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Abstract

violated in species with high fecundity.

with the model based method MSVAR.

Variance in reproductive success

Background: Demographic bottlenecks can severely reduce the genetic variation of a population or a species.
Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of
individuals is important to understand a species’ ecology and evolution, and it has implications for conservation
management. Recent studies have evaluated the power of several statistical methods developed to identify
bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in
demographically stable populations, has received little attention. We analyse this type of error (type 1) in forward
computer simulations of stable populations having greater than Poisson variance in reproductive success

(i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly

Results: With large variance in reproductive success (V, = 40, corresponding to a ratio between effective and
census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms
(heterozygosity excess, M-ratio, and Tajima's D test) tend to show erroneous signals of a bottleneck. Similarly, strong
evidence of population decline is erroneously detected when ancestral and current population sizes are estimated

Conclusions: Our results suggest caution when interpreting the results of bottleneck tests in species showing high
variance in reproductive success. Particularly in species with high fecundity, computer simulations are
recommended to confirm the occurrence of a population bottleneck.
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Background

Demographic fluctuations, including changes in popula-
tion size and growth rate, are common events in natural
populations. Severe population size declines (bottlenecks),
however, may have detrimental consequences including in-
creased inbreeding, decreased adaptive potential, increased
disease susceptibility, lowered fecundity, and disruption in
expression of quantitative traits [1-3]. As bottlenecks often
affect long-term fitness and population viability, or change
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the balance of drift and selection, they are key events in a
species' evolutionary history, and a principal concern for
endangered species [4].

Bottlenecks may leave a population genetic signature,
such as decreases in number of alleles and heterozygos-
ity, and loss of rare alleles [5,6]. These signatures can be
easily detected when temporal samples are available (e.g.
museum specimens or fossil remains), so that contempor-
ary genetic variation can be compared to historic levels. A
bottleneck, however, may also leave specific signatures in
current genetic variation, distinct from those in popula-
tions having a history of small and constant size. Indeed,
several methods for detecting genetic bottlenecks in the
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absence of information about historical sizes and in ab-
sence of pre-bottleneck genetic samples exist [7-10]. Gen-
etic methods for bottleneck detection are useful because:
(1) historical (and current) census sizes are rarely known;
(2) even when census size (IN,) is known, cryptic bottle-
necks (change in effective size, N,, without change in N,)
may occur; and (3) bottleneck outcomes are highly stochas-
tic, meaning that genetic diversity following the bottleneck
is somewhat unpredictable even when the demographic his-
tory is known [11,12]. It is therefore important to evaluate
the statistical performance of these methods, especially as
these tests are key components of many evolutionary, mo-
lecular ecology, and conservation genetic studies [13-16].

Previous investigations have demonstrated that the statis-
tical power of these tests is highest when the bottleneck is
severe or prolonged, and when many loci are used. In
addition, factors such as the mutation model and the rate
of post-bottleneck recovery may also play an important role
[9,13,16-18]. Also, the methods do not always show similar
power. For example, the heterozygosity excess test [9] has
low power after rapid recovery [17] whereas the M-ratio
test [10] remains effective, and the heterozygosity-excess
test is weak unless the population is reduced to some tens
of individuals [19]. Bottleneck signals are also weakened if
the bottleneck occurred gradually, or if the population re-
covered to its pre-bottleneck population size [16]. Numer-
ous empirical studies have failed to detect a genetic signal
even when a moderate or strong demographic bottleneck is
known to have occurred [4,11,20], showing empirically that
the power of such tests can be limited.

A lack of statistical power in bottleneck tests may re-
sult in an underestimation of the extinction risk. On the
other hand, identifying bottleneck signatures when they
have not occurred may represent a complementary risk
[18,21], yet this remains an often overlooked aspect of
studies employing these methods. Controlling type I error
rate (FPR, False Positive Rate) is important, particularly
given that resources towards conservation tend to be lim-
ited [22]. Type I error could result in incorrect population
protection status or unwarranted, ineffective, or even det-
rimental in-situ management interventions (e.g., translo-
cations, augmentations). Therefore, an understanding of
type I error in realistic situations is essential to properly
use and interpret results from these methods.

