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Abstract

Background: Processing of reads from high throughput sequencing is often done in terms of edges in the de Bruijn
graph representing all k-mers from the reads. The memory requirements for storing all k-mers in a lookup table can be
demanding, even after removal of read errors, but can be alleviated by using a memory efficient data structure.

Results: The FM-index, which is based on the Burrows–Wheeler transform, provides an efficient data structure
providing a searchable index of all substrings from a set of strings, and is used to compactly represent full genomes
for use in mapping reads to a genome: the memory required to store this is in the same order of magnitude as the
strings themselves. However, reads from high throughput sequences mostly have high coverage and so contain the
same substrings multiple times from different reads. I here present a modification of the FM-index, which I call the
kFM-index, for indexing the set of k-mers from the reads. For DNA sequences, this requires 5 bit of information for
each vertex of the corresponding de Bruijn subgraph, i.e. for each different k − 1-mer, plus some additional overhead,
typically 0.5 to 1 bit per vertex, for storing the equivalent of the FM-index for walking the underlying de Bruijn graph
and reproducing the actual k-mers efficiently.

Conclusions: The kFM-index could replace more memory demanding data structures for storing the de Bruijn k-mer
graph representation of sequence reads. A Java implementation with additional technical documentation is provided
which demonstrates the applicability of the data structure (http://folk.uio.no/einarro/Projects/KFM-index/).

Background
High throughput sequencing is generating huge amounts
of sequence data even from single experiments. The
raw sequence data will typically be too much to keep
in the memory of most off-the-shelf computers, and
with sequencing technologies progressing faster than the
improvements in computer memory, the memory chal-
lenge is likely to increase in the future.
One key property of the raw sequencing data is that it

is highly redundant. Genomes are usually sequenced at
high coverage, which means there will frequently be at
least 30–50 reads covering the same region of the genome,
differing primarily by sequencing errors. Processing of
sequencing reads for genome assembly usually involves
two crucial steps: error correction to remove or correct
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sequencing errors, and assembly of overlapping reads to
produce a smaller number of assembled sequences.
A common approach for simplifying the processing of

the sequence data is to consider all the k-mers of the
reads: i.e. all the k-substrings of the reads if we view
them as strings. This set of k-strings is then thought of
as a subgraph of the de Bruijn graph of order k − 1:
i.e. one which has vertices corresponding to all k − 1-
substrings and edges corresponding to the k-substrings.
Even if sequenced at high coverage, each k-mer is thus
represented only once, reducing the redundancy of the
sequence data considerably. However, direct storage of all
k-mers in a single list will require k letters per k-mer, i.e.
2k bit of information for DNA sequences, which can be
quite memory consuming when k is large.
Naively, one might expect that this could be greately

improved. From each vertex in the graph, there may be 4
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possible out-going (or in-coming) edges if the graph rep-
resents DNA sequences: one for each of the nucleotides.
Encoding which of these exist in the graph should require
only 4 bit of information per vertex; if most vertices have
only one out-edge, this might even be reduced towards
2 bit of information per vertex by only encoding which
of the 4 possible edges is actually found. Of course, this
approach requires that the vertices be known, but one
might envision that the information about the vertices
could be reconstructed when walking the graph: when
walking k − 1 steps, all k − 1 letters of the resulting vertex
will be known.
A traversable representation of the de Bruijn subgraph

is equivalent to storing a searchable index of all the k-
substrings. By traversable, I mean that it is possible to
efficiently walk the graph starting at any vertex, to check
if any k-mer or k − 1-mer is present as an edge or ver-
tex in the graph, and preferably also to be able to retrieve
the k-mers and k − 1-mers represented by the graph.
Thus, it is not only important that the data structure be
compact, but efficient algorithms for using it are just as
important.
A number of data structures exist that provide more

compact storage of the de Bruijn subgraph than naive
k-mer lists or maps. Conway et al. [1] were able to rep-
resent a de Bruijn subgraph with 12 G edges in 40.8 GB,
i.e. 28.5 bit per edge, by using a compressed array. Other
approaches reduce memory by storing only a subset of the
k-mers [2-4].
An entirely different approach uses a Bloom filter to

store a hashed set of k-mers [5] using only 4 bit per k-mer.
This is a probabilistic data structure with a known false
positive rate, but where false positive edges can be iden-
tified by not being part of longer paths. However, while
this data structure is effective for checking if a k-mer is
contained in the graph, it does not easily allow listing of
all vertices or edges. An enhancement of this method,
Minia [6], avoids critical false positives and also allows
retrieval of all vertices, but at the cost of higher memory
consumption.
Another memory-efficient solution uses the FM-index

[7], which is based on the Burrows–Wheeler transform
[8] used to represent a suffix array [9], to store the col-
lection of reads in a compressed form [10]. The Burrows–
Wheeler transform was originally developed for text com-
pression and has the property that recurrent substrings in
the text before the transform result in single-letter repeats
in the transformed string. The FM-index adds auxiliary
information on top of the Burrows–Wheeler transformed
sequence that effectively turns it into a compactly stored
suffix array. When concatenating the reads, the cover-
age makes the Burrows–Wheeler transformed sequence
dominated by single-letter repeats which are highly com-
pressible [10]. Effectively, it requires 2 bit per edge to store

the nucleotide, which corresponds to specifying the in-
edge (or out-edge) of a vertex, and additional memory
to store the run-length of the nucleotide, which corre-
sponds to the k-mer count. At least up to 50 times cover-
age, this data structure should be able to store one edge
per byte if used to represent the de Bruijn subgraph of
k-mers.
It should be noted that the ability of differentmethods to

handle read errors varies. Some of the cited methods are
intended to perform error correction by filtering k-mers
by their frequency, while other methods assume that read
errors for the most part have been corrected or excluded
in advance.
I here provide a data structure with strong similar-

ities to the FM-index, but which stores the de Bruijn
subgraph representing the k-mer substrings rather than
entire sequences. It is based on the idea of storing for
each vertex which of the possible in-coming edges are
actually present. For each vertex it thus needs one bit
of information per letter in the alphabet, i.e. 4 bit per
vertex for DNA sequences, plus some additional data.
The additional data consists of a grouping of vertices
which requires one extra bit per vertex, plus the equiv-
alent to the FM-index for mapping in-coming edges to
their parent vertices. This version of the FM-index, which
I call the kFM-index since it applies to an index of k-
substrings, can be generated from the stored data, but
for computational speed a subset of the index is kept
in memory. All in all, a de Bruijn subgraph for DNA
sequences, including the stored subset if the index, can be
stored using 5–6 bits per vertex if memory consumption
is critical. In the case where most vertices are of degree
1, i.e. have one in-edge and one out-edge, the stored
data may be compressed down to approximately half the
size.
Like the FM-index, the kFM-index stores only one

strand of DNA sequences, and is suitable for walking the
graph in one direction. For genome assembly, one does
not know in advance which strand the read is on, and so
normally are required to ensure that both the k-mers of
the reads and their reverse complements are added to the
graph. Some data structures, e.g. most hashing strategies,
can combine k-mers and their reverse complements, and
thus require roughly half the number of items. For the
kFM-index, however, it is necessary to add both the reads
and their reverse complements. In doing this, one may
walk in the opposite direction by switching to the reverse
complement, although there will be some computational
overhead in doing so.
The basic operations available on the kFM-index are

similar to those of the FM-index. Each vertex is iden-
tified by it’s index position, i = 0, 1, . . . , n − 1 where
n is the number of vertices in the de Bruijn subgraph
and the vertices are lexicographically ordered. For a given
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string, the vertices having that string as a prefix, iden-
tified by the interval of index positions, can be found
efficiently: the computational time is proportional to
the length of the string. Given a vertex, identified by
it’s index position i, one can look up directly in the
stored data which in-coming edges exist for that ver-
tex. The index positions of the vertices from which the
in-edges come can be computed efficiently. Thus, check-
ing if a string exists as a path in the de Bruijn subgraph
can be done. The reverse operation of identifying the
string representation of a given vertex identified by index
position i also exists, but is slower: time complexity is
O(k lg n).
The kFM-index can be generated directly from a

sorted list of in-edges, which is appropriate for amounts
of sequence data that fit into the computer memory,
although it should also be feasible to extend this by
sorting the in-edges on disk: the time complexity is
O(Nk lg σ lgN)whereN is the total length of the sequence
data, and thus the number of items to be sorted, and
Nk lg σ is the amount of data being sorted. Generation of
kFM-indexes in memory from sequentially read sequence
data can be done by splitting the raw sequence data into
parts, generate kFM-indexes for each part, and then per-
form pairwise merges of these kFM-indexes. The time
complexity of generating the kFM-index in this manner
is essentially O(Nkσ lg (nm)), where n is the number of
vertices in the final de Bruijn graph (i.e. not counting iden-
tical k-mers), σ is the alphabet size, and m is the number
of parts the initial sequence data is partitioned into. This
has proven to be quite time consuming: in part because
of the time complexity of the provided merge algorithm,
but probably also in part due to an inefficient implemen-
tation. I expect that there is room for major improve-
ments. In addition, these operations are all open to
parallelisation.
Readers familiar with the FM-index will see the similar-

ities to it, despite the fact that the FM-index represents all
suffixes while this new data structure only stores informa-
tion about k-substrings. Not only is the data structure very
similar, but the functions and algorithms are also similar,
or at least analogous, to those used with the FM-index.
I therefore refer to this data structure as the kFM-index:
an FM-index for k-substrings. And instead of pointing
out the similarities throughout the article, I will point out
differences where these are noteworthy.
A Java implementation of the data structure is provided

as a demonstration.

