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Abstract

Background: Testing for marginal associations between numerous genetic variants and disease may miss complex
relationships among variables (e.g., gene-gene interactions). Bayesian approaches can model multiple variables
together and offer advantages over conventional model building strategies, including using existing biological
evidence as modeling priors and acknowledging that many models may fit the data well. With many candidate
variables, Bayesian approaches to variable selection rely on algorithms to approximate the posterior distribution of
models, such as Markov-Chain Monte Carlo (MCMC). Unfortunately, MCMC is difficult to parallelize and requires many
iterations to adequately sample the posterior. We introduce a scalable algorithm called PEAK that improves the
efficiency of MCMC by dividing a large set of variables into related groups using a rooted graph that resembles a
mountain peak. Our algorithm takes advantage of parallel computing and existing biological databases when available.

Results: By using graphs to manage a model space with more than 500,000 candidate variables, we were able to
improve MCMC efficiency and uncover the true simulated causal variables, including a gene-gene interaction. We
applied PEAK to a case-control study of childhood asthma with 2,521 genetic variants. We used an informative graph
for oxidative stress derived from Gene Ontology and identified several variants in ERBB4, OXR1, and BCL2 with strong
evidence for associations with childhood asthma.

Conclusions: We introduced an extremely flexible analysis framework capable of efficiently performing Bayesian
variable selection on many candidate variables. The PEAK algorithm can be provided with an informative graph,
which can be advantageous when considering gene-gene interactions, or a symmetric graph, which simply divides
the model space into manageable regions. The PEAK framework is compatible with various model forms, allowing for
the algorithm to be configured for different study designs and applications, such as pathway or rare-variant analyses,
by simple modifications to the model likelihood and proposal functions.

Background
Complex biological pathways play a role in many com-
mon diseases, such as heart disease and cancer. Genetic
variants in the genes involved in these pathways may inde-
pendently or in combination influence disease risk. The
majority of genetic association studies, however, report
results from sequentially testing marginal associations
between each genetic variant and disease. While this
approach has certainly had many successes, it is unlikely
to capture many relationships among variables, such as
gene-gene interactions [1,2].
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For applications with few candidate genetic variants,
conventional multivariable regression modeling works
well. Here, the analyst uses a combination of model fit-
ting and an understanding of biological context to build
a model that may include confounding and interaction
variables. When there are many variables, however, the
analyst must turn towards automated variable selection
algorithms, such as stepwise regression. These approaches
often result in a single best model that ignores the uncer-
tainty in the decisions made in building it.
Bayesian approaches to variable selection address the

uncertainty issue directly by using the posterior distri-
bution of models rather than a single best model for
inference [3]. When there are a small number of variables,
exact computation can be accomplished by enumerat-
ing all possible models. With many variables this quickly
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becomes intractable and the posterior must be approxi-
mated with Markov Chain Monte Carlo (MCMC) meth-
ods. Recently, Bayesian frameworks have been introduced
for modeling complex interactions [4,5] and risk scores
for rare genetic variants [6]. These MCMC approaches,
however, have been limited to applications with a relative
small number of candidate variables because they do not
efficiently sample the posterior distribution.
We introduce a framework called PEAK that improves

the efficiency ofMCMC by dividing a large set of variables
into related groups using a rooted graph that resembles
a mountain peak. Our algorithm is flexible to different
model specifications and takes advantage of parallel com-
puting and existing biological databases when available.
The framework will allow for comprehensive analyses of
genetic association studies using modern Bayesian mod-
eling approaches.