Investigations of type I error of bottleneck detection
methods are few, and have mostly concerned mutation
models in microsatellite markers. For example, the prob-
ability of type I error can be substantial or extreme (from
40 to 100%) when the wrong mutation model is assumed
or when multi-step mutations occur [21]. Also, assuming
the wrong population-mutation parameter theta (8 = 4N,
where 4 is the mutation rate) in the M-ratio test may result
in either type I or type II errors, depending on whether the
assumed 0 is larger or smaller than the actual value [23].
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Remarkably, in spite of frequent use of bottleneck tests,
and the conservation decisions that are based on them, lit-
tle is known about their type I error rates when assump-
tions of the biological model are violated. For example, the
influence of mating patterns [13], age structure [14], and
reproductive success [21,22] is rarely known.

Here we focus on type I error rates that may arise in
bottleneck tests when the variance of reproductive suc-
cess (hereafter V;) is larger than the Poisson variance
assumed by simple models underlying the bottleneck de-
tection methods. Larger than Poisson Vj; could cause
strong intergenerational genetic drift, because it intro-
duces additional stochasticity (e.g. unaccounted loss of
alleles) when only few parents contribute to the next
generation [24]. When extreme, this process has been
referred to as Sweepstakes Reproductive Success (SRS),
in which many individuals “lose” and produce zero or
very few offspring, while one or a few individuals "win"
and produce many offspring [25,26]. Such extreme re-
productive variance can be caused by complete or near-
complete dominance of one pair, or positively correlated
sibling survival, in which all offspring of a particular
brood survive or perish [24,25]. Variance can also be ex-
treme when only one male contributes offspring [12].
Large Vj reduces the N,/N, ratio, which may explain N,/
N, in the order of 10 - 10 observed in many amphib-
ians, fish, marine invertebrates, and plants. Even more
extreme N,/N, ratios, as low as 10> to 107>, have been
reported for lobster, cod, red drum, and oyster [27].
“Chaotic” genetic differences at small geographic scale
and at different time intervals often observed in marine
organisms has been explained as relating to high V; [26].

Theoretically, the relationship between V; and the N./N_
ratio has been derived under different models [25,28,29],
and hence, an increase in V} can be converted into a pre-
dictable reduction in N,. However, the effect of V; on the
shape of a coalescent tree and on the relationship between
different genetic diversity measures (which are the basis
for bottleneck testing) have not been investigated [27]. In
particular, it remains to be elucidated whether analysis of
genetic data from species with large V; will show signature
of small but constant size, or whether large V results in a
false signal of a genetic bottleneck. Here we investigate this
question for different combinations of N, and V} values,
using simulated data to estimate type I errors in two tests
commonly applied to microsatellite data to detect bottle-
necks, the M-ratio [10] and the heterozygosity test [9], and
when ancestral and current population size are estimated
to infer bottlenecks with the MSVAR method [7]. We also
consider the effects of V; on the Tajima’s D test [30], which
is used to detect selection as well as deviations from
demographic stability in DNA sequence polymorphisms.
All these tests assume stable populations with Poisson-
distributed family sizes, i.e. Vi = 2.
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Methods

Genetic variation data were generated by simulating de-
mographically stable populations with different effective
size (N,) and different variance in reproductive success
(V). For each combination of parameters, 100 replicates
were generated. Each data set, consisting of 15 microsatel-
lite markers, was analysed with the M-ratio and the het-
erozygosity excess tests, and with the MSVAR method.
The fraction of replicates significantly supporting a bottle-
neck can be considered as an estimate of the FPR (false
positive rate), i.e., the type I error rate. Then a smaller set
of simulations was used to analyse two additional markers
(microsatellite loci with constrained allelic range and
DNA sequence polymorphisms).