Methods
Notation
Let � denote an alphabet of size σ = |�|, i.e. an arbi-
trary set whose elements we refer to as letters: for DNA

sequences, �={A,C,G,T} and σ =4. A string of length l,
or an l-string, is an element of x ∈ �l. Let �∗ = ∪∞

l=0�
l

denote the set of all strings, including the empty string
denoted ε. We denote the length of the string by |x|. If x
and y are strings, xy denotes the concatenated string of
length |x| + |y|; for sets U and V of strings, the set of
concatenated strings is denoted U ◦ V = {uv|u ∈ U ,
v ∈ V }.
We write x < y to indicate that string x sorts lexico-

graphically before y based on an ordering of the letters in
�. In addition to the letters in�, we have two special char-
acters $ and ∞ with the properties that $ < a < ∞ for all
a ∈ �.
If x is an l-string, we write x = x1 . . . xl where

xi ∈ � are the letters. For p ≤ q, the [ p, q] sub-
string x[p,q] = xp . . . xq is a string of length q − p + 1:
x[p,p−1] is the empty string. A substring x[1,p] at the start
is referred to as a prefix, while a substring x[p,l] at the
end is referred to as a suffix. The operation of trim-
ming away the last letter is denoted x− = x[1,l−1] =
x1 . . . xl−1.
For S = (s1, . . . , sN ) a list of strings, i.e. si ∈ �∗, let

S [k] ⊂ �k denote the set of length k substrings: i.e. x ∈ �k

is contained in S [k] if and only if there is a string s ∈ S
with x = s[p,p+k−1] for some position p.
We denote the base 2 logarithm by lg x = log2 x which

is convenient for quantifying information. Thus, the infor-
mation required to specify one out of n options is lg n
bit.

Problem description
Given a set S of strings, e.g. a set of sequencing reads, we
will construct a compact representation of S [k], i.e. the set
of length k substrings, suitable for quickly checking if any
particular k-string is present.
The data structure is best understood in terms of the

de Bruijn subgraph representation of S [k]. This has ver-
tices V = S [k−1] and edges E = S [k] where e ∈ E
is an edge from e[1,k−1] to e[2,k]. It is a subgraph of the
de Bruijn graph of order k − 1, i.e. with vertices �k−1

and edges �k . Some authors may refer to this as a word
graph, or even just a de Bruijn graph. Since the set of
vertices can be deduced from the edges, storing S [k] is
effectively the same as storing the information encoded
in the de Bruijn subgraph. However, the graph struc-
ture highlights the overlap between edges meeting at
vertices.
While some authors focus on k as the length of the

strings represented by the edges, others focus on the
order of the graph which is the k − 1 length of the
strings represented by the vertices. Since our purpose is
to represent the k-mer composition of the sequences, it is
natural to focus on k as the k-mer length. However, the
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implementation of the algorithms is more naturally cen-
tered around the vertices, and so the Java implementation
focuses on the order of the de Bruijn subgraph which is
k − 1.

The kFM-index data structure
The data structure for storing the k-substrings S [k] from
a set of strings S has similarities to the FM-index and
the Burrows–Wheeler transformation. One similarity is
that the data structure stores the prefixing letters, which
represent the in-edges to vertices, and backtracks the de
Bruijn subgraph through these in-coming edges rather
than walking paths from beginning to end; the sequences,
including the strings the vertices and edges represent, are
thus reconstructed from the in-edge data when backtrack-
ing through the graph.
The initial de Bruijn subgraph representing the k-

string composition S [k] may contain any number of final
vertices: i.e. vertices for which there are no out-going
edges. These final vertices correspond to k − 1-strings
found only as suffixes of the strings in S , and repre-
sent a problem as they cannot be reached by backtrack-
ing the de Bruijn subgraph. As the data structure does
not store the k − 1-strings for each vertex, but instead
reconstructs these strings when walking the graph, these
final vertices cannot be thus reconstructed. The solu-
tion is to add extra vertices and edges leading from
these final vertices to a special final vertex from which

we may start the reconstruction. See Figure 1 for an
example.
Let Vfinal ⊂ S [k−1] be a set that includes all k−1-strings

which are final vertices in the graph with edge set S [k]: i.e.
if v ∈ S [k−1] and v is not a prefix of any string in S [k],
then v has to be in Vfinal. Ideally, in order to get the most
compact representation of S [k], we want Vfinal to contain
only these strings. However, we might start off by letting
Vfinal contain all k−1-suffixes of the strings in S , knowing
that the vertices required to be in Vfinal have to be a subset
of these, and then later prune away superfluous edges and
vertices. Hence, we permit Vfinal to be bigger than strictly
required.
We now define the final-completed de Bruijn subgraph

with paths added from each v ∈ Vfinal to a special vertex,
$k−1 = $ . . . $ which we refer to as the final vertex, having
vertices

V = S [k−1] ∪
(
Vfinal ◦ $k−1

)[k−1] ∪ {$k−1} (1)

and edges

E = S [k] ∪
(
Vfinal ◦ $k−1

)[k]
(2)

where Vfinal ◦ $k−1 = {v$ . . . $ | v ∈ Vfinal} denotes the
strings from which these additional paths are constructed.
These are strings over an extended alphabet�∪{$}, where
$ is a special character that is sorted before any of the let-

Figure 1 The kFM-index data and corresponding de Bruijn subgraph. Representation of the data structure for DNA 4-mers. The vertex strings,
lexigographically sorted, are not stored, but reconstructed from the edge and group end data. The edges columns indicate in-coming edges to each
vertex, i.e. letters that may prefix the vertex strings. The group end flag inidicates groups of vertices with the same k − 2-prefix. The previous position
data can be generated from the edge set data and group end data and is constant within each vertex group; a subset is stored for computational
speed.
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ters of �. The added vertices, i.e. those containing one
or more $ at the end, are referred to as final-completing
vertices and are parts of paths leading to the final vertex.
In fact, the final-completing vertices form a tree with the
final vertex, $k−1, as the root. Note that, for the case where
Vfinal is empty, we explicitly add the special vertex $k−1:
this is purely a matter of convenience.
By this extension of the de Bruijn subgraph, we have

ensured that there is exactly one final vertex that cannot
be reached by backtracking the graph, namely the final
vertex $k−1. When sorting the vertices lexicographically,
this will always come first. Note that we do not require
that the final vertex be reachable from the rest of the
graph. If the original graph had Vfinal empty, this would be
the case.
Wemay identify E with a subset of� ×V describing the

set of in-coming edges to each vertex, and will by abuse of
notation say that the pair (a, v) ∈ � × V is an edge if the
concatenation av ∈ E. We denote the in-coming edges to
v by Ev ⊂ �: i.e. Ev = {a ∈ � | av ∈ E}.
Note that backtracking through this de Bruijn subgraph

corresponds to reading the strings in the backwards direc-
tion, from the end of the string towards the beginning,
just as with the FM-index. A variant of the data structure
which naturally reads the strings in the forward direction
can be obtained by performing the construction on the
reversed strings, the only effect of which is on the sorting
of strings in the index which would then be based on the
reversed string.

Main data
Let n = |V | be the number of vertices of the final-
completed de Bruijn subgraph, and let v0, . . . , vn−1 denote
the vertices of V in lexicographic order; in particular, v0 =
$k−1, which is the only final vertex of the final-completed
de Bruijn subgraph. The basic information required
to store the final-completed de Bruijn subgraph of
S [k] is:

Edges: The set Evi ⊂ � of edges from each
vertex vi is stored; i.e. the edge set E
identified as a subset of � × V . This
may be encoded as a σ × n array,
η(a, i), with binary values: i.e.
η(a, i) ∈ {false, true} indicates if
avi ∈ E. The in-edges
Ei = {a | avi ∈ E} to vertex vi may be
represented as a bit-mapped number
on which set operations correspond to
binary operations.

Group end flags: We group vertices v ∈ V with the
same k − 2-prefix together: i.e. u and
v are grouped together if

u− = u[1,k−2] and v− = v[1,k−2] are
identical. We indicate the group end
by a flag fi which is true if vi is the last
vertex in its group, false otherwise.
This requires one bit of information
per vertex.

More formally, these binary arrays take logical values,
true or false, as defined by

η(a, i) def⇐⇒ a ∈ Evi (3)

and

fi
def⇐⇒ v−

i �= v−
i+1 or i = n − 1 (4)

where vi < vi+1 follows from the lexicographic sorting
of the vertices. We could have added as a convention that
vn = ∞k−1, in which case special handling of the final
position would not have been required.
The grouping of vertices with the same k − 2-prefix

allows us to check which in-edges originate from the same
vertices: for a, b ∈ �, u, v ∈ V , edges au and bv orig-
inate from vertices au− and bv− respectively, which is
the same vertex if a = b and u− = v−, which cor-
responds to checking if u and v are in the same vertex
group.

