. The E. coli strain O157:H7 is a
pathogen and causes hemorrhagic diarrhea, and AdiC is
a multi-spanning TM protein that enables E. coli to re-
sist the acidic environment via exchanging extracellular
arginine and intracellular agmatine [46,47]. An arginine-
bounded structure of AdiC was solved and is coded as
3L1L [46] in PDB.
The protein AdiC has 445 amino acids and contains 12

TMHs, including an inner layer containing 5 TMHs, i.e.,
transmembrane segments 1, 3, 6, 8 and 10 from the
N-terminus, and an outer layer containing 7 TMHs, i.e.,
transmembrane segments 2, 4, 5, 7, 9, 11 and 12. Figure 1
illustrates the top view of 3L1L, in which each residue in a
TMH is shown by a color-coded gradient scale of its ob-
served rASA, with dark red and dark blue representing ex-
tremely buried and extremely exposed, respectively. The
red arrow inside each helical wheel indicates the lipid-
facing direction, and the green clock-wise arrow starts at
the first amino acid. A gray line connects two TMHs if
they have interhelical interactions with more than five
VDWs as annotated in TMPad. It can be observed that
most of residues in the five TMHs of the inner layer are
colored as dark red, and the TMHs of the outer layer have
residues in both exposed and buried sides colored by blue
and red, respectively.
Interestingly, several binding sites and functional muta-

genesis were discovered in TMHs of the inner layer.
According to annotations in the UniProt/Swiss-Prot, the
amino acids 22, 26, 93, 208 and 365 are substrate binding
sites located in the TMHs 1, 3, 6 and 10 of the inner layer.
Furthermore, four reported mutations, Y87A, Y93A, Y93K
and Y365A, related to transporter activity also occur in
TMHs 3 and 10. Therefore, TMHs of the inner layer are
important to transporter function study. All of the above
six residues are classified as buried in the crystallized
structure 3L1L, and their observed rASA range from 0%
to 2.13%. TMexpo predicted five of the above six residues
as buried. Only one residue 87Y was predicted as



Figure 1 Top view of the structure 3L1L shown by helical wheels, interhelical interactions and observed rASA of the TM residues. Each
TM residue is shown by a color-coded gradient scale of its observed rASA, with dark red and dark blue representing rASA value 1.0 for extremely
buried and 0 for extremely exposed, respectively. The red arrow inside each helical wheel indicates the lipid-facing direction, and the green
clock-wise arrow starts at the first amino acid.
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marginally exposed and had 9.03% rASA. Figure 2 shows
that the observed and predicted lipid-facing directions of
the 12 TMHs are quite close. The MAAE of 12 TMHs is
36.72˚, and 7 out of 12 TMHs were accurately predicted
with angular errors <30˚. The best angular error is 0.49˚
obtained by the linear TMH 7, and the worst angular error
is 153.48˚ obtained by the kinked TMH 6. The PCC be-
tween the observed and predicted rASA of the entire 266
TM residues is 0.75; the MCC of the TMexpo’s classifica-
tion of all the TM residues is 0.60. Our analysis shows that
the predicted rASA of each residue could facilitate the de-
sign of site-directed mutagenesis experiments. Therefore,
sequence-based prediction of both rotational angle and
rASA can provide useful information in transporter func-
tion study, and thus contribute to experimental design to
elucidate TM protein functions when high-resolution
structure is unavailable.

Interhelical contacts play an important role in relative
accessible surface area prediction
To understand how intrachain interhelical interactions
affect the burial status of residues is important for
helical packing and stability of TM proteins [48-51]. At
first we observed residues carrying more intrachain
interhelical contacts with other TMHs tend to be bur-
ied. We investigated on the TMHs of the development
set of 89 protein chains whether buried residues are
hard to predict their rASA values. Using the annotations
in TMPad, we separated residues into two sets ac-
cording to different thresholds c of VDW contact num-
bers; one is called contact-enriched set of residues with
at least c contacts, and the other set is called reference
set consisting of the remaining residues. For each set,
we calculated the PCC between the observed rASA and
the predicted rASA obtained from LOOCV. The results
are shown in Table 6, where different thresholds c = 1,
c = 2, and c = 3 are considered. By comparing correla-
tions of predicted rASA against observed rASA for dif-
ferent thresholds in LOOCV, we found that the set
containing contact-enriched residues has lower correl-
ation than the reference set by 40.66% when c = 3 and
by 9.53% even when c = 1. This observation implies
rASA of residues that have a large number of inter-
helical contacts may be more difficult to be predicted,
and then the information of interhelical contacts should
be integrated for improving rASA prediction.