Methods
The PEAK framework is an implementation of Bayesian
variable selection for applications with many candidate
variables (e.g., genetic variants). Inference is based on the
posterior distribution ofmodels. The posterior probability
for modelM is given by

p(M|D) = p(D|M)p(M)∑
M∈M p(D|M)p(M)

whereD is the observed data, p(D|M) is the marginal like-
lihood for model M (integrating over any parameters in
that model), p(M) is the prior for the particular model
(if specified), and the denominator is a constant found
by summing over all models M. The marginal posterior
probability for any variable of interest (e.g., genetic or
environmental risk factors or interactions) is computed by
summing the probabilities for each model containing the
variable,

p(Ip = 1|D) =
∑
M∈M

p(M|D)Ip∈m

where Ip∈m is an indicator if the variable p is in the model
m. Additionally, the Bayes factor (BF), the ratio of poste-
rior to prior odds, is used to evaluate the extent the data
supports a particular variable,

BF = p(Ip = 1|D)/(1 − p(Ip = 1|D))

p(Ip = 1)/(1 − p(Ip = 1))

where a Bayes factor of 1–3 is considered weak evi-
dence, 3–20 positive evidence, 20–150 strong evidence,
and greater than 150 very strong evidence [7].
In many applications, an exhaustive search of M is

intractable and the posterior distribution is approximated
usingMCMCmethods. The PEAK framework is designed
to efficiently sample from p(M|D) using MCMC by using
a graph to divide the set of candidate variables into groups.

Model specification
The form of models considered by PEAK is flexible, and
the model likelihood is specified by the user. In this imple-
mentation, we fit generalized linear models (GLM). The
data D contain the outcome variable Y and a matrix of P
explanatory variables X (which may include pairwise and
higher-order interaction variables). The expected value of
Yi, the outcome variable for individual i, depends on the
linear predictors through the link function g such that,

g(μi) = β0 +
P∑
p

βpXipIp

where μi = E(Yi),βp is the regression coefficient of vari-
able p, and Ip is a variable indicating if Xp is included
in the model M. The desired link function, the highest
order interactions to consider in a model (none, pairwise,
three-way, etc.) and D are provided by the user.

Graph-based Metropolis-Hastings
The PEAK framework implements a random-walk
Metropolis-Hastings (M-H) algorithm [8] with a custom
proposal density. The proposal is customized through a
vector of tuning probabilities ρ. If the tuning probabili-
ties were equal for all variables, then the PEAK algorithm
reduces to traditional M-H. PEAK customized the pro-
posal using a graph to break the model search space down
into local regions (Figure 1).
The P candidate variables are mapped to concepts,

which are related through a directed acyclic graph (DAG).
We specify a rooted DAG G = (V ,E) consisting of a set
of vertices V (concepts) and a set of directed edges E that
connect pairs of concepts. Concepts represent groups of
variables (e.g., SNPs that are within a gene). The edges
may represent different relationships and can be either
generic (e.g., part-of, is-a) or domain specific (e.g., a gene
regulates).G has a root vertex (the peak) in which all other
vertices and edges are oriented, with vertices closer to the
root being parents and those further away being children.
The algorithm begins by estimating the posterior prob-

abilities for the set of variables mapped to the leaves of G.
As concepts join in G, the algorithm estimates the poste-
rior probabilities for a larger set of variables, returning to
regions identified by local searches performed earlier by
the tuning probabilities (see Algorithm 1).
At the leaves of G, the tuning probabilities ρ are user

defined. Since we are interested in models with interac-
tions, we set the default for these tuning probabilities so
the proposed modelM′, on average, involves two explana-
tory variables. For the internal vertices, ρ is weighted
to ensure that the entire model space can be explored
(i.e., no variables are always (ρ = 1) or never (ρ = 0)
proposed in the new model M′). To accomplish this,
we place a beta prior on the tuning probabilities to
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shrink the posterior probabilities computed at the end
of Algorithm 1 for vertex v’s children towards the default
tuning probabilities for v.

Algorithm 1 Estimation of the posterior probabilities for
all variables mapped to concept v in the directed acyclic
graph G
Require: if v is an internal vertex, posterior probabilities
from all children of v
Input: data set Dv containing the set of variables mapped
to concept v and the outcome variable, default tuning
probabilities, posterior estimates from all variables com-
puted previously by children of v, and number of M-H
iterations u
Output: posterior estimates for variables mapped to v

1: if v is a leaf then
2: Set tuning probabilities ρ to default
3: else
4: Set tuning probabilities ρ as a weighted average

of the default and the posterior estimates from v’s
children

5: end if
6: I = 0 {initializedMt to empty model}
7: for i = 1 → u do
8: Propose a new model M′ by either adding (set-

ting Ip = 1) or removing a variable (setting Ip =
0) to Mt−1 with probability ρ. Include interaction
variables in M′ with probability conditional on the
selected main effect variables.