Index to previous vertex position
In addition to the main data, there is an indexing func-
tion which may be generated from the main data. These
are values per vertex group, i.e. constant within the groups
of vertices with the same k − 2-prefix. Storing the entire
indexing function as auxiliary data would take a lot of
memory, while computing everything from scratch would
take a lot of time. Instead, a balance between memory
and speed is obtained by storing a sparse subset, e.g. at
regular intervals, and recompute the values in-between
on demand. This index corresponds to the FM-index and
provides a map from a vertex to the origin vertex of its
in-edges.
For each letter a ∈ �, let τ(a) denote the number of

vertex groups that contain an a in-edge. For i = 0, . . . , n,
let c(a, i) denote the number of vertex groups prior to
position i that contain an a in-edge: the vertex group con-
taining vi is not included in this sum. This makes τ(a) =
c(a, n), since the vertices all have positions i < n.
For a ∈ �, i = 0, . . . , n, let

ρ(a, i) = 1 +
∑
b<a

τ(b) + c(a, i) (5)
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where the summation of b < a is for all b ∈ � lexico-
graphically prior to a, and the 1 corresponds to skipping
the vertex v0 = $k−1. Note that if a′ is the letter following
a in the alphabet �, i.e. a′ = a + 1 if we consider the let-
ters to be enumerated 0, . . . , σ −1, then ρ(a′, 0) = ρ(a, n);
and for a the last letter of �, i.e. a = σ − 1, we have
ρ(a, n) = n.
The position array, ρ(a, i), has the property that if ver-

tex vi has an in-coming edge avi ∈ E, i.e. a ∈ Evi , this edge
comes from vertex vρ(a,i). A more general definition is
that

ρ(a, i) = min{j | vj ≥ av−
i or j = n} (6)

where, as before, v− = v[1,k−2] for k − 1-strings v ∈ V and
u ≥ v refers to the lexicographic ordering of strings.
We may also note that, if we represent letters a by inte-

gers 0, . . . , σ − 1, we have ρ(a, n) = ρ(a + 1, 0), and may
define ρ(an + i) = ρ(a, i), where ρ(j) is again a non-
decreasing function for j = 0, . . . , n×σ with ρ(0) = 1 and
ρ(n · σ) = n. Representing ρ(a, i) in terms of ρ(an + i) is
sometimes convenient, e.g. when we want to compute the
inverse, and similarly we may use an + i to represent an
in-edge, or potential in-edge, (a, vi).
As may be noted, the role of ρ(a, i) in mapping

from one vertex to another is essentially the same as
the FM-index for mapping from one suffix to another.
The main difference is in the grouping of vertices into
groups, where counts are over vertex groups rather
than individual vertices. The reason this vertex group-
ing is required is that the de Bruijn subgraph allows
branching, i.e. for vertices to have more than one out-
edge; the vertices in a vertex group share the same set
of in-edges. The traditional FM-index could be envi-
sioned as a de Bruijn subgraph with no branching, where
each vertex has exactly one in-edge and one out-edge,
and so the vertex groups would all consist of just one
vertex.

Auxiliary data stored for computation speed
Storing ρ(a, i) (or equivalently c(a, i)) as an array of inte-
gers requires σ × lg n bit for each vertex. However,
if ρ(a, j) are known for some nearby j, the number of
computational steps to compute ρ(a, i) from ρ(a, j) is pro-
portional to |i − j|. So by storing only a subset of the
ρ(a, i), e.g. every qth position, the memory required for
storing the auxiliary data is greatly reduced, but at the
cost of computational time for determining ρ(a, i). The
partial storing of ρ(a, i) is essentially the same as for
the FM-index, and can be done in a number of different
ways.
Let 0 = i0 < · · · < iζ = n be the position for

which ρ(a, i) is to be stored, with ir − ir−1 ≤ q for

some chosen q. The stored values then consist of an array
κ(aζ + r) = ρ(a, ir) where a = 0, . . . , σ − 1 repre-
sent the letters. Thus, we have κ(j) for 0 ≤ j ≤ σζ

with increments 0 ≤ κ( j) − κ( j − 1) ≤ q. Storing the
entire κ array is, however, still space consuming unless q is
allowed to be big, in which case computing ρ(a, i)will take
time.
Knowing that κ( j) increases by values between 0 and

q, we can write κ( j) = uj + qUj where Uj = �κ( j)/q�
and 0 ≤ uj < q and store the uj in a bit-packed
array. The values Uj now have increments 
Uj = Uj −
Uj−1 ∈ {0, 1}. We store the increments 
Uj as an array
of bits, and a subset of the Uj from which the remain-
ing Uj can then be computed efficiently. This allows us to
select a much smaller value for q than would otherwise be
feasible.

Java implementation
The Java implementation stores η(a, i) and fi as a σ + 1 bit
block for each vertex i. These blocks are then packed into
64 bit words (long integers). For DNA sequences, each
64 bit word thus stores 12 vertices, each using 5 bit.
The stored values of ρ(a, i) are expressed in terms

of κ( j) = uj + qUj. The uj are bit-packed into an
array to preserve memory. For reconstruction of the Uj,
every 64th Uj is stored, i.e. U64r , and the increments

Uj are stored in blocks of 64 bits. Any Uj can then
be computed efficiently from U64r , r = � j/64�, and the
increments 
U64r+1, . . . ,
Uj using operations on 64 bit
words.

Fundamental functions for utilising the data structure
For a string x and a ∈ �, we define the function γ (x)
recursively by

γ (ε) = γ ($) = 0, γ (∞) = n,
γ (a) = ρ(a, 0), γ (ax) = ρ(a, γ (x)).

(7)

This function has a natural interpretation. If |x| <

k, γ (x) is the smallest non-negative integer i for which
x ≤ vi, or i = n if none such exists. If |x| ≥ k, γ (x)
is the smallest integer i for which x ≤ viy for some
string y ∈ �∗ so that viy can be realised as a path in
the de Bruijn subgraph (V ,E), i.e. all k-substrings of viy
are in E, or i = n if no such string exists. This property
is formally proved in Lemma 2 in the Proofs of results
appendix.
In order to utilise the data structure, for strings x with

length |x| < k, we define two utility functions: the first
vertex v ≥ x is

α(x) = γ (x) = min{i | vi ≥ x or i = n} (8)
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while the first vertex with v > x∞ is

β(x) = γ (x∞) = min{i | vi > x∞ or i = n} (9)

Recall that ∞ > a for all a ∈ �, so β(x) for x ∈ �l, l < k,
finds the first v ∈ V for which v[1,l] > x, while α(x) finds
the first v for which v[1,l] ≥ x. Thus, α and β are defined
by the property

{v ∈ V | v[1,l] = x} = {vi | α(x) ≤ i < β(x)} (10)

for all x ∈ �l, l < k, making them exactly the functions we
need to identify all vertices starting with a given prefix.
Note that if we add the vertex vn = ∞k−1 to the list,

we wouldn’t have to specify the i = n case in the above
definitions. Again, this addition would purely be a matter
of convenience and not have any practical impact.

Algorithms for using the data structure
The above described data structure encodes a de Bruijn
subgraph representation of the k-substring composition
of the strings S . However, to utilise this representation, we
need efficient algorithms.
Throughout the algorithms, vertices of V will be identi-

fied by their position i ∈ {0, . . . , n− 1} in the lexicograph-
ically sorted list v0, . . . , vn−1 where n = |V |. The string
that each vertex represents will generally not be known.
The alphabet � is known from the start and the

letters ordered. Computationally, it is natural to repre-
sent the letters by numbers 0, . . . , σ − 1 (ignoring the
letter $) since they are to be used as array indexes.
However, for added readability, I will denote them as
letters a ∈ � in the algorithms rather as numerical
indexes.

Computing the previous position ρ(a, i) for arbitrary
positions
A first step is to be able to compute ρ(a, i) for arbitrary
positions based on the stored data.
Let 0 = i0 < . . . < iζ = n be the values for which ρ(a, i)

is stored, i.e. ρstore(a, ir) = ρ(a, ir), and define functions

ι+(i) = min{ir|ir ≥ i}, ι−(i) = max{ir|ir ≤ i} (11)

for pointing to the next or previous stored value. We may
then compute ρ(a, i) by aggregating from the vertex group
containing ρ(a, ι−(i)) as in Algorithm 1.

Algorithm 1 Compute arbitrary ρ(a, i) from previous
stored value

function ρ(a, i) � a ∈ �, i ∈ {0, . . . , n}
if i = 0 then return ρstore(a, 0) end
j ← ι−(i) � stored position j = ir ≤ i
p ← ρstore(a, j) � stored value
while not fj−1 do j ← j − 1 end
hasEdge ← false
while j < i do

if a ∈ Ej then hashEdge ← true end
if fj then � end of vertex group

if hasEdge then p ← p + 1 end
hasEdge ← false

end if
j ← j + 1

end while
return p

end function

An alternative is to start at ρ(a, ι+(i)) and subtract
contributions from vertex groups prior to this posi-
tion, which can be done with a similar algorithm (see
Additional file 1). To speed up the procedure, one may
identify the nearest stored value, either previous or later,
and use whichever of the two algorithms is appropriate.
This will on average double the speed, and is done in the
Java implementation.

Find all vertices with a particular prefix
The functions α(x) and β(x) for strings xwith length |x| <

k are both naturally expressed in terms of the the func-
tion γ . We note that γ gets called either as γ (x) = γ (x$)
or as γ (x∞), and so we can express these as γ (x) =
γ (x$) = γ (x, 0) and γ (x∞) = γ (x, n) where γ (ax, i) =
ρ(a, γ (x, i)) and for x = ε the empty string γ (ε, i) = i.
Algorithm 2 details the computations.

Algorithm 2 Algorithm for computing γ (x, i): then,
α(x) = γ (x) = γ (x, 0) and β(x) = γ (x∞) = γ (x, n)

function γ (x, i)
for p = |x| to 1 step − 1 do

i ← ρ(xp, i)
end for
return i

end function

By combining the call to α(x) and β(x) into one function
(Algorithm 3), it is possible to exploit the fact that when
the interval is empty the two computations become iden-
tical. The return value [α(x),β(x)〉 represents the interval
α(x), . . . ,β(x)−1, andmay be represented by a pair (α,β).
If α(x) = β(x), the interval is empty: the function could be
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modified to abort once it is clear that the resulting inter-
val will be empty, or at least reduce computations by half
once it is clear that α(x) = β(x).

Algorithm 3 Compute [α(x),β(x)〉
function INTERVAL(x)

i ← 0; j ← n � start with [i, j 〉 = [0, n〉
for p = |x|downto 1 do

i ← ρ(xp, i); j ← ρ(xp, j)
—may abort returing null if i = j —

end for
return [i, j〉

end function

When merging two kFM-indexes, [α(x),β(x)〉 is com-
puted numerous times on one kFM-index with x being
vertices (or vertex prefixes) from the other kFM-index.
When the result maps a vertex in one to an vertex in the
other kFM-index, the two are merged; when a vertex v is
mapped to an empty interval in the other kFM-index, the
position α(v) = β(v) tells the merge procedure into which
position it should be merged.