Figure 2 Observed and predicted rASA and lipid-facing directions of the 12 TMHs in 3L1L represented by helical wheels. The angular
error of 12 TMHs ranges from 0.49˚ to 153.48˚; the MAAE of 12 TMHs is 36.72˚.
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Conclusions
Sequence-based prediction of both rotational angle and
rASA can provide indispensable information for structure
prediction when high-resolution structures are unavailable
and contribute to experimental design to elucidate TM
protein functions. In this paper, we present a novel con-
cept of using lipid exposure to infer rotational angles and
have developed a machine learning approach to predict
rotational angles of TMHs. Significantly, using predicted
rASA from our sequence-based model achieved an MAAE
of 48.31˚ on the independent test set, which is better than
that obtained by the best of the compared knowledge-
based propensities (67.51˚). Furthermore, we demonstrate
an application for structural analysis via an amino acid
antiporter. We believe improving prediction of rotational
angle can benefit the structure prediction because free
modeling of TM protein structures is a tough task and re-
ducing the number of packing arrangements is necessary.
Methods
Evaluation measures
The metric used for evaluating rotational angle pre-
diction in this work is mean absolute angular error
(MAAE). To evaluate the classification model, i.e., clas-
sifying burial and exposed status, we used the following
performance measures, including Matthew’s correlation
coefficient (MCC), accuracy, sensitivity, specificity, and
precision. With respect to the regression model, i.e.,
rASA prediction, we used mean absolute error (MAE),
root mean squared error (RMSE), and Pearson correl-
ation coefficient (PCC).
We evaluate the MAAE, which is the average angular

error for all TMHs. Specifically, we defined observed rota-
tional angle as x and predicted one as y for each helix, and
both of them range from 0˚ to 360˚. The absolute angular
error θerror, ranging from 0˚ to 180˚, is defined as the
difference between two rotational angles of TMHs as



Table 6 Comparing Pearson correlation coefficients between contact-enriched set and reference set defined by
different thresholds (c)

Thresholds for contact-enriched set PCC (number of residues) on contact-enriched set PCC (number of residues) on reference set

c≥ 1 0.50 (4,447) 0.59 (4,078)

c≥ 2 0.33 (1,981) 0.64 (6,544)

c≥ 3 0.25 (671) 0.65 (7,854)

The first column stands for different thresholds, and the last two columns stand for Pearson correlation coefficients of transmembrane residues from the two
different sets.
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Equation 1. The extreme error between observed and pre-
dicted angles occurs when they indicate opposite direction
i.e. 180˚. The MAAE is defined as the average of all abso-
lute angular error θerror within n helices as Equation 2.

θerror x; yð Þ ¼ x−yj j ; x−yj j≤ 180
360− x−yj j ; x−yj j > 180

�
ð1Þ

ΜΑΑΕ ¼ 1
n

Xn
i¼1

θerror xi; yið Þ ð2Þ

Let predictedi and observedi denote the predicted and ob-
served rASA, respectively, of the ith TMH in the sample
dataset. MAE and RMSE are defined as Equations 3 and 4.

ΜΑΕ ¼ 1
n

Xn
i¼1

predictedi−observedij j ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

predictedi−observedið Þ2
s

ð4Þ

We defined exposed residues as positive data and bur-
ied residues as negative data, and consequently MCC are
defined as Equation 5.
MCC ¼ TP �TN−FP �FNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TNð

p

Table 7 The list of all protein chains (PDB:Chain) included in

Development set

1E7P:C 1LNQ:A 1YCE:A 2 F93:A 2PNO:A 2

1EYS:L 1ORQ:C 1YEW:C 2GFP:A 2Q67:A 2

1EYS:M 1P7B:A 1YQ3:C 2GIF:A 2Q7R:A 2

1FFT:A 1PV6:A 1YQ3:D 2IUB:A 2QJY:A 2

1FFT:B 1PW4:A 1ZCD:A 2JLO:A 2R6G:F 2

1FFT:C 1QLE:C 2A65:A 2NMR:A 2R6G:G 2

1FX8:A 1S5L:B 2AXT:A 2NQ2:A 2R9R:B 2

1GZM:A 1S5L:C 2AXT:D 2NR9:A 2VL0:A 2

1JB0:K 1S5L:Z 2BL2:A 2OAR:A 2VPZ:C 3

1JV6:A 1XIO:A 2C3E:A 2OAU:A 2WDV:C 3

1KPK:A 1Y4Z:C 2E75:B 2ONJ:A 2WDV:D 3

1KQG:C
See the Additional file 6: Table S4 for definitions of
Pearson correlation coefficient, accuracy, sensitivity, spe-
cificity and precision.