9: Compute the Metropolis-Hastings acceptance
probability,

α = min
(
1,

p(Dv|M′)p(M′)qv(Mt−1|M′)
p(Dv|M)p(M)qv(M′|Mt−1)

)

where qv is the proposal density for concept v,
customized by tuning probabilities ρ

10: Set Mt to M′ with probability α and Mt−1 with
probability 1 − α

11: WriteMt
12: end for
13: SummarizeMt
14: Estimate the posterior p(Ip = 1|Dv) for the set of

variables mapped to concept v

Jobmanagement and parallel computing
The PEAK software queues Algorithm 1 based on the
graph using Portable Batch System (PBS). Initially all the
leaves of G are queued and executed in parallel up to
the number of processors available. For internal vertices, a
job is queued immediately after the completion of its chil-
dren and executed when a processor becomes available.
Algorithm 1 is currently implemented in [R] [9].

Simulations
We used data simulations to compare the performance
of the PEAK algorithm, with different graphs and vari-
able mappings, to the standard M-H algorithm. For the
simulations, we assumed a binary outcome Yi where Yi ∼
Bernoulli(πi) and a link function, g(πi) = log

(
πi

1−πi

)
. Each

data replicate included J = 1, 000 binary variables, which
we refer to as genetic variants, and

(J
2
) = 499, 500 inter-

action variables. The outcome variable Y was generated
under additive and interaction true models, where vari-
ants X7 and X10 were involved:

Scenario 1: g(πi) = β0 + β7X7,i + β10X10,i with β7
and β10 = log(1.5)
Scenario 2: g(πi) = β0 + β7X7,i + β10X10,i+
βX7:X10X7,i : X10,i with no simulated main effects
(β7 and β10 = log(1.0)) and an interaction effect
between X7 and X10 (βX7:X10 = log(3.0))

For each scenario, we generated ten data replicates of
1,000 individuals for analysis.
As input to the PEAK algorithm, we generated two dif-

ferent graphs. The first graph was obtained from the Gene
Ontology database for the biological process “response
to oxidative stress”. This six-level informative graph is
denoted G1 and is presented in Figure 2. G1 was used in
the analysis of the simulation datasets and a genome-wide
study of childhood asthma. The second graph was not
derived from a biological database. This graph (denoted
G2) was symmetric with many concepts joining in three
levels (see Figure 3). The causal variants X7 and X10
were mapped in two different ways to these graphs. For
the informative graph, these variants were mapped to
the same concept (term GO: 0001318) and then to sep-
arate concepts (terms GO: 0001318 and GO:0001219)
sharing a common biological process (i.e. siblings in the
graph - see Figure 2). For the symmetric graph, the causal
variants were mapped to the same concept and then con-
cepts with a distant common ancestor (see Figure 3). The
non-causal variants were evenly mapped to the leaves
of G.
The M-H and PEAK algorithms were configured to

consider models with any number of variables, including
pairwise interactions, and run on all the Scenario 1 and
2 datasets. The M-H algorithm was run for u = 800, 000
iterations. The PEAK algorithmwas configured forG1 and
G2 and the different variable mappings. Algorithm 1 was
run for u = 100, 000 iterations for all vertices below the
root and u = 300, 000 iterations for the root. Multiple
chains with different initial values were used to evaluate
convergence. For comparison to traditional approaches,
the best model was chosen by Bayesian information cri-
terion (BIC) using forward stepwise logistic regression on
each dataset.
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Figure 1Managing the model space with a directed acyclic graph. This graph contains seven concepts (shown as boxes). All variables are
mapped to the root concept v7. Smaller sets of variables are mapped to child concepts (vertices towards the bottom of the graph). A small portion
of the model space is explored for the set of variables mapped to that concept (displayed in brackets). Arrows indicate the direction of graph
communications, with probabilities ρ customizing the Metropolis-Hastings proposal density. For each concept, the posterior estimates are shown
for main effect variables (diagonals) and pair-wise interactions (off-diagonals). Darker shades indicate higher posterior probabilities. The boxes (blue
and green) within a matrix denotes the portion of the model space previously searched.