Generating the primary set of synthetic data
The software simuPOP [31] was used to generate the
virtual data. simuPOP is an individual-based, forward-in-
time simulator that uses the flexible scripting language
Python to allow operators that control sex ratio, number
of offspring produced etc., and is one of few simulators
to allow such options [32]. Random mating of individ-
uals and family sizes with different distributions (i.e., V;)
can be simulated straightforwardly. We analysed 16 com-
binations of N, (50, 500, 2500 and 5000) and Vj (2, 40,
400, and 2000). Population size was assumed to be con-
stant, and the mean number of offspring per mating was
always equal to two. In order to obtain the same N, for
different Vj values, the census sizes required in the simu-
lations were computed using the approximate relationship
NN, = 4/(Vy +2) [25,33]. When Vj =2, family sizes were
Poisson distributed (as assumed by most population gen-
etics models) and the ratio N,/N, =1. For larger V;, we
used a modified gamma distribution of family sizes with
decimal values rounded down to the nearest integer
(resulting in a discrete distribution approximating a nega-
tive binomial, Figure 1). This choice allowed us to main-
tain the average number of offspring per mating equal to
two while producing a long right tail in the distribution.
The Vj values of 40, 400, and 2000 correspond approxi-
mately to N./N, equal to 0.1, and 0.01, 0.002, respectively.
Fifteen neutral, independent microsatellites evolving un-
der a strict stepwise mutation model with mutation rate
u=5x10"* were considered. Mutation-drift equilibrium was
obtained by running simulations for N, generations, start-
ing from individuals with a Dirichelet distribution of al-
lele frequencies. After verifying that the population had
reached a stable equilibrium confirmed by the convergence
of the number of alleles (K), the expected heterozygosity
(H,), and the inbreeding coefficient Fj, 50 individuals were
randomly sampled and analysed using ARLEQUIN v3.5
[34] for the summary statistics noted above, the M-ratio
and the Tajima’s D tests, and using BOTTLENECK v.1.2.1
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[9] for the heterozygote excess test, and MSVAR v. 1.3 for
the estimation of current vs. ancestral population sizes [7].

Additional simulations

Some specific situations were investigated using additional
simulations. First we simulated microsatellite markers
where the maximum number of alleles is limited to five,
to represent expressed (EST) microsatellites which tend to
have a limited allelic range; a restricted allele range may
affect the M-ratio. Second we simulated DNA sequences
of 500 base pairs evolving under an infinite site mutation
model with mutation rate =107 per site per generation.
These simulations were conducted to understand whether
the spurious signal of a bottleneck produced by V; >2 is
specific to microsatellites markers, or whether a similar
signal would be found when Single Nucleotide Polymor-
phisms (SNPs) are considered.

Bottleneck tests
Microsatellite data was analysed first with the commonly
used M-ratio test [10] and heterozygosity excess test [9].
The M-ratio test is based on the frequency distribution
of allelic sizes, which is expected to have gaps after a
bottleneck due to stochastic loss of rare alleles. The M-
ratio is computed in each data set as simply the ratio of
the number of occupied allelic states divided by the
number of possible allelic states (e.g. the range). Evi-
dence of deviation from the null hypothesis of demo-
graphic stability can be concluded in one of two ways: if
the observed value is lower than a simple threshold cri-
teria (M-ratio < 0.68 [10], which is widely used as a “rule
of thumb” in conservation genetics) or if the observed
value is lower than a critical value, determined by
reconstructing the null distribution of M using 1000 co-
alescent simulations. The coalescent simulations used to
generate this null distribution assume by definition Vj = 2.
Also we set the parameters N, and # to the values used in
producing the corresponding data sets. Throughout the
paper, we will call M-ratioy, test the approach based on the
fixed threshold, and M-ratiog;,, test the approach that uses
simulations to compute the critical value. The heterozy-
gosity excess test is based on a relationship between het-
erozygosity and number of alleles, which is predicted to
deviate from theoretical expectations after a bottleneck
because the former decreases more slowly than the latter.
Statistical significance for this test is computed using the
Wilcoxon’s signed rank test to compare the expected het-
erozygosity calculated from the data (H.) to an expected
heterozygosity based on the number of alleles present (H,)
[9], where H, is computed by simulation using the pro-
gram BOTTLENECK [35].