Data preparation
We retrieved the α-helical TM proteins from the PDBTM
database [52,53], a collection of automatically identified
TM proteins from the Protein Data Bank (PDB), and
obtained 4,202 chains from 1,174 PDB entities. Among
them, we only kept multi-spanning α-helical TM protein
structures solved by X-rays with a resolution less than 4 Å,
and then 2,305 protein chains remained. Next, the 2,305
chains were reduced at mutual sequence identity of less
than 30% using CD-HIT [54]. Finally, the representative
110 multi-spanning protein chains listed in Table 7 were
divided into two datasets for model development and in-
dependent test. We took 89 (554 TMHs) from 110 TM
protein chains solved before October 20, 2008 as the de-
velopment set and optimized the parameters in the
models by leave-one-out cross-validation (LOOCV). The
other 21 (188 TM helices) protein chains solved after
October 20, 2008 were used for independent test. The two
datasets are provided on the TMexpo server website
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ FNÞ TN þ FPð Þ ð5Þ

the development set and the independent test set

Independent test set

WIT:A 3B8C:A 3EH4:A 2XQ2:A 3MP7:A

WSW:A 3CHX:A 3EHB:B 2XUT:A 3NYM:A

YVX:A 3CHX:B 3G5U:A 3KBC:A 3O0R:B

Z73:A 3CIR:C 3GIA:A 3KCU:A 3O7P:A

ZD9:A 3CIR:D 3H90:A 3KG2:A 3OE6:A

ZJS:Y 3CN5:A 3H9V:A 3KJ6:A 3ORG:A

ZW3:A 3D31:C 3HD6:A 3KP9:A 3P4W:A

ZXE:A 3DDL:A 3IJ4:A 3L1L:A 3P5N:A

A7K:A 3DHW:A 3JYC:A 3 M71:A 3PJZ:A

B4R:A 3E9J:C 3 K07:A 3MK7:A

B5D:A 3EFF:K 3K3F:A 3MK7:C

3MKT:A
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(http://bio-cluster.iis.sinica.edu.tw/TMexpo) and also in
the Additional file 7: Dataset S3.

Calculation of relative accessible surface area from
structures
To calculate lipid exposure or exposed area of a struc-
ture, we used NACCESS program [19,29] with the probe
radius set to 2.0 Å. The size of probe radius 2.0 Å was
selected to mimic the -CH2 of hydrocarbon chains, and
it is identical to that used in Yuan et al. [20], Illergård
et al. [21] and Lo et al. [37]. The ASA for a residue was
the sum of ASA from all atoms belonging to that resi-
due. To extract the helical boundaries from the protein
chains, we used the annotations of PDBTM. From the
89 protein chains in the development set, we obtained a
total of 10,441 residues in TM domain. For the inde-
pendent test set of newly solved proteins, we obtained
3,581 residues in TM domain. To annotate missing resi-
dues and missing atoms, we used PDB Validation Suite
[55]. In order to obtain rASA as a normalized measure
for a TM residue, we divided the ASA values by their
reference values in a Gly-X-Gly tripeptide in an extended
conformation. The reference values were derived from
Samantha et al. [56]. To classify burial status of each
residue for model training and testing, we followed the
rASA threshold defined in Miller et al.’s work [57], i.e.,
rASA <5% to characterize buried residues and otherwise
exposed, though different thresholds have been used in
the literature.

An SVM-based predictor for lipid exposure of TM helices
Model development
We proposed residue-wise predictors based on support
vector machines (SVMs), i.e., an SVM classifier to pre-
dict the burial/exposed status and a support vector re-
gression (SVR) model to predict rASA values of each
residue in TM domain. Specifically, C-SVC and epsilon-
SVR implemented in LIBSVM [58] were used to develop
the models, and both of them used the RBF kernel func-
tion. The parameters of the models were optimized by
chain-wise LOOCV procedure on the development set.
In LOOCV procedure, the best set of parameters to
train the burial/exposed status classification model is of
cost c = 21 and gamma g = 2-4; and the best set of param-
eters to train the real-number rASA regression model is
of cost c = 2-1, gamma g = 2-5, loss function p = 10-3 and
tolerance of termination criterion e = 10-2. Details of
LOOCV performances can be obtained in the Additional
file 8: Text S1.
Given a TM domain of a protein chain, each resi-