Results
Statistical inference
The marginal posterior probabilities for each genetic vari-
ant were averaged over the data replicates. The top ten
genetic variants obtained from the M-H algorithm were
then compared to PEAK. While the posterior estimates
varied by data set as expected, the distribution of poste-
rior estimates were highly consistent across the M-H and
PEAK algorithms (see box plots in Figures 4 and 5 for
Scenario 1 and 2 datasets respectively). Thus, under the
configurations used in these analyses, inference using the
PEAK algorithm was equivalent to the traditional M-H
algorithm.
For the Scenario 1 datasets, the simulated causal vari-

ants X10 and X7 were among the top variants. While some
non-causal variants had elevated posterior probabilities in
individual datasets (e.g., X368), only X10 and X7 showed

evidence across datasets. The maximum posterior proba-
bility for X10 was 0.63, meaning that for this dataset, there
was very strong evidence in favor of including this variable
in the model (Bayes factor of 570). Among the other Sce-
nario 1 datasets, there was positive evidence for including
X10, but with much lower posterior probabilities (Figure 4
- median posterior: 0.05, Bayes factor: 17). The maximum
posterior estimate for X7 was 0.07 and had strong evi-
dence of association (Bayes factor: 26). Across datasets,
there was positive evidence for including this variant in
the model (median posterior: 0.02, Bayes factor: 8). No
pairwise interactions had elevated posterior probabilities.
This was expected given the data was simulated under an
additive model. Using forward stepwise regression on the
Scenario 1 datasets without considering interaction vari-
ables, X10 was included in the best model six times and X7
was included four times.
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Figure 2 Informative graph G1 extracted from Gene Ontology: response to oxidative stress. G1 was extracted from Gene Ontology and
contains 28 concepts (circles with the GO identifier). Concepts become more general towards the top of the graph and thus have larger sets of
variables. The simulated causal variants X7 and X10 were mapped to a common concept (GO:0001318) and then sibling concepts (GO:0001318 and
GO:0001319). Non-causal variants were randomly distributed across the graph.

For the Scenario 2 datasets, the simulated causal vari-
ants were again among the top variants. Marginally, X7
showed evidence across the datasets (maximum pos-
terior: 0.97, median: 0.02), whereas X10 had a rather
low posterior overall (see Figure 5, median: 0.007). This
reflects that X10 was infrequently included without the
interaction variable between X7 and X10. This interac-
tion had extremely strong evidence of association in one
dataset (maximum posterior: 0.96), and positive evidence
in the others (median posterior: 0.001). When analyzed
these datasets using forward stepwise regression, X7 was
included in the best model three times, and X10 was never
included in the best model, indicating that X10 lacked a
marginal effect in these datasets.

Computational aspects
The PEAK algorithm selects variables to include in the
proposed model based on a vector of tuning probabilities

ρ. Unlike the standard M-H algorithm, the probability of
including each variable is dynamic and may change as a
function of the evidence from lower levels in the graph.
This can result in each variable having different probabili-
ties of being included in the proposed model. The number
of iterations (time) expected to propose the causal variant
is proportional to the tuning probabilities, which are influ-
enced by the graph and the way the variables are mapped
to the graph. We defined speedup as the ratio of the cus-
tom tuning probabilities (i.e. ρ) used at the root of G to
the uniform proposal probabilities used in the M-H algo-
rithm. The tuning probabilities were summarized for the
top genetic variants and compared to the M-H algorithm
(Figures 6 and 7 respectively).
For the Scenario 1 datasets, the tuning probabilities