Backtracking through the de Bruijn subgraph
For a string x of length |x| = l ≥ k, walking the de
Bruijn subgraph path corresponding to x is most easily
done by starting at the end of x and backtracking the graph
towards the start of x. Algorithm 4 provides the algorithm
for doing this: it will start at the k − 1-suffix x[l−k+2,l] and
backtrack one step at a time, exiting if the string leaves the
graph.

Algorithm 4 Backtrack the de Bruijn subgraph for a string
x of length ≥ k

l ← |x| � x string of length l = |x| ≥ k
v ← x[l−k+2,l] � ending vertex, i.e. k − 1-suffix
[ i, j〉 ←[α(x),β(x)〉 � INTERVAL(x)
if i = j then exit end � v does not exist
— i now points to the vertex x[l−k+2,l] —
for p = |l − k + 1|downto 1 do

if xp �∈ Ei then exit end � no in-edge
i ← ρ(xp, i) � previous vertex
— i now points to the vertex x[p,p+k−2] —

end for

Identifying the string value of a vertex
If we start with a vertex identified by its position i, we
can determine the string that vertex represents. In order

to do so, we need a function ρinv : {0, . . . , n − 1} →
� × {0, . . . , n − 1} which has the property that

ρinv(i) = (a, j) ⇐⇒ ρ(a, j) = i, ρ(a, j + 1) = i + 1
(12)

and where ρinv(0) = ($, 0). The pair (a, j) can be found
through a binary search. However, since the computation
of ρ is done in a stepwise manner starting at one of the
stored values, a binary search should be performed on
the stored values to identify the interval that contains the
solution, and the stepwise procedure then followed until
the solution is found.
The interpretation of ρinv(i) = (a, j) is that a is the first

letter of vi, while j is the last vertex in the vertex group
with k−2-prefix equal to the k−2-suffix of vi: i.e. there is
an edge from vi to a vertex in the same vertex group as vj.
However, since the vertices in the same vertex group only
differ by the last letter, and we don’t have to determine this
letter, we do not have to determine which vertex (or ver-
tices) in this vertex group has an edge from vi. By iterating
this procedure k − 1 times as in Algorithm 5, we can find
the string vi.

Algorithm 5 Return string vi for position i
function VERTEX(i)

x = string[k − 1]
for p = 1 to k − 1 do

(a, i) ← ρinv(i)
xp ← a

end for
return x

end function

Generating the kFM-index from a set of strings
The simplest way to generate the main data, i.e. the in-
edge list and vertex group end flags, from a set of strings, is
to generate the set of all k-substrings, including the final-
completing strings with one or more more $ attached at
the end, sort and group them by their k − 1-suffix, and
then generate the in-edge list and group end flags directly
from this. Once the main data, i.e. the binary arrays η and
fi representing the edge set E and the group end flags, have
been generated, the auxiliary data can be generated from
these.
This brute force approach requires a fair amount of

memory since all k letters need to be stored for all k-
substrings. The list of k-substrings thus takes up k times as
much memory than the original strings from which they
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are generated, and so is only feasible when the original
string data is moderate in size.
If the string data is large, so that not all k-substrings of

S [k] can be kept in memory, the job may be split up. The
set S of strings may be split up into smaller subsets, the
kFM-index generated for each subset, and pairwise merg-
ing of kFM-indexes may then be performed to combine
the subset based indexes into a kFM-index for the whole
set.
Note that this procedure will generate a full set of

final-completing vertices, i.e. those containing $ at the
end, even when they are not required by the kFM-index.
We may reduce the kFM-index by checking which final-
completing vertices are actually required in order to be
able to reach the entire graph by backtracking from the
final vertex. However, even if we do this for the ini-
tially generated kFM-indexes so as to ensure these con-
tain minimal sets of final-completing vertices, when we
merge the kFM-indexes for the string subsets, superfluous
final-completing vertices may again occur when final-
completing vertices required in one kFM-index are ren-
dered superfluous by the edges of the other kFM-index.
Hence, we may wish to prune away these final-completing
vertices at the end, or in some of the intermediary
merges.

Merging two kFM-indexes
If we have two kFM-indexes denoted A and B, one with
nA elements and the other with nB elements, these can
be merged in two steps. First, we merge the two lists
into a list of length nA + nB. In the process of merg-
ing the two lists, rows representing the same vertex are
not combined, but instead we mark the occurences where
one vertex merged list is identical to the next one so that
these may later be combined. In addition, vertex groups
found in both A and B must be merged into one vertex
group, which involves removing the group end flag from
any vertex not at the end of the merged vertex group.
After that, we sequentially pass through the nA + nB-
length merged list, combining identical vertices into one
vertex.
Instead of generating the nA + nB-length list in full,

which would require the same amount of memory as the
two original kFM-indexes of length nA and nB, we can
represent the merge by a nA + nB bit array indicating
which of the two lists go into each position. Another bit
array is used to mark identical vertices, which only needs
nA bit since we only need to store which vertices in A
are also found in B. Finally, we use an nA + nB bit array
to mark vertices in the merged list that should not keep
whatever group end flag it might have: this is required
for vertex groups found in both A and B to ensure that
only the final vertex in the group retains it group end
flag.

Algorithm 6Merge two kFM-indices
functionMERGE(A,B)

isA ← array[nA + nB] (false, . . . , false)
same ← array[nA] (false, . . . , false)
group ← array[nA + nB] (false, . . . , false)
for l = 0 to k − 2 do

PREMERGE(l, 0, 1, 0, 1)
end for
PREMERGE(k − 1, 0, nA, 0, nB)

merged ← PERFORMMERGE()
— compute and store ρstore for merged —
returnmerged

end function

It is sufficient to find the positions in the nA + nB-list
of the nA vertices from the kFM-index A. We may assume
nA ≤ nB since that will require only nA lookups; the nB
vertices from the kFM-index B will then be in the remain-
ing positions. To do this, for all items i = 0, . . . , nA − 1
in the A list, compute the string vAi of that vertex. We
then look up the position of vAi in the kFM-index B by
computing [αB(vAi ),βB(vAi )〉. If the interval is empty, i.e.
αB(vAi ) = βB(vAi ), the vertex goes into position i + αB(vAi )

and so we mark this position as containing a vertex from
A. If the interval is not empty, the vertex vAi is found in
position αB(vAi ) in the B list (and βB(vAi ) = αB(vAi ) + 1),
and so again we mark position i + αB(vAi ) as contain-
ing an A vertex, while the vertex from B takes position
i + αB(vAi ) + 1; in addition, we mark vertex i in the A list
as having a duplicate in the B list.
We similarly need to iterate over all vertex groups in

A, i.e. all non-empty [αA(u),βA(u)〉 for u ∈ �k−2. If
the vertex groups [αA(u),βA(u)〉 and [αB(u),βB(u)〉 are
both non-empty, we know that the vertices in the interval
[αA(u)+αB(u),βA(u)+βB(u)〉 correspond to the u vertex
group in the preliminary merged list. The last vertex, i.e.
the one in position βA(u) + βB(u) − 1, will have its group
end flag set from either list A or B. However, there will be
another vertex with its group end flag set from the other
list which may be in any of the other positions in the inter-
val, and to ensure that this is unflagged, we mark positions
αA(u) + αB(u), . . . ,βA(u) + βB(u) − 2 for group end flag
removal.
Rather than process the items i = 0, . . . , nA − 1 sequen-

tially, which requires computing VERTEX(i) for each and
then looking these up in B, it is more efficient to recurse
over all p-mers for p = 1, . . . , k−1, each recursion adding
all possible one letter prefixes. Thus, l = 0 corresponds
to vertices, l = 1 to vertex groups, [α,β〉 refers to index
intervals corresponding to a given p-mer prefix in A or
B. The function PREMERGE performs this recursion. It is
called from MERGE where l = k − 1 − p is the number of
trailing $.
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Algorithm 7 Prepare merge: recurse over A intervals
function PREMERGE(l,αA,βA,αB,βB)

if αA = βA then exit end � empty
if l = 0 then � vertex

isA[αA + αB]← true
if αB < βB then same[αA]← true end
exit

end if
if l = 1and αB < βB then � vertex group

group[αA + αB] , . . . , group[βA + βB − 2]← true
end if
for a = 0 to σ − 1 do � prefixing letter

PREMERGE(l − 1, ρA(a,αA), ρA(a,βA),
ρB(a,αB), ρB(a,βB))

end for
end function

Once we have the nA + nB bit array indicating which
positions in the nA+nB merge comes fromA or B, another
nA bit array telling which vertices in A are also found in B,
and a third nA + nB bit array marking vertices for group
end flag removal, we can merge the two lists sequentially
using PERFORMMERGE.

Algorithm 8 Merge subroutine: perform merge based on
merge information

function PERFORMMERGE
merged ← empty list of kFM-data
iA, iB ← 0
while iA + iB < nA + nB do

if not isA[iA + iB] then � vertex from B
Enew ← EBiB � in-edges from B
fnew ← f BiBand not group[iA + iB]
iB ← iB + 1

else if same[iA] then � vertex in A and B
Enew ← EAiA ∪ EBiB � combined in-edges
fnew ← f BiBand not group[iA + iB + 1]
iA ← iA + 1; iB ← iB + 1

else � vertex from A
Enew ← EAiA � in-edges from A
fnew ← f AiAand not group[iA + iB]
iA ← iA + 1

end if
pushmerged ← (Enew, fnew) � add to list
—may remove data prior to iA and iB —

end while
returnmerged

end function

The three bit arrays used to facilitate the merge require
3nA+2nB bit of extra data. Themerge requires nA lookups

to find vAi and then [αB(vAi ),βB(vAi )〉 followed by the copy-
ing of all nA+nB elements combining them into one when
they represent the same vertex. In addition, the creation
of the target list requires a temporary duplication of all
the vertex and edge data, but this could be avoided by
using a data structure in which the merged list is being
created gradually as needed while memory used by A and
B is gradually released as they are being merged. The Java
implementation provided does this.