We performed also a more sophisticated analysis which
is frequently used to detect changes in population size [7].
This analysis uses a full-likelihood model-based approach
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Figure 1 An example of the distribution of offspring per parent in the simulations. The three panels correspond to the distributions
obtained in simulations with V, =2 (top), Vi = 40 (middle), and V) = 400 (bottom).
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called MSVAR to infer current and past population sizes
as well as other parameters. The method can be used to
infer a bottleneck if the ratio of past to current population
size is significantly greater than unity. From each MSVAR
analysis, the posterior distribution of the ratio between an-
cient and current population sizes was estimated, and the
data set was considered to support the bottleneck hypoth-
esis if less than 5% of this distribution was smaller than 1.
For each data set (1600 in total), we recorded the MCMC
(Monte Carlo Markov Chain) output 40,000 times every

10,000 steps. The first 10% of steps were discarded as burn
in. Means and variances for priors and hyperpriors are
reported in the legend of Table 1. In some cases this ap-
proach has been shown to be more powerful than the sim-
pler statistics explained above [11], but it also relies on
more assumptions (a particular demographic model).
DNA sequences were analysed with the Tajima’s D test
[30], which is based on the comparison between the aver-
age pairwise difference (77) and the number of polymorphic
sites (S). If equilibrium is not reached after a demographic
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Table 1 Simulation results for a population with constant size and standard microsatellite mutations
Ne Vi NN,  H.(SD) K (SD) Fis (SD) M-ratio (SD) %P FPR
M-ratiosy  M-ratiog;, Het excess MSVAR
50
2 1 0.11 (0.17) 1.53 (0.59) 0.00 (0.09) 1.00 (0.03) 48 0.01 0.02 0.01 0.00
40 0.1 0.07 (0.14) 1.30 (0.52) -0.03 (0.12) 1.00 (0.00) 27 0.0 0.04 0.02 0.00
400 0.01 0.05 (0.14) 1.24 (045) —-0.01 (0.11) 1.00 (0.03) 23 0.01 0.04 0.10 0.00
2000 0.002 0.07 (0.13) 1.25 (0.35) —-0.15(0.17) 0.97 (0.06) 25 0.00 017 0.1 0.00
500
2 1 044 (0.16) 3.08 (0.72) —-0.02 (0.12) 1.00 (0.03) 100 0.0 0.09 0.04 0.00
40 0.1 042 (0.20) 2.74 (0.81) —-0.07 (0.21) 0.98 (0.07) 96 0.03 0.36 0.32 0.62
400 0.01 043 (0.23) 291 (1.10) 7 (0.29) 0.87 (0.18) 89 0.21 1.00 0.53 097
2000  0.002 044 (0.21) 3.17 (1.20) 9(0.31) 1(0.21) 88 043 1.00 0.54 1.00
2500
2 1 0.71 (0.06) 6.3 (1.3) 0.01 (0.05) 0.95 (0.08) 100 0.0 0.03 0.06 0.06
40 0.1 0.69 (0.1) 57 (1.8) —-0.08 (0.11) 0.89 (0.13) 100 0.07 0.51 0.20 0.66
400 0.01 0.64 (0.09) 4502 —-0.19 (0.13) 0.82 (0.15) 99 0.35 1.00 0.39 0.99
2000 0.002 061 (0.12) 42 (14) —-0.20 (0.12) 0.69 (0.18) 99 049 1.00 042 1.00
5000
2 1 0.76 (0.08) 7.70 (1.60) —0.016 (0.08) 0.94 (0.09) 100 0.0 0.05 0.07 0.14
40 0.1 0.72 (0.09)  6.06 (1.76) -0.11 (0.17) 1(0.19) 100 0.23 0.93 0.22 097
400 0.01 066 (0.13) 480 (1.51) —-0.22 (0.16) 0.68 (0.23) 100 0.50 1.00 040 1.00
2000 0.002 0.67 (0.11) 4.90 (1.66) —0.24 (0.14) 0.66 (0.20) 99 0.58 1.00 043 1.00

Mean values of summary statistics (with standard deviations) across 100 replicates are given. The last four columns report the rate of false positives (FPR = type |
error) estimated as the fraction of replicates with an M-ratio smaller than the commonly used threshold of 0.68 (M-ratiog), with a M-ratio smaller and the critical

value computed by simulation using the same parameter 6 = 4N.u used to generate the data (M-ratiog;), where a significant (P< 0.05) heterozygoty excess was
detected using the program BOTTLENECK, and where a significant difference between ancestral and current population size is detected by MSVAR, respectively.