for the non-causal variants were close to the default
of 0.002, implying they were proposed with relatively
low frequency. The causal variants had elevated tuning
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Figure 3 Symmetric graph G2. G2 is a symmetric tree, with 100 leaves (green), 10 intermediate vertices (blue), and one root. The simulated genetic
variants were distributed across the green nodes. The causal variants were first mapped to the same concept and then separated to distant concepts.
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Figure 4 Estimatedmarginal posterior probabilities for Scenario 1 datasets. The top estimated posterior probabilities were summarized
across the Scenario 1 datasets. The box plots confirms that PEAK was converging to the same estimates as the M-H algorithm, regardless of the
graph used and the variable mappings. The simulated causal variants X10 and X7 had elevated posterior probabilities and evidence of association
across datasets, while the non-causal variants did not. Note that the whiskers and outliers were not drawn on the box plots.
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Figure 5 Estimatedmarginal posterior probabilities for Scenario 2 datasets. The top estimated posterior probabilities were summarized
across the Scenario 2 datasets. The posterior estimates were very similar across algorithms, indicating convergence. Marginally, X10 had low
posterior estimates, meaning it was infrequently included in the model without the interaction with X7. Note that the whiskers and outliers were not
drawn on the box plots.

probabilities across the datasets (see Figure 6). For exam-
ple, with the informative graphG1, the median probability
for ρ10 was 0.05 representing a speedup over the M-H
algorithm of approximately 25. And for the symmetric
graph G2, the median probability for ρ10 was 0.08 with a
speedup of 40. This implies that the PEAK algorithm pro-
posed the causal variants more often, and in expectation,
greatly reduced the number of iterations (time) needed

to propose the true model. For both causal variants, the
tuning probabilities were higher for the symmetric graph
than the informative graph (see Figure 6). Thus, hav-
ing fewer variants mapped per leaf may have yielded a
slight advantage to the symmetric graph. Under an addi-
tive true model, the differences in variable mappings did
not appear to significantly influence the tuning probabili-
ties. There was a slight decrease in ρ7, however, when the
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Figure 6 Tuning probabilities and speedup for Scenario 1 datasets. The proposal probabilities used in Algorithm 1 for the root were summarized
for the Scenario 1 datasets. Here, the symmetric graph outperformed the informative graph. All of the PEAK algorithm configurations offered
considerable speedup over the M-H algorithm (values shown on right axis). Note that the whiskers and outliers were not drawn on the box plots.



Baurley and Conti BMC Bioinformatics 2013, 14:312 Page 8 of 10
http://www.biomedcentral.com/1471-2105/14/312

1 2 3 4

7

0.00

0.05

0.10

0.15

P
ro

po
sa

l P
ro

ba
bi

lit
y

1 2 3 4

10

1 2 3 4

888

1 2 3 4

369

1 2 3 4

81

1 2 3 4

831

1 2 3 4

365

1 2 3 4

861

1 2 3 4

817

1 2 3 4

890

25

50

75

S
pe

ed
up

1=PEAK: informative, same
2=PEAK: informative, siblings
3=PEAK: symmetric, same
4=PEAK: symmetric, distant

Tuning Parameters ( )

Figure 7 Tuning probabilities and speedup for Scenario 2 datasets. The proposal probabilities used in Algorithm 1 for the root were
summarized for the Scenario 2 datasets. With the true model containing an interaction between X7 and X10, the performance was dependent on
both the graph used and where the variables were mapped to the graph. The symmetric graph with the causal variants mapped to the same
concept had the best performance. Note that the whiskers and outliers were not drawn on the box plots.

causal variants where mapped to distant concepts in the
symmetric graph.
For the Scenario 2 datasets, PEAK again improved the

rate of convergence (see Figure 7). With the true model
containing an interaction, however, the performance was
more dependent on the graph and where the causal vari-
ables were mapped to the graph. Overall, the symmetric
graph had higher values of ρ7 than the informative graph.
The values of ρ10 were similar for the informative graph
regardless to whether X10 shared the same concept or par-
ents concepts with X7. For the symmetric graph, when X10
wasmapped far away fromX7, the values of ρ10 decreased,
implying that both X10 and the interaction with X7 would
be proposed less frequently in this case. The results show
that for these data, the symmetric graph with the causal
variables mapped to the same concept would be expected
to converge the fastest.
The speedup from using parallel computing is highly

dependent on the graph used. Using 100 computing nodes
for the processing of the symmetric graph, the speedup
was 13.9. For the informative graph using 12 computing
nodes, the speedup was only 1.2.