Pruning away superfluous final-completing vertices
The removal of superfluous final-completing vertices, i.e.
vertices ending with one or more $ characters that are not
required in order to avoid final vertices that have no out-
edge, can be done by a few simple rules. We can perform
these checks by a recursive approach, exploiting that the
final-completing vertices form a tree with the final ver-
tex, $k−1, as the root. We start at the final vertex, which is
in position 0 of the kFM-index, and recursively backtrack
through all in-edges at most k − 2 steps to reach all final-
completing vertices in V, performing the tests depth-first.
We then identify edges and vertices that can be removed.
After all final-completing vertices have been processed
in this manner, we condense the list by removing the
superfluous edges and vertices from the list.

Algorithm 9 Prune the index of unneeded final-
completing vertices

function PRUNEFINALCOMPLETIONS
Vprune ← empty list of vertices
Eprune ← empty list of pairs (position,edge set)
CHECKUNUSED(k − 1, 0) � start at final vertex
for (i,Enew) ∈ Eprune do Ei ← Enew end
V ← V \ Vprune
— recompute and store ρstore —

end function

If v ∈ V is a final-completing vertex, it is superflu-
ous and can be removed if it has no in-edges. By having
no in-edges, I include cases where the in-edges from ver-
tices marked for exclusion have been removed: this is the
reason why the tests must be done depth-first. Since ρ

depends on which in-edges exist in each vertex group,
superfluous in-edges can be removed immediately only
for final-completing vertices where there is another ver-
tex in the same vertex group with an in-edge from the
same vertex (i.e. the same in-edge prefix). In general, edges
and vertices must be marked for removal while the final-
completing vertices are checked, and only removed after
the checking is finished.
If v = u$ ∈ V is a final-completing vertex ending with

a single $ and e = av is an in-edge to v for some a ∈
�, the edge av can be removed if there is an a-in-edge to



Rødland BMC Bioinformatics 2013, 14:313 Page 11 of 19
http://www.biomedcentral.com/1471-2105/14/313

another vertex in the same vertex group as v: i.e. if there is
another vertex ub ∈ V which has an in-edge aub ∈ E, the
in-edge av = au$ can be removed from the in-edges to v.
The edge au$ is superfluous since au can be reached by
backtracking from ub. If all in-edges to v can be removed
by this rule, the previous rule then allows v to be removed.

Algorithm 10 Prune recursal from vertex i ending in $l,
return true if unneeded

function CHECKUNUSED(l, i)
Edel ← ∅
if l > 1 then � only vertex in group when l > 1

for a ∈ Ei do
j ← ρ(a, i)
if CHECKUNUSED(l − 1, j) then

push Vprune ← j � remove vertex vj
Edel ← Edel ∪ {a} � remove in-edge a

end if
end for
if Edel �= ∅ then

push Eprune ← (i,Ei \ Edel)
end if

else if not fi then � other vertices in group
j ← i
while not fj do

j ← j + 1
Edel ← Edel ∪ Ej

end while
Ei ← Ei \ Edel � can replace Ei immediately

end if
return (Ei \ Edel = ∅) � true if unused

end function

The pruning away of superfluous final-completing ver-
tices is not required for the kFM-index to work, but it can
reduce thememory required in cases where the number of
such vertices is big. As such, depending on the number of
final-completing vertices at any point of the processing or
merging of kFM-indexes, one may choose to perform this
pruning at the end or at some of the intermediary merges.

Pre-assembly
As a first step of sequence assembly, and a good task for
assessing both the resulting de Bruijn subgraph and the
efficiency of its use, uniquely determined paths of the
graph are determined. This consists of two steps. First,
the list of vertices are checked to identify all vertices that
have in-degree or out-degree different from one:an algo-
rithm is provided in the Additional file 1. The remaining
vertices are simple, non-branching vertices that paths just
pass through. Iterating over all branching/ending vertices,

all possible paths passing through degree-one vertices are
generated. When generating the sequence correspond-
ing to a path, the sequence of the last vertex of the path
needs to be found using Algorithm 5, while the rest is
determined when backtracking through the in-edges.
The result is a list of non-simple vertices, and a list of all

uniquely determined paths between these. An estimate of
the number of such paths can be found simply from sum-
ming over the in-degrees of all branching vertices, but this
may include paths consisting entirely of final-completing
vertices. When generating the list of uniquely determined
paths, those containing only final-completing vertices are
excluded.

Results
Memory usage
The main data kept in memory is the σ × n binary array
η(a, i) and the binary flags fi for marking the end of each
vertex group. Direct storage of these in bit-packed arrays
requires σ + 1 bit of information per node, so the total
memory for storing the in-edge list and vertex group flags
is

Mem
[
E, f

] = n × (σ + 1) bit. (13)

For efficient computation of the previous vertex posi-
tion ρ(a, i), a subset ρ(a, ir) is permanently stored for
positions 0 = i0 < · · · < iζ = n. Direct storage of
κ(ζa + r) = ρ(a, ir), where a = 0, . . . , σ − 1 represents
the letters, would require σζ lg n bit since each position
requires lg n bit. However, decomposing κ( j) = uj + qUj
where ir − ir−1 ≤ q, and storing the ui and 
Uj =
Uj −Uj−1 ∈ {0, 1}, requires only lg q+ 1 bit for each value
in κ : i.e. σζ(lg q+ 1) bit where ζ ≈ n/q if the ir are evenly
spaced.
In order to efficiently compute arbitrary Uj, the Java

implementation stores U64r . Since each of these values
require lg(n/q) bit of memory, the total memory require-
ment for storing the in-edge list, vertex group flags, and
the data used to compute the previous vertex position, is

Mem [ρstore] ≈ nσ

q

(
lg q + 1 + lg (n/q)

64

)
bit. (14)

The memory saving construction used to compress κ

could be repeated for the stored values κ ′
r = Uωr by

writing this as κ ′
r = u′

r + 64U ′
r , but at an additional com-

putational cost. However, for most practical cases, the
term lg(n/q)/64 is already a very minor part of the mem-
ory cost and not worth the computational overhead. By
the time n > 264 becomes an issue, we have probably
moved beyond 64 bit computers, in which case increas-
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ing the block size of 64 to the higher word size ω changes
the memory term to lg (n/q)/ω without increasing the
computational time.
Under the assumption that n < 2ω, where ω = 64

is the word size of a 64 bit computer, the total memory
requirement is

Mem
[
E, f , ρ

]
< n ×

[
σ + 1 + σ(lg q + 2)

q

]
bit (15)

although there may be some additional overhead depend-
ing on how the data is bit-packed into arrays.
For DNA, σ = 4, which requires 5 bit of data per vertex.

However, storing 12 vertices packed into a single 64 bit
word leaves 4 unused bits, and so it effectively consumes≈
5.333 bit per vertex in the present Java implementation.
For stored previous vertex positions, ρstore, natural step
sizes q between stored values are q = 16, 32 and 64, which
adds 1.5 bit, 0.875 bit and 0.5 bit of memory usage per
vertex, respectively.

Computational speed
Estimates of computational speeds are based on the
assumption that n < 2ω where ω is the word size: i.e.
ω = 64 on a 64 bit computer. This means that a num-
ber in the range 0 to n can be read from memory in one
operation: for arbitrarily large n, this would require at least
(lg n)/ω operations. It also means single operations can
operate on ω bits at the same time, although this is largely
unexploited by the implementation.
The central algorithm that influences most kFM-index

computations is that of computing arbitrary ρ(a, i):
Algorithm 1, or the extension of this provided in the
Additional file 1 and implemented in the Java program.
A subset of the values are stored in a compressed form
and can be retrieved in constant time. If every qth value
is stored, the time required to reconstruct and arbitrary
ρ(a, i) will on average be of orderO(q). However, since we
will in practice select a fixed q of moderate size, which is
sufficient to keep memory costs of the auxiliary data at a
low level, and a fixed computational time remains even as
we let q drop towards 1, we may consider the computation
of ρ(a, i) to be of constant time.
Algorithm 2 for computing γ (x, i) for any string x

requires |x| calls to ρ, and thus has time complexityO(|x|).
Consequently, identifying the interval of vertices with
prefix x (Algorithm 3) has time complexity O(|x|). Algo-
rithm 4 for backtracking the graph from vertex i along
edges provided by the string x is essentially the same as
the computation of γ , just with checks that the edges exist,
and also has time complexity O(|x|). The reverse compu-
tation of finding the string representation of a given vertex
index, provided in Algorithm 5, requires solving for ρinv(i)

using a binary search, and is thus of time complexity
O(k lg(nσ)).
Constructing a kFM-index in memory, provided the

memory is sufficient to hold a complete list of k-mers
from the strings, has time complexity O(Nk lg σ lgN)

where N = ‖S‖ is the total length of the string data.
The time is primarily required for sorting the list of in-
edges generated from the strings, while construction of
the kFM-index from the sorted list is linear in N.
Merging two kFM-indexes of sizes p and q using

Algorithm 6 has worst case time complexityO((p+q)kσ).
This is due to Algorithm 7. The factor σ stems from check-
ing sequentially for in-edges and could most likely be
replaced by something more efficient should large alpha-
bets be of interest. There is also room for improvement, as
detailed in hte Additional file 1, e.g. by reducing the num-
ber of computations once conditions like αB = βB aremet.
Construction of a kFM-index in memory by dividing the

initial string data into m parts, generating kFM-indexes
from each, and then merging these pairwise until a single
kFM-index remains, has time complexity O(Nkσ lg (nm))

using the present algorithms. At the lowest level, m kFM-
indexes are generated, each from sorting approximately
N/m k-words, which takes O(Nk lg σ lg (N/m)) time and
is generally fast. During the first roughly lg (nm/N)

rounds of pairwise merges, while the number of partitions
is higher than the coverage, the total sizes of the kFM-
indexes may still be ≈ N , and so each round requires
time O(Nkσ). After that, since none of the kFM-indexes
have more than n vertices, which is the size of the final de
Bruijn subgraph, the time complexity drops by a factor of
two for each new round of pairwise merges until a single
kFM-index remains. The main part of the computations
are the first lg (nm/N) or so rounds of pairwise merges,
and so the final kFM-index takes O(Nkσ lg (nm/N). As N
cannot increase withoutm increasing in proportion, since
N/m in-edge k-words must be kept in memory, butm can
increase independently if less memory is to be used, it is
more natural to write this O(Nkσ lg (nm)).