N, = effective population size; N, = census population size; H, = expected heterozygosity; F =
observed heterozygosity; M = M-ratio; %P = fraction of replicates producing a polymorphic locus; the starting values, in the log scale, for the mean and variance
of the prior distributions in MSVAR, are as follows: ancestral size (3,1), current size (3,1), mutation rate ( —3.3,1), time since the decline (2,0.5); means and variances
(and their means and variances) of the hyperprior distributions used in MSVAR are as follows: ancestral size (3,1,0,0.5), current size (3,1,0,0.5), mutation rate

(—3.3,0.25,0,0.5), time since the decline (2,0.5,0,0.5).

event, negative D values are expected under population ex-
pansion and positive D values are expected under popula-
tion decline [30]. Tajima’s D is commonly used also to
detect deviation from neutrality, i.e. the impact of selection
on DNA sequences. Statistical significance is computed by
simulations, as implemented in Arlequin [34].

Results

Primary set of simulations

As expected, the average level of genetic variation (ex-
pected heterozygosity, H,, and number of alleles, K) in-
creased with increasing N,. The average H, observed for
Vi=2 is similar to theoretical predictions [36] which are
0.09, 0.42 and 0.78 for N, values 50, 500, and 5000. The
number of alleles does not have a simple expectation
under the single-step mutation model, but the observed
values are compatible with other results [37]. When V in-
creases, we observe a trend of decreased genetic variation
within each set of simulations with the same N,, and this
effect is stronger for K than for H,. For V} > 2, populations

inbreeding coefficient, estimated as 1-H,/H,, where H, is the

also appear to deviate from the Hardy-Weinberg equilib-
rium, with larger observed than expected heterozygosity
and consequent negative values of the estimated inbreed-
ing coefficient.

The false positives rate (FPR) clearly increases with V.
With V;=2, FPR for the M-ratiog test is either 1% or 0%
(indicating probably that this criteria is too conservative)
and it varies between 2% and 9% using the M-ratiog,,
test. For the heterozygosity excess test, the FPR with
V=2 is around the nominal 5% or less, and varies be-
tween 0% and 14% for the MSVAR analysis (this analysis
being more permissive with large values of genetic vari-
ation). Very different results are obtained for V;>2
(Table 1 and Figure 2), especially for N, equal or larger
than 500 (i.e., when level of polymorphisms is not too
low). All or almost all replicates analysed with the M-
ratiog,, test or with the MSVAR analysis support a
bottleneck when V} > 400 and N, > 500. When the more
conservative M-ratiog test or the heterozygosity excess
test are applied, the FPR decreases, but never below
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21%. For V=40, i.e., when the ratio between effective and
census size is equal to 0.1, FPR can reach values as high as
93% or 97% in the M-ratiog,, test and the MSVAR ana-
lysis, respectively. Furthermore, we observe a general
trend of FPR to increase with N, (Table 1 and Figure 3).
This pattern, likely related to the overall level of genetic
variation available for the tests and to the ratio between
the sample size and N, (which is decreasing when N, in-
creases), deserves further investigation. In summary, with
high variation in reproductive variance, the M-ratio and
heterozygosity excess tests produce many false positives,
and the probability to detect a spurious bottleneck signal
tends to increase with increasing effective population size.

MSVAR results are in general similar to those obtained
with the M-ratiog;,, test.

Additional simulations

Constrained allelic size — Simulations with Ne=500 and
Vi=2 or 400. When microsatellite alleles exhibit strong
size restrictions (only 5 alleles with adjacent number of
repeats are possible), the fraction of false positives for
the heterozygote excess test increased from 1% to 47%
when V. was increased from 2 to 400. This increase in
FPR is similar to that observed in the simulations with
size-unconstrained loci. However, none of the replicates
with high V; with constrained loci produced small and
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significant M-ratios. The likely explanation is that a re-
duced allelic range prevents the opening of gaps in the
allelic size distribution. In other words, the M-ratio test
does not tend to suggest a false signal of a bottleneck
when analyzing size-constrained EST microsatellites.
DNA sequence polymorphism - Simulations with N, =
500 and Vi = 400. The Tajima’s D distribution, centered
around 0 for Vi = 2 in case of constant population size
and absence of natural selection, is shifted towards positive
values, with a mean of 1.24. The FPR, i.e. the fraction of
values significantly larger than 0, is 37%. Thus, the Tajima’s
D statistics is similarly affected by an increased variance in
reproductive success, and would frequently support a
population decline or balancing selection when V. >> 2.