Application to a Genome-wide association study of
childhood asthma
Asthma is the most common chronic disease in children.
There is evidence that cellular responses to oxidative
stress are important in the development and progression
of asthma [10,11]. Variants in genes involved in this bio-
logical process may independently and jointly influence

asthma risk. Using data from a genome-wide association
study (GWAS) of childhood asthma and Gene Ontol-
ogy, PEAK was used to find associations between 2,521
variants in oxidative stress genes and childhood asthma.
The Children’s Health Study (CHS) is an ongoing

cohort study spanning 16 southern California com-
munities investigating both genetic and environmental
factors related to childhood asthma and lung function
growth [12]. The CHS GWAS was a nested case-control
sample selected from the CHS cohorts genotyped for
over 500,000 single-nucleotide polymorphisms (SNPs).
After quality control screening, a total of 3,000 subjects
(1,249 cases, 1,751 controls) were available for analysis.
Genotype imputation was performed using MACH [13]
with the HapMap release 21 haplotypes as a reference.
We extracted 168 genes associated with the concept
“response to oxidative stress” in Gene Ontology (source
date: 20100320). The UCSC hg19 start and stop posi-
tion for each gene were extended by 5 kilobases and
converted to compatible coordinates using liftOver. For
these regions, 2,521 genotyped SNPs with an imputation
quality of r2 ≥ 0.3 and minor allele frequency ≥ 0.01 were
candidate variables. Logistic regression models were con-
sidered, with imputation dosages of the minor allele being
used for each SNP, and including covariates to adjust for
sex, CHS cohort, self-identified ethnicity, and ancestry
covariates obtained from the software STRUCTURE [14].
Over 3 million interaction variables were considered with
no restriction on the size of the model. An extended ver-
sion of the G1 graph was used with the 168 genes linked
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to the 35 Gene Ontology concepts. Algorithm 1 was run
for 100,000 iterations for concepts below the root and one
million iterations for the root. The root process took 62.5
hours on an AMD Opteron 2.3 GHz.
A summary of the top SNPs associated with childhood

asthma are given in Table 1. The variant with the most
evidence of association with asthma was rs13008370 in
the ERBB4 gene on chromosome 2 (Posterior probabil-
ity 47%, Bayes Factor: 157). Other SNPs within ERBB4
were associated with asthma included rs11680307 (Bayes
Factor: 42), rs1521658 (Bayes Factor: 26), and rs6435692
(Bayes Factor: 4). Another region of interest was BCL2
on chromosome 18 flagged by rs2156192 (Bayes Fac-
tor: 72), rs9972996 (Bayes Factor: 17), and rs2551402
(Bayes Factor: 6). Both ERBB4 and BCL2 were linked to
response to hydrogen peroxide in GO. The top interaction
involved rs2156192 in BCL2 and rs10305724 in ARNT on
chromosome 1 (Posterior probability: 0.042, Bayes Factor:
414). Other interactions were found but with estimated
posterior probabilities < 0.01, many of which included
either BCL2 or ERBB4.

Discussion
The PEAK algorithms can be provided with differ-
ent types of graphs. Informative graphs group variables

Table 1 Topmarginal posterior probabilities and Bayes
factors for the childhood asthma application

SNP Gene Posterior estimate Bayes factor

rs13008370 ERBB4 0.47 157

rs2156192 BCL2 0.29 72

rs11680307 ERBB4 0.19 42

rs1521658 ERBB4 0.13 26

rs10108813 OXR1 0.10 20

rs9972996 BCL2 0.09 17

rs10305724 ARNT 0.04 8

rs3793371 NAPRT1 0.03 6

rs2551402 BCL2 0.03 6

rs1954752 OXR1 0.03 6

rs3019308 OXR1 0.03 5

rs12950972 CYGB 0.03 5

rs1983298 PTPRN 0.02 4

rs6435692 ERBB4 0.02 4

rs1574311 TPM1 0.02 3

rs2687975 LIAS 0.02 3

rs3788310 TXNRD2 0.02 3

rs4647519 FANCC 0.02 3

rs1050255 TPM1 0.02 3

2,521 SNPs genotyped in a GWAS of childhood asthma were extracted from 168
genes mapped to response to oxidative stress in Gene Ontology. The top
estimated marginal posterior probabilities and Bayes factors are reported.