Benchmarking of the Java implementation
The Java implementation has not been optimised for
speed: it runs on a single core, and prioritises mem-
ory consumption and code generality and readability over
speed. However, it can still give a fair indication of the
computational speeds, and indicate which are the bottle-
necks.
The benchmarks on E. coli and simulated data were run

on Java 6 under 64 bit Windows 7 on a standard office lap-
top: Dell Latitude E6320 with Intel Core i7-2620 2.70 GHz
CPU and 8 GiB RAM. ForC. elegans and the soil sample, it
was run on a server with more memory and roughly twice
the computational speed. The amount of RAM available
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to Java was set with the option -Xmx. Note that for spec-
ifying computer memory, I use IEC prefixes ki-, Mi-, and
Gi- which represent powers of 1024, while SI prefixes k-,
M-, and G- represent powers of 1000.
All kFM-index constructions from read data added both

reads and their reverse complements, discarding pairing
information. Quality filtering consisted of removing bases
with quality score less than 30, splitting the reads into
fragments with higher quality bases. Unless otherwise
stated, k = 23 were used: note that the Java implemen-
tation specifies the order k − 1, i.e. length of the vertex
strings. The distance between stored values ρstore was
q = 32. This should require 6.2 bit per vertex as the actual
memory usage on the data, including 0.33 bit due to the
4 unused bits in the pack of 12 vertices stored in a 64 bit
Java long integer, although there would be some additional
memory overhead from the program itself.
Memory usage during kFM-index construction was

largely determined by the size of partitions, i.e. the maxi-
mal number of k-mers processed in each partition, which
was set to different values to assess the time required to
generate kFM-indexes by merging smaller indexes. For
runs on the laptop, it was set to process at most 250 M
words in each partition, which for k ≤ 28 would require
2 GiB of memory with each word using 2×32 bit integers;
on the server, the partition size was limited by implemen-
tation of the buffer as a Java array with at most 2 G 32 bit
values, allowing at most 1 G words in each partition when
k ≤ 28. However, the peak memory usage reported here
includes memory used and released by Java, but not yet
garbage collected, and may reflect available memory more
than actual use.

E. coli str. K-12 substr. MG1655
The implementation was evaluated on E. coli str. K-12
substr. MG1655 (SRA accession SRX000429, SRR001665,
http://www.ncbi.nlm.nih.gov/sra/SRX000429) with 21 M
36 nt reads after discarding pairing information.
The quality filtered graph contained 13.4 M vertices and

13.4 M edges. This was processed in 2 parts and then
merged, taking 7.7 minutes, with roughly a fifth of the
time spent on merging kFM-indexes. Without quality fil-
tering, the graph contained 81.7 M vertices and 83.7 M
edges. For kFM-index construction, this was divided in 5
parts, which were then merged, taking 38 minutes, half of
which was spent on merging the kFM-indexes together.
Once the final kFM-indexes had been constructed and

the temporary memory freed up, the Java program used
18 MiB holding the quality filtered graph, and 69 MiB
holding the unfiltered graph. At startup, before adding
data, the Java program used 6–10 MiB of memory.
When given access to 6 GiB of RAM, the peak usage

was a bit over 3 GiB. However, by reducing the available
memory, peak usage could be reduced to just over 2 GiB,

with no substantial change in computational time. The
difference is due to memory that has been used and
released, but not garbage collected. The main limitation
was Java’s ability to allocate the approximately 2 GiB
block required to collect and sort in-edges for kFM-index
construction.
In the quality filtered graph, 96.3% of the vertices were

simple, i.e. had in- and out-degree one. Pre-assembly took
12.9 seconds and produced 427 k uniquely determined
paths. In the unfiltered graph, only 89.9% of the vertices
were simple, and as a consequence it produced 8.3 M
uniquely determined paths using 227 seconds.

Simulated read data
Simulated sequence data were generated from two 1 Mnt
DNA sequences, which were identical random sequences
except from 0.1% random differences, intended to simu-
late a diploid organism with SNPs. Random 300 k 100 nt
reads were generated with error rates 0%, 0.1%, and 1%,
intended to represent the true sequences, reads with par-
tial error correction, and raw reads at 30 times coverage.
The reads with no errors resulted in a graph with 2.05M

vertices and 2.05 M edges. This corresponds to 2× 1 Mnt
plus 22 extra vertices from each strand of the 0.1% SNPs.
Accordingly, pre-assembly produced 6358 uniquely deter-
mined paths, which corresponds to the sequence between
the SNPs and two variants for each SNP.
When the reads were given 0.1% error rate, which may

be a realistic error rate after mild error correction, the
graph size increased to 3.26 M vertices and 3.31 M edges.
Pre-assembly resulted in 153 k uniquely determined paths
Including the full 1% read errors, as is common in

uncorrected reads, the size increased to 15.7 M ver-
tices and 16.1 M edges. Pre-assembly resulted in 1.37 M
uniquely determined paths.
The time for constructing the kFM-index was 47, 49,

and 64 seconds, respectively, for the three cases when
enough memory was allocated to process all the data
in one part. When the reads were spilt in 6 partitions
and then merged, this time increased to 109, 139, and
327 seconds, respectively. The pre-assembly time was pro-
portional to the size of the graph, and was 0.64, 3.7, and
35 seconds, respectively.

C. elegans str. N2
A kFM-index was generated from 67.6 M 100 nt reads on
C. elegans str. N2 (SRA accession SRX02594, SRR065390,
http://www.ncbi.nlm.nih.gov/sra/SRX026594).
With k = 23, this resulted in a graph with 255 M

vertices and 259 M edges. With reads processed in 8
parts and merged, this took 5.4 hours on the server. Pre-
assembly took 7.3minutes and resulted in 12.8Muniquely
determined paths.

http://www.ncbi.nlm.nih.gov/sra/SRX000429
http://www.ncbi.nlm.nih.gov/sra/SRX026594
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After completion of the kFM-index, the program hold-
ing the index used 290 MiB, some of which is unreleased
memory after pruning away 61 M final-completing ver-
tices at the end. The buffer used to store each of the
8 partitions took 8 GiB, while peak memory usage was
12 GiB.

Soil sample
An additional run was made on a soil sample (SRA acces-
sion SRX128885, SRR444039, http://www.ncbi.nlm.nih.
gov/sra/SRX128885) with 37 M 76 nt reads.
Quality filtering left 2.59 G 23-mers to be processed,

including the reverse complements. The resulting graph
consisted of 2.86 G vertices and 2.87 G edges: the increase
relative to the number of words added is due to final-
completing vertices which represent read suffixes. This
took 7.1 hours to generate, processing the data in 4 par-
titions before merging them. Most of this time was spent
merging the kFM-indexes.
After completion, the program only occupied 2.2 GiB of

memory, i.e. 6.6 bit per vertex including all overhead, indi-
cating approximately 6% memory overhead relative to the
6.2 bit per vertex required by the data structure. During
kFM-index construction, peak memory usage was 14 GiB.
Pre-assembly took 1.08 hours and resulted in 85.6 M

uniquely determined paths. These appeared to be mostly
from single reads.

Discussion
Memory requirements
The memory required to store E = S [k] as a list of strings
would be |E| × k lg σ bit. If the edge set had been an
arbitrary subset E ⊂ �k , optimal storage would require