Discussion

In many organisms with high fecundity, the contribution
of each individual or pair to the next generation can be
highly skewed, with few “winners” (i.e. those who produce
many offspring) and many “losers” who do not contribute
to the gene pool of the next generation. Under this sce-
nario of Sweepstakes Reproductive Success (SRS) [38], the
variance in reproductive success (V}) is larger than as-
sumed by the Wright-Fisher model. Population genetics
theory predicts that the ratio of N, (the effective popula-
tion size) over N, (the census population size) rapidly de-
creases from one as Vj increases. The SRS model is thus
considered a likely explanation for the empirical observa-
tion that many marine organisms have much lower gen-
etic variation (and therefore N,) than predicted by their
very large N, [39].

While the negative relationship between genetic vari-
ation and Vj is well known, the effect of V; on the gene
genealogy shape reconstructed from a sample of DNA
fragments is yet unclear. It is possible that large V; values
may introduce distortions in this genealogy, in turn dis-
torting the relationships between genetic variation mea-
sures. This is relevant as many statistical analyses for
identifying deviations from neutrality and demographic
stability assume V=2 and are based on the relationships
between genetic variation measures.

We addressed this question by comparing simulated
datasets of single populations with different Vj values.
Specifically we estimated the impact of large V; on the
results from four statistical tests commonly used to de-
tect population size variation: the M-ratio test, the het-
erozygote excess test, a test derived from a Bayesian
estimate of ancient and current population sizes, and the
Tajima’s D test. Conceptually, when these tests are ap-
plied to neutral markers, the null hypothesis includes
demographic stability, no migration and V;=2. Rejection
of this hypothesis may be interpreted as population decline,
but may be also due to large V} in isolated, demographic-
ally stable populations. This is relevant in conservation
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genetics as violation of the assumption of low V; made by
these tests can produce incorrect inference, and may sug-
gest incorrect management interventions.

Our simulations show that high Vi can strongly in-
crease the rate of false positives (FPR = type I error = in-
correct inference of population decline) for all the tests.
Further, the larger Vj, the larger the rate. FPR is also
dependent, to some extent, on N, (and thus the level of
genetic variation), but this relationship appears test-specific.
Based on our results, it appears that the MSVAR method is
most prone to errors, followed by the M-ratio with the crit-
ical threshold computed by simulations (M-ratiog,). The
heterozygote excess and M-ratio with the traditional thresh-
old are less prone to false positives when V; is large and
may be preferred for use, if the goal is to reduce type I er-
rors when evidence of large V} is available. The results we
obtained show also that high V} could cause wrong conclu-
sions when the aim of the analysis is to identify signatures
of selection. In particular, the negative F;; values and posi-
tive Tajima’s D produced in our simulations of neutral
markers with large V. could be misinterpreted as signals of
balancing selection.

When Vy is large, a large fraction of siblings is observed
every generation. In coalescent terms, several lineages
merge in one generation going back in time, producing
many short external branches in the gene genealogy and
therefore a deviation from the standard Kingman coales-
cent [27,28]. Allele sharing among individuals will be high
and alleles present in one (singletons) or few (rare alleles)
individuals will be very low. Considering that bottleneck
tests assume the standard Kingman coalescent, or the
Wright-Fisher model it approximates, we propose that the
excess of short external branches and corresponding deficit
of rare alleles could explain the large FPR. In fact, this situ-
ation is expected to result in (a) higher heterozygosity than
expected based on number of alleles (and thus positive het-
erozygote excess test and an overall signal of population
decline detected by MSVAR), (b) gaps in the microsatellite
allele size distribution (and significant M-ratio test) and (c)
loss of segregating sites but not substantial reduction in
the average pairwise difference (and positive Tajima’s D).
We also note that the fraction of siblings and the rate of
multiple coalescent events rapidly decreases going back in
time (since few lineages survive, additional simulation re-
sults not shown); thus, one generation of large V. can gen-
erate large FPR. We also note that the constant population
size scenario we simulated appears similar, in its effects, to
a scenario of a recent and extreme bottleneck in an add-
itional way, with a small recent effective size producing
negative Fis values compatible with a population of few in-
dividuals [40].