due to be predicted was located at the center of a
sliding window of length 17 and features were gener-
ated according to the 17-mer sequence. To train the
classification model, exposed residues with label “E”
were considered as positive data, and buried residues
with label “B” as negative data. To train the regres-
sion model, the input was taken from the real-
number rASA. We searched parameters by LOOCV
procedure for the classification model and the regres-
sion model based on optimizing the MCC and the
PCC, respectively. We did not directly predict ASA
values because they are not normalized in a zero to
one interval and this could produce bias in the pres-
ence of an outlier.
In training and testing, we excluded residues that

participate in interchain contacts and the rationale is
as follows: A sequence-based rASA predictor, which
accepts the sequence of a structural subunit as input,
can only describe structural properties of one subunit,
not of the complete structure. Thus predicted rASA of
those residues may be drastically different depending
on their locations in the interacting interfaces. In the
case of residues residing on the interchain surface, we
observed rASA of these residues in a single chain may
be significantly different from those seen in the complete
structure with multiple subunits. Out of 110 representa-
tive protein chains used in our work, 86 protein chains
are multimeric. Among all of their 9,800 TM residues
without any missing atom, 2,167 (22.11%) residues have
two different rASA values calculated from the single
subunit and the complete structure, respectively; and
the former-derived rASA is always larger than the
latter-derived rASA. Notably, the maximum and average
differences of the two rASA values of these 2,167 resi-
dues are 82.28% and 23.43%, respectively. Furthermore,
831 out of the 2,167 residues would be assigned incon-
sistent burial/exposed status according to their two
different rASA values. In other words, 8.48% of the
overall 9,800 transmembrane residues were considered
as exposed from the perspective of a single subunit but
turned out to be buried in their complete structures.
For example, in 2OAR:A, 41 residues of 52 TM resi-
dues have different rASA values, and 13 residues are
calculated as being exposed in the single chain but as
being buried in the complete structure. It is note-
worthy that the 60S (i.e., 37S by PDB indexing) and the
45 V (i.e., 22 V by PDB indexing) have drastic differ-
ences in their rASA values, i.e., 60.77% vs. 2.42% and
60.02% vs. 1.68%, as calculated by single chain and by
complete structure, respectively. Since we did not
know the native state of amino acids lying on the
interchain surface, we excluded these residues from
our training and testing data. For each protein chain,
we calculated rASA for both single subunit structure
and complete structure. Later, we excluded residues
which were not identical in rASA by comparing the
above two calculations, and also excluded residues that
were missing partial or entire atoms.

http://bio-cluster.iis.sinica.edu.tw/TMexpo
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In the testing stage, we performed a simple post-
processing by rounding off their upper and lower bound
to 1 and 0 because rASA values are contained in this
interval. To derive the ASA values for each residue, we
multiplied the predicted rASA values by the reference
values [56].

Input features for predictors
In the design of TMexpo, we did not use a specific
feature selection technique, and all the features used
in TMexpo belong to one of the three feature groups.
The first group is about interhelical contacts, specific-
ally volume, polarity, charge and residue interhelical
contact propensity. Since we have observed buried res-
idues tend to have more interhelical contacts, and
therefore we examined features related to interhelical
contacts. For example, the well-known GxxxG motif
can be regarded as small-xxx-small motifs [39], and
we use volume profiles to incorporate such feature in
the machine learning model. The polarity and charge
can also be seen as features related to hydrogen bond-
ing [50] and cation-pi interaction [59], respectively.
To encode features into TMexpo, the volume [60] of
each residue was divided by their maximum value
237.2 of tyrosine. The polarity was also encoded by
the sigmoidal functions 1–1/(1 + e-po), where po de-
notes the mean residue polarity calculated by Radzicka
and Wolfenden’s method [61]. We defined positively
charged residues as 1, neutral residues as 0.5, and
Figure 3 The workflow of TMexpo for predicting rotational angles fro
negatively charged residues as 0 based on the index
used by Klein et al. [62]. The residue interhelical contact
propensity were developed by Lo et al. [38], and we used
in TMexpo the normalized propensity by division of the
maximum value 1.43 of cysteine.
The second group provides evolutionary information

as position-specific scoring matrix (PSSM) profiles and
conservation score to machine learning model. Evolu-
tionary information is an important feature and has
been incorporated in interhelical interaction predictors
[38,63]. To encode PSSM as features, the matrix was
generated by performing PSI-BLAST against NCBI’s
non-redundant database. This feature of a 17-mer pep-
tide was encoded by a vector of size 17 × 20, where
each entry was normalized by 1- 1/(1 + e-PSSM). The
conservation score was calculated by an algorithm de-
veloped by Capra and Singh [64] on the multiple
sequence alignment generated by MAFFT [65,66]
based on the 17-mer peptide. We used the raw scores
without using the local Z-score transformation described
in their method.
The third group includes the TMH insertion energy,