conceptually. These graphs can be created by the user
or automatically extracted from existing databases, such
as Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [15] or Gene Ontology. A hypothesized dis-
ease pathway, for example, can be captured by G with
genetic variants or environmental factors being mapped
to steps within the pathway. Informative graphs allows
inference on any user-defined functional unit that exists
within the graph, for example genes or regions, steps
in biological processes, or pathways within a larger net-
work. These graphs may have an uneven distribution
of variables mapped across concepts in the graph. If
this unbalance is too extreme, there are too many vari-
ables with no information to customize the proposal.
In this case, we recommend merging concepts or con-
necting additional concepts to widening the base of the
graph.
There are applications where annotation does not exists

or the knowledge captured is too sparse or vague to group
variables in a meaningful way. In cases with no informa-
tion, we recommend a symmetric graph with the set of
variables divided into groups containing up to 50 vari-
ables. While the performance of our method is sensitive
to graphs or variable mappings that do not accurately
represent biological truth, there is still a benefit in divid-
ing a large set of variables using a graph. In our sim-
ulations, we showed that a symmetric graph had better
performance than the M-H algorithm because it allowed
many small portions of the model space to be consid-
ered in parallel. The efficiency, however, may be dic-
tated by the marginal effects of a variable, which may be
small or non-detectable for certain types of interactions.
For example, we had trouble finding the true interaction
when the variants in Scenario 2 were mapped to dis-
tant relatives in G2. When variables involved in a true
interaction are mapped to the same or closely related
concept (as in G1), they are discovered near the bottom
of the graph and these findings are propagated up the
graph.
The PEAK framework improves performance of the

M-H algorithm by constructing a custom proposal density
that can quickly explore the model space tagged by earlier
searches. There is a tradeoff, however, between explor-
ing the entire model space and discounting regions as
uninteresting. The former converges to the same posterior
distribution ofmodels as direct computation (exhaustively
visiting all models), while the latter is necessary for the
algorithm to complete in a reasonable amount of time.
While not in aMCMC framework, other Bayesian variable
selection algorithms have summarized the posterior dis-
tribution of models for a subset of models defined using a
search heuristic such as Occam’s window [16] or the leaps
and bounds algorithm [17]. The PEAK algorithm approx-
imates the posterior distribution of models of interest,
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but given enough iterations, as shown in our simulations,
approximates the posterior distribution of all models. The
PEAK algorithm is not a traditional adaptive algorithm
because the proposal is customized by the Metropolis-
Hastings algorithms that ran on child vertices of G. The
target distribution is not biased since the tuning proba-
bilities are set before the Metropolis-Hastings algorithm
begins and the proposal is not adapting while the chain is
executing.
The PEAK framework is capable of scaling to high-

throughput genotyping and sequencing applications (e.g.,
rare variants analysis and gene-gene interaction scans).
Although large applications would require considerable
computing resources, cluster and cloud computing are
becoming inexpensive and accessible. For smaller applica-
tions (e.g., candidate gene studies), PEAK could be run on
a workstation with a multicore processor.

Conclusions
We have introduced a flexible analysis framework capa-
ble of efficiently performing Bayesian variable selection
in data with many candidate variables. The PEAK frame-
work manages an extremely large model space by group-
ing variables on a graph and using many local searches to
construct a custom proposal density for the Metropolis-
Hastings algorithm. The PEAK algorithm can be provided
with an informative graph, which can be advantageous
when considering gene-gene interactions, as demon-
strated in the asthma application. Alternatively, PEAK
may be provided with a symmetric graph, which simply
divides the model space into manageable regions. The
PEAK framework is compatible with various model forms
by modifications to the proposal and model likelihood
functions, allowing the algorithm to be configured for
different study designs and applications, such as family-
based studies and rare-variant analysis of sequencing data.
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