Mem

[
E ⊂ �k

]
= lg

(
σ k

|E|
)
bit

≈ |E| ×
(
k lg σ − lg |E|

e

)
bit

(16)

where the approximation assumes that E is a sparse sub-
set of �k . This is slightly better than storing E as a list of
strings since it takes into account that the list of edges is
unordered and contains each edge at most once. However,
the claim that this is minimal required memory [1], is not
strictly true, as E = S [k] is not an arbitrary subset of �k :
it is induced by the sequences in S . If most of the strings
in S are much longer than k, this gives us ample room for
reducing the memory usage.
Storing the sequences of S , i.e. the data from which S [k]

is generated, requires

Mem [S] = ‖S‖ × lg σ bit (17)

where ‖S‖ = ∑
x∈S |x| is the total length of the strings,

assuming we do not have to store information about the
lengths of the strings: this is true if all strings x ∈ S have
the same length |x| = l, and a good approximation if
the average length of the strings is much greater than the
alphabet size.
If the strings of S are very different, in the sense that

they do not share k-substrings to any particular extent, it
will be more memory efficient to store the strings of S
directly than storing S [k], and little can be done to reduce
this memory requirement. This was the case with the soil
sample data analysed. In this case, the FM-index [11],
which is based on the Burrows–Wheeler transform, pro-
vides a compact index for representing all substrings of S :
the Burrows–Wheeler transform requires ‖S‖ × lg σ bit,
i.e. no more than the raw sequences.
When there is substantial overlap between the strings

in S , there are more compact representations of S [k]. For
example, if the strings of S can be assembled into a smaller
number of strings, S ’, of which the strings of S are sub-
strings, we could use these strings instead to represent
S [k]: if each k-string in S [k] is found on average ν times,
this would approximately reduce the required memory
by a factor of ν. However, since assembly is a difficult
problem, this is not a practical approach. In addition, the
strings may not assemble well, e.g. due to read sequencing
errors.
One fairly direct way to represent a de Bruijn subgraph,

without storing a complete list of all k-mers, is to repre-
sent edges as pointers between vertices: e.g. an out-edge
from a vertex may be stored as a pointer to the target ver-
tex. Storing edges as pointers as well as the letters they
correspond to requires |E|× (lg |V |+ lg σ) bit of memory,
which can be quite demanding for large graphs. For the
13.4M graph representing the quality filtered E. coli reads,
this would be 25.7 bit per vertex: more than four times as
much as the kFM-index.
If most vertices are simple, i.e. have only one in-edge

and out-edge, the number of pointers required may be
drastically reduced by combining them into uniquely
determined paths in the graph, as is done in Velvet [12].
Only one pointer would then be required for each such
path, which for the quality filtered E. coli graph would
be 427 k pointers each requiring 18.7 bit, resulting in
2 + 0.6 bit per vertex for storing the nucleotide and the
pointers. By combining vertices representing reverse com-
plements into duplex vertices, the number of vertices and
paths is halved, but pointers in both directions must be
maintained, making this 2+ 2× 0.6 bit per duplex vertex.
Even if merging non-branching vertices allows the graph

itself to be stored more compactly, a map from arbitrary
k−1-mers to vertices of the graph is required, and storing
these pointers would cost at least |V | × lg|V | bit of mem-
ory. A regular hash map would use additional memory

http://www.ncbi.nlm.nih.gov/sra/SRX128885
http://www.ncbi.nlm.nih.gov/sra/SRX128885
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to identify V ⊂ �[k−1], but that is not strictly needed
and could be avoided by smart hashing schemes. Still,
for the quality filtered E. coli reads, a full map for the
13.4 M 22-mer vertices would require at least 23 bit per
duplex vertex, and this would increase for larger graphs.
If the 22-mers are mapped to the uniquely determined
paths rather than to the individual vertices, this could
be reduced to 18.7 bit per duplex vertex, which with the
3.1 bit per duplex vertex for storing the graph, still adds
up to twice as much as required by the kFM-index, and
would increase with the size and complexity of the graph.
Many genome assemblers, such as ABySS [13], hash either
vertices or edges, and are thus subject to this requirement.
In fact, for any data structure that does not throughout
make use of the fact that the vertices and edges tend
to form long paths, the memory bound of equation (16)
applies.
A natural method to compare the kFM-index against

is the compressed Burrows–Wheeler transform of the
concatenated reads used by SGA [10], due to the simi-
larity between the kFM-index and the Burrows–Wheeler
based FM-index. The Burrows–Wheeler transform of the
reads would result in runs of identical bases correspond-
ing to the coverage of the reads (unless broken up due
to sequencing errors), and the SGA stores each run by
its base and run length in a single byte. A naive com-
parison of memory requirements could be made against
the in-edge data of the kFM-index which requires 5 bit
per vertex; if most vertices have degree one, the in-edge
data can be stored more compactly using only 2–3 bit
per vertex since most vertices only require the base of
the single in-edge to be stored. However, this is an unfair
comparison since the kFM-index only stores the k-mers
for a specific k, while the Burrows–Wheeler transform
used by SGA stores all substrings, and thus allows k-mer
frequencies to be found for all k. While the kFM-index
specifically stores the de Bruijn k-mer subgraph, SGA uses
overlap-based assembly and was not made with de Bruijn
graphs in mind. SGA also does frequency based read error
correction.
Memorywise, the kFM-index is comparable to the prob-

abilistic de Bruijn graph using a Bloom filter [5], which
requires approximately 4 bit of data per vertex. However,
this can merge k-mers with their reverse complements,
and this reduces the memory requirement by a factor of
two relative to data structures like the kFM-index which
has to store both. On the other hand, the Bloom filter
is probabilistic, with a risk of introducing false vertices.
While it can be used for checking if an arbitrary vertiex is
present in the graph, although this requires a lower error
rate and thus a little more memory spent per vertex, addi-
tional information is required to actually reproduce the
graph. Certain removal of false vertices as well informa-
tion required to reproduce the graph can be added [6], but

requires morememory. In comparison, on the same E. coli
read data, Minia [6] represented 4.7 M “solid” 23-mers
(frequency at least 3) using 13.62+0.49 bit per duplex ver-
tex, where each duplex vertex represents both a k-mer and
its reverse complement. The 0.49 bit were used to store
the marking structure required to reconstruct the graph.
As such, the amount of memory per vertex is just slightly
above the kFM-index, given that kFM-index needs two
vertices to represent reverse complements where Minia
only needs one.
As can be seen, the different data structures have dif-

ferent strength and weaknesses. Reductions in memory
consumption tends to come at the expense of accessibilty
of the stored information, computational speed and sim-
plicity. Choice of a suitable data structure for any given
problem thus depends on the computational needs, and
there is no single best data structure for storing k-mer
data from high throughput sequencing reads. The kFM-
index is particularly made for storing the k-mer de Bruijn
subgraph representation of sequence reads in a compact
manner, yet allowing efficient random access of vertices
and edges.

Further reduction inmemory usage
Themainmemory usage of the kFM-index is the bit arrays
η(a, i) and fi representing the in-edges and group end
flags. These contain σ + 1 binary values per vertex: 5 bit
per vertex for DNA sequence data. For arbitrary de Bruijn
subgraphs, little can be done to reduce this substantially.
De Bruijn subgraphs constructed from real sequence

data will, however, tend to be dominated by vertices with
exactly one in-edge and no other vertices in its vertex
group. In this case, for the majority of vertices, the data
could simply be summarised by one letter, ai ∈ �, repre-
senting the letter of the in-edge to vertex i: i.e. Ei = {a}
and fi = true. This would reduce the required mem-
ory from σ + 1 bit per vertex, and potentially towards
lg(σ ) bit per vertex. The current implementation tar-
gets cases with small alphabets, like DNA which has
σ = 4, and little emphasis has been placed on han-
dling large σ where lg(σ ) bit per vertex would make a big
difference.
Since not all vertices can be thus represented, there

would have to be some way of representing more general
vertices as well, which would require both some mem-
ory overhead as well as computational overhead. For DNA
sequencing reads, the conditions might be met where this
approach could be useful, and could possibly reduce the
memory consumption for storing the kFM-index by a fac-
tor of 2. The entropy of the vertex data, in-edge sets
and group end flags, for typical kFM-indexes on DNA
sequencing read data tends to be 2 to 2.5 bit per vertex,
even for sequence data with read errors included.
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Effects of read errors
I have not explicitly addressed to problem of read errors.
Each read error may result in up to k − 1 additional ver-
tices, one for each of the k − 1-substrings containing the
read error. If the error rate or coverage is high, this may
result in a substantial increase in the number of vertices.
For example, if the error rate is ε, the chance that a par-
ticular k-word from a sequence will contain an error is
approximately kε. If the average coverage is γ , this means
there will tend to be γ kε incorrect vertices for each cor-
rect vertex: i.e. the number of vertices in the de Bruijn
subgraph when incorrect vertices are included will be n ≈
(1 + γ kε)ncorrect where ncorrect is the number of correct
vertices. E.g. with 1% error rate, 30 times coverage, and
k = 35, this would make ten times as many incorrect
vertices than correct vertices. The simulated read data
illustrate this trend.
By also storing vertex counts, the kFM-index could be

used for error correction based on k − 1-mer frequen-
cies. However, there already exist multiple algorithms and
applications for excluding infrequent k-mers [10,14-18].
Furthermore, much of the advantage of the kFM-index
over the compressed Burrows–Wheeler transform of the
concatenated reads [10] is lost if the frequency count is
to be stored, which is needed for error correction. Hence,
the basic assumption has been that the primary usefulness
of the kFM-index occurs when the majority of read errors
have been removed or corrected in advance, and that error
correction is more efficiently done prior to kFM-index
construction.
The Java implementation allows filtering by base qual-

ity scores, removing bases with low reliability and splitting
the sequence accordingly. On a number of benchmark-
ing runs, this simple approach seemed to be able to
remove the majority of read errors, and reduce the size
of the resulting de Bruijn graph substantially. However,
for genome assembly, further error correction would be
required.

Effect of adding final-completing vertices
The vertices V consist of S [k−1] with vertices added to
allow paths from Vfinal to $k−1. There may be up to k − 1
vertices added to V for each vertex in Vfinal. However, as
long as |Vfinal| is small compared to |S [k−1]|, this has little
impact on the memory requirements. We may note that
we can always get |Vfinal| ≤ |S|, so if the strings on average
are much longer than k letters, the contribution of Vfinal is
likely to be small.
For final-completing vertices to contribute substantially

to the memory usage, there would have to be a substan-
tial portion of read ends not found internally in other
reads. This could happen for read data consisting of short
reads with low coverage. It could also happen if there are

frequent read errors at the flanks of the reads which are
not filtered out or corrected.