amphiphilicity of residues and turn propensities, which
relate to structural information. The first two features
can reveal residue position toward hydrophobic mem-
brane or water interface, which is akin to Zpred features
used in MPRAP that directly predict relative position
from the center of membrane for each residue. The
position-specific free energy of TMH insertion, termed
m sequences.
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as “free energy” to describe the hydrophobic core, was
encoded by a sigmoidal function as 1-1/(1 + e-energy),
where energy denotes the free energy of TMH insertion
estimated by Hessa et al.’s method [67]. The amphi-
philicity was encoded by the sigmoidal functions 1–1/
(1 + eam), where am denotes the amphiphilicity derived
by Mitaku et al.’s method [68]. We also considered the
helix turn propensities in order to capture sequence in-
formation related to tight turns in naturally occurring
TM helices from Monné et al. [69]. This feature was
normalized propensities to [0, 1] by dividing the max-
imum value 2.7 of proline.
All of the above features were normalized to a closed

[0, 1] interval. A feature value close to 1 means the cor-
responding residue is more hydrophobic, more amphi-
philic, higher polarity, positively charged, larger volume,
more conserved, tends to have turns and interhelical
contacts. We filled 0.5 as features for nonexistent resi-
dues in windows, except charge, interhelical contacts,
and volume, we filled zeroes.

Predicting rotational angle based on relative accessible
surface area
Determination of rotational angle of a transmembrane
helix
The rotational angle of a TMH was calculated as fol-
lows: First, we removed atoms which were annotated
outside the membrane. Second, we computed the hel-
ical principal axis of the TMH of interest and aligned it
with the z-axis with the N-terminal facing the screen,
creating a top-view of the protein with respect to the
target helix. Third, we identified the geometric centers
of the molecule and each of the individual helices in the
two-dimensional plane from the average x and y coordi-
nates of Cα in the constituent TMH residues. We de-
fined the lipid-facing direction of a TMH as in the
opposite direction circumscribed by the geometric cen-
ter of the target TMH connects to the molecular geo-
metric center of the protein chain unit. The rotational
angle of the target helix was measured as the angle ro-
tated from the Cα vector of the first residue to its lipid-
facing direction vector by clockwise motion viewed
from the helix N-terminal to C-terminal. The angle
ranges from 0˚ to 360˚.

Calculation of relative accessible surface area moment
direction
The moment M was computed for several propensity
scales with the moment length |M| and the moment dir-
ection θ relative to the angular direction of the Cα vector
of the first residue of the TMH [9]. In this work, we used
the rASA moment direction to describe lipid-facing
direction and used the definition and post-processing
techniques for both outliers and ramps described in
Donnelly et al. [70] to resolve the moment direction θ.
They were defined as follows:

x ¼
Xn
i¼1

rASAi cosθið Þ;

y ¼
Xn
i¼1

rASAi sinθið Þ; θi ¼ i−1ð Þ�100
ð6Þ

Mj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð7Þ

γ ¼ arccos
x
Mj j

� �
ð8Þ

θ ¼ γ ; y≥0
360−γ ; y < 0

�
ð9Þ

For each residue, the rASA values can be seen as de-
gree of directional lipid-facing. Therefore, for one TMH,
the summation of all TMH residues’ lipid-facing ten-
dency can characterize its rotational angle. In Equation 6,
the x and the y terms are the vector summation of over
n residues in a TMH. The moment length |M| is defined
as Equation 7. The angle γ was solved first by inverse co-
sine function as Equation 8, and we determined moment
direction θ by taking (360 - γ) as a result as Equation 9
if the sign of y term is negative.

Predicting rotational angles of transmembrane helices
In a previous study, propensity values, such as hydropho-
bicity or lipid-facing propensities, were used to describe
the moment direction [9,11,12,14]. The procedure of cal-
culating rotational angles of TMHs from predicted rASA
values is described as follows: First, we predict rASA
values from sequence by TMexpo. Second, we select each
TMH according to TM domain annotated by PDBTM. To
predict rotational angle, we further assign predicted rASA
values of each TMH using Equation 6 and Equation 7 to
obtain predicted rASA moment length ( M̂

�� ��). Finally, we
calculate the angles of moments for each TMH by Equa-
tion 8 and Equation 9, then take these angles as predicted
rotational angles as lipid-facing directions of TMHs.
Figure 3 illustrates the workflow of TMexpo for predicting
rotational angles from sequences. We followed the above
procedure for several propensity scales or rASA to obtain
and compare the predicted rotational angles.
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