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Abstract

Background: Leishmaniasis is a neglected tropical disease which affects approx. 12 million individuals worldwide
and caused by parasite Leishmania. The current drugs used in the treatment of Leishmaniasis are highly toxic and
has seen widespread emergence of drug resistant strains which necessitates the need for the development of new
therapeutic options. The high throughput screen data available has made it possible to generate computational
predictive models which have the ability to assess the active scaffolds in a chemical library followed by its ADME/toxicity
properties in the biological trials.

Results: In the present study, we have used publicly available, high-throughput screen datasets of chemical moieties
which have been adjudged to target the pyruvate kinase enzyme of L. mexicana (LmPK). The machine learning
approach was used to create computational models capable of predicting the biological activity of novel antileishmanial
compounds. Further, we evaluated the molecules using the substructure based approach to identify the common
substructures contributing to their activity.

Conclusion: We generated computational models based on machine learning methods and evaluated the performance
of these models based on various statistical figures of merit. Random forest based approach was determined to be the
most sensitive, better accuracy as well as ROC. We further added a substructure based approach to analyze the
molecules to identify potentially enriched substructures in the active dataset. We believe that the models developed in
the present study would lead to reduction in cost and length of clinical studies and hence newer drugs would appear
faster in the market providing better healthcare options to the patients.
Background
Leishmaniasis is a tropical disease affecting 12 million
people worldwide, with approximately ~2 million
(1.5 million incidences of cutaneous leishmaniasis
and 500,000 visceral leishmaniasis) new people getting
infected each year [1]. It is considered as one of the
world’s most neglected disease given its strong association
with poverty and limited resources invested in new tools
for diagnosis, treatment, and control [2]. Among tropical
diseases, leishmaniasis ranks second as a causative factor in
mortality and fourth in morbidity and has been reported to
occur in as much as 88 countries. It affects massive
populations in most tropical and subtropical regions
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resulting in a huge number of deaths. The disease has
become a major threat to one-third of the world
population with more than 90% of the cases arising
out of India, Bangladesh, Sudan, South Sudan, Brazil and
Ethiopia [3-5]. Leishmaniasis is caused by a Trypanosomatid
protozoan parasite belonging to the genus Leishmania,
which infect both human and domestic animals, resulting
in significant social and economic losses, especially in
developing nations [6]. The infection spreads through
the bite of the phlebotomine sandflies which injects the
promastigotes into the host [7]. Approximately 21 of 30
species cause infections in humans and include L. donovani
complex with three species (L. donovani, L. infantum, and
L. chagasi); the L. mexicana complex with four main
species (L. mexicana, L. amazonensis, and L. venezuelensis);
L. tropica; L. major; L. aethiopica; and the subgenus Viannia
with four main species (L. (V.) braziliensis, L. (V.) guyanensis,
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L. (V.) panamensis, and L. (V.) peruviana) [8]. L. Mexicana
causes both cutaneous and diffused cutaneous types
of infection [9]. The disease is considered as a major
constraint to economic development with symptoms
ranging from self-healing ulcers to highly disfiguring
lesions and serious, often lethal visceral diseases which
affect the haemopoetic organs [10].
The therapy of Leishmaniasis has been quite a challenge

given the fact that the commonly used drugs available for
treatment are characterized by high toxicity, high costs,
limited activity and considerable possibility of drug resist-
ance [11,12]. The first line drugs used in the therapy are
antimonial compounds such as sodium stibogluconate and
meglumine antimoniate which form the traditional therapy
for leishmaniasis. They are administered through the
parenteral route and have severe side effects. In case
of failure of the first line drugs, second line drugs are used,
which include pentamidine (Lomidine) and amphotericin B
(Fungizone). However, both these drugs are also associated
with high levels of toxicity and side effects. Similarly, the
new drug, Miltefosine (Impavido) prescribed for visceral
and cutaneous leishmaniasis has also been identified to
cause adverse effects [13,14]. It has a long residence time
which may contribute to the selection of resistant parasites,
limiting its applicability. Miltefosine stays for a longer
duration time in circulation approximately 150 hours which
may lead to the development of resistance owing to which
the parasite spreads rapidly [15]. The current approach
based on chemotherapy relies on a handful of drugs which
are limited by factors such as high costs, toxicity, difficult
routes of administration, and less efficacy [16]. Keeping in
mind all these factors, it is necessary to develop reasonably
priced, secure, and effective antileishmanial vaccines for