Due to different parameterization of the model of the
biological system, our results are not directly comparable
with the genetic prediction of recent theoretical models
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of populations with skewed offspring number and over-
lapping generations [27,41-45]. These models, which
allow for simultaneous multiple coalescent events e.g. [42],
suggest that in a “many losers, few winners” situation (high
Vi), the chances to obtain star-like genealogies and excess
of rare alleles, i.e., signatures of population expansion, is in-
creased compared to the Vj =2 case; this is opposite the re-
sult obtained in our study. A possible explanation for the
discrepancy is the fact that our simulations considered
non-overlapping generations, and overlap in generations
may provide a buffer against the effects of drift and conse-
quent high allele sharing caused by high V;. Additional ef-
forts should be dedicated to make the results produced by
theoretical models with multiple merger and those ob-
tained in our study comparable.

Practical applications

Certainly, our results suggest that the genetic signature of
a bottlenecks should be interpreted with caution when
found in species known to have moderate to large vari-
ance in offspring number (as for example in the killer
whale, [46]), or where large variance in offspring number
is suspected (as for example in many marine species,
[26]). In the killer whale example, large variance in off-
spring number was estimated based on parentage analysis
and a demographic bottleneck was inferred from genetic
data using the statistical approaches we examined in our
study; the authors report that it is unclear whether a
bottleneck actually occurred. This work, and our simula-
tions, emphasize that robust, widely applicable, powerful
alternative methods of detect a bottleneck are still needed.

An alternative to using the standard bottleneck tests
for species with large Vi is using computer simulations
[16,32]. Summary statistics from observed data can be
compared to a distribution of expected values from simu-
lated data created with forward simulations, in simuPOP,
spip [47], Nemo [48], cdpop [49] or other software [32].
The distribution of reproductive success and other aspects
of the species’ reproductive system can be taken into ac-
count in the simulations, allowing the investigator to ob-
serve Vy effects on the population genetic signal and, more
specifically, generating species-specific null distributions of
the bottleneck tests (as the M-ratio statistic) more appro-
priate for Vj larger than 2. Simulating stable populations,
and populations with different intensities of demographic
decline, can allow statistical comparison to the observed
data (with or without formal approaches like Approximate
Bayesian Computation, [50]).

The high FPR we uncover may not present a problem for
studies that detect a bottleneck by comparing temporal sam-
ples, as comparing a modern sample to museum or ancient
samples [23], or comparing to a non-bottlenecked but other-
wise similar population [17]. Type I error due to Vj should
not be expected to arise because large V} should affect
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diversity in both samples. However, this assumes that Vj is
constant through time. If census size decreases, Vi may
change through time [12], with unknown effects on our abil-
ity to detect a bottleneck by comparing ancient and modern
genetic variation levels. The increasing use of ancient DNA
and prevalence of studies that infer bottlenecks from tem-
poral samples [51], suggests that it will be important to
evaluate the effects of high V; on temporal comparisons.

Finally, considering that our simulations assumed non-
overlapping generations, and also considering that effect
of drift decreases proportionally to the number of genera-
tions that overlap [25,52], we emphasize that our findings
should be considered applicable particularly to organisms
with non-overlapping generations or short generation times
(e.g., annual plants, insects, some fish).

Conclusions

We have shown that high reproductive variance increases
the rate of false positives in four widely used bottleneck
detection tests. Failing to detect a genuine bottleneck is
widely acknowledged as harmful in conservation. How-
ever, given the limited resources and myriad of necessary
conservation actions that are required to protect vulner-
able species and populations [53], accurate tests are re-
quired to identify population bottlenecks with low false
positive rates so that resources can be applied where they
are needed most. The current study highlights the high
type I error rate of bottleneck tests and emphasizes the
need for more sophisticated analysis to evaluate conserva-
tion status of species with high reproductive variance.
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