Computational speed
The central operation in most uses of the kFM-index is
the computation of the in-coming vertex position, ρ(a, i).
Algorithm 1 gives an implementation whose time com-
plexity on average isO(q), where q is the distance between
the stored values ρstore.
The Java implementation combines algorithm 1 with

a similar algorithm provided in the Additional file 1 for
computing ρ(a, i) from the next stored value rather than
the previous one, and selects the closest stored value,
effectively halving the number of steps needed. A good
balance between speed and memory usage is then to use
q = 32.
In the Java implementation, the average computational

time of ρ(a, i) is linear in q as could be expected. In the
benchmarking, time per call to ρ during large kFM-index
was estimated to 75.8 + 2.8q ns. Although some of this
is likely overhead related to the merge operations, and
the numbers will depend on the computer and implemen-
tation, it does give an indication that reducing q much
below 30 is of limited use. One likely reason for this is the
time required for random memory access is high, while
repeated accessed to the same block of memory is fast due
to caching.
I will treat calls to ρ as constant time in the subse-

quent analyses, although the present implementation does
depend on q, under the assumption that q will remain
fixed, typically between 30 and 64, and that in this range
the memory overhead of the stored values ρstore is moder-
ate.

Low-level parallel computing of ρ(a, i) using 64 bit words
Algorithm 1 works by processing one bit at a time. When
doing this, the average number of steps required to com-
pute ρ(a, i) is proportional to the distance, q, between
the stored values. It is, however, possible to parallell pro-
cess these bit operations and thus exploit that e.g. a 64 bit
processor can process a 64 bit word in one operation.
One such method is described in the Additional file 1,

in which the number of steps for processing one word of
data is proportional to the alphabet size σ . This method
requires that the flags indicating if a ∈ Ej for consecutive
j are stored in one word, and the same for the group end
flags fj, so that the data for an entire interval of j positions
can be retrieved from memory in a single operation. A
replacement for Algorithm 1, provided in the Additional
file 1, will then compute arbitrary ρ(a, i) from one word
of containing in-edge data for the letter a and one word
with group end flags, allowing a distance q = 64 − σ + 1
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between stored values: reducing the distance below this
has no benefit.
The present Java implementation, however, does not use

this approach.

Construction of the kFM-index
Themain bottleneck at present consist of constructing the
kFM-index from the strings. The provided algorithm in
which the strings are partitioned into subsets, each subset
converted to kFM-indices, and these kFM-indices recur-
sively merged together, introduces substantial overhead
in terms of memory and in computational time during
construction.
In the FM-index setting, where n = N , a similar

approach would have required time O(n ln n): if we split
the data into 2r sets, each iteration merges these pair-
wise using time O(n) per round, with r rounds required.
However, for the kFM-index, in the initial steps when the
sequences are partitioned, the total number of vertices
may be much greater due to k − 1-words present multiple
times in the reads and thus entering into a large number
of the subset kFM-indexes. The time consumption may
therefore increase by a factor proportional to the coverage
and become of order O(Nkσ lg (nm)) where N = ‖S‖ is
the total size of the sequence data andm is the number of
partitions into which it is divided.
The algorithm for merging kFM-indexes could most

likely be improved substantially, and the Java implemen-
tation provided is far from optimal: neither in terms of
speed, nor in memory usage. Some minor improvements
have been made in the implementation, reducing the
number of calls to ρ when certain conditions are met (see
Additional file 1 for details). However, even with further
improvements, the method of partitioning and pairwise
merging is inherently slow.
The construction of the kFM-index may be split up and

run on separate CPUs; even the final mergers of two kFM-
indexes can be split up, e.g. into σ r different threads based
on the first r levels of recursion. However, if the reads
have high coverage, each of the subset kFM-indexes may
already contain many of the same high-coverage vertices,
and thus require almost as much memory and processing
power as the final kFM-index.
For constructing the Burrows–Wheeler transform and

the FM-index, there are more efficient algorithms [19,20]
which rely on reformulating the Burrows–Wheeler trans-
form in terms of a shorter sequence over a larger alpha-
bet. These do not easily generalise to the kFM-index.
In particular, a k-word in the original kFM-index may
correspond to multiple different sequence locations, and
these may appear as several different k-words in the the
reformulated sequences. However, I have some hope that
the induced sorting approach [19,21] may be adapted,

although perhaps not quite as successfully as for the FM-
index.
An alternative approach to kFM-index construction in

memory is to split the reads up into edges representing
the k-words of the sequences, and use the disk to help
make a sorted list. A simple way to do this can be to parti-
tion the read data into parts that are small enough that the
in-edge set can be stored as k-words and sorted in mem-
ory, write each partition to disk as a single file, and then
merge these files to construct the final kFM-index. While
this may require substantial temporary disk space, partic-
ularly for high coverage sequence data, it will most likely
be much faster than the in-memory construction of the
kFM-index presently implemented. This approach could
also be divided between several computers.

Use with large alphabets
The algorithms, and the Java implementation, have been
written with small alphabets in mind: in particular, DNA
with σ = 4. Technically, they work for general alphabets,
although the Java implementation cannot at present han-
dle alphabets with σ > 63 since the vertex data are packed
into a 64 bit word. However, the routines for merging
two kFM-indexes involve iterating over the entire alpha-
bet, adding a time factor σ to the merge procedure. For
large alphabets, onemight store the in-edge data in amore
compact form than a bit vector, and could identify the
relevant letters without having to check them one by one.

Conclusions
The kFM-index is a data structure that stores the k-words
corresponding to the edges of a de Bruijn subgraph in a
compact manner, while allowing efficient random access
to vertices and edges. The data structure is made compact
by avoiding the direct storage of k-words and pointers,
which often are the main memory expense for storing
de Bruijn subgraphs. The vertex and edge information
is stored in a direct manner with each line in the data
table representing a vertex, and each bit set in the in-edge
bit array representing an edge. Thus, the compactness of
the kFM-index data structure does not rely on compact-
ification of the graph or compression of the data, and
additional compression of the index is feasible.
The presently implemented method for in-memory

construction of the kFM-index is uncompetitive for large
data sets. However, there are multiple ways in which
this could be improved. Also, as with the FM-index used
by SGA [10], after the index has been constructed, the
user can reuse it to try different assembly options and
parameters.
One of the main approaches to de novo genome assem-

bly using high throughput sequencing is to generate the de
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Bruijn subgraph representing the k-mers of the reads, and
multiple applications exist already for doing this. For large
genomes and in meta-genomics, the memory required for
representing the de Bruijn subgraph is one of the limit-
ing factors. The kFM-index could replace existing, more
memory demanding, data structures in existing genome
assembly applications to allow them to process larger
genomes or to run on off-the-shelf hardware where spe-
cial, high-RAM computers have previously been required.

Availability
A Java implementation of the data structure and algo-
rithms, together with additional technical documentation
of the implementation, are freely available from http://
folk.uio.no/einarro/Projects/KFM-index/. Improvements
to the implementation, removing memory limitations and
introducing parallel processing, and updated benchmarks,
are provided on this web site.

Appendix
Mathematical approximations
Based on Stirling’s approximation, ln n!≈ n·ln n

e , we can
approximate binomials by

ln
(n
x
) = ln n···(n−x+1)

x! � x · ln n
x/e (18)

which is a good approximation as long as x � n. Another
bound is

ln
(n
x
) ≤ x ln n

x + (n − x) ln n
n−x ≤ n ln 2 (19)

where the first inequality follows from
(n
x
)
px(1 −

p)n−x ≤ 1 upon entering p = x/n, where
(n
x
)
( xn )x(1 −

x
n )n−x ≈ √

n/2πx(n − x) indicating that the inequality
is fairly tight, while the second inequality follows from∑n

x=0
(n
x
) = 2n and is only tight for x/n ≈ 1/2.

Proofs of results
Definition 1. For a de Bruijn subgraph G = (V ,E) as
defined in equations (1) and (2), we say that a string x cor-
responds to a path in G if |x| ≥ k and all k-substrings of x
are contained in E: i.e. x = x1 . . . xl corresponds to the path
ei = x[i,i+k−1] for i = 1, . . . , l − k + 1. For a string x of any
length, we say that x is compatible with G if either x corre-
sponds to a path in G (for |x| ≥ k) or x is a substring of a
vertex v ∈ V (for |x| < k). We write x ∼ G to indicate that
x is compatible with G.
For convenience, we will include vn = ∞k−1 in the

vertex list, although it is strictly speaking not part of the
graph, and apply the convention that ∞k corresponds to
a path in G. The main effect of this is that the min{i | . . .}

expressions below take the value n if criteria for i are not
otherwise met.

Lemma 2. Let ρ(a, i) be defined as in equation (6) and γ

as in (7). For x a string in �∗ or �∗ ◦ {$,∞},
γ (x) = min{i | x ≤ viz ∼ G for some z ∈ �∗}. (20)

For |x| < k, this is just min{i | x ≤ vi}, while for |x| ≥ k it
requires a path starting at vi (unless x ≤ vi).

Proof. For the empty string, γ (ε) = 0, making
equation (20) true. For a ∈ �, γ (a) = ρ(a, 0), and
equation (20) is essentially the definition of ρ; for γ ($) = 0
the result follows as all vi ≥ $, while for γ (∞) = n only
vn ≥ ∞. We will then complete the proof by induction on
|x| using (20) as the induction hypothesis.
For 2 ≤ |x| < k, write x = ay where a ∈ �. By the

induction hypothesis, we know that y ≤ vj when j ≥ γ (y).
Since |y| ≤ k − 2, this is the same as y ≤ v−

j , and thus
equivalent to x = ay ≤ av−

j . If x = ay ≤ vi, then either
vi = av−

j for some j in which case x ≤ vi = av−
j and

i ≥ ρ(a, j), or no such vj exists in which case the first letter
vi,1 > a and i ≥ ρ(a, n). The smallest i for which this
makes x ≤ vi in either case corresponds to ρ(a, j) where
j = γ (y).
For |x| ≥ k, again write x = ay where we know that

y ≤ vjz ∼ G when j ≥ γ (y). This means that x = ay ≤
avjz = vibz ∼ G for i = ρ(a, j) and where the condition
j ≥ γ (y) becomes i ≥ ρ(a, j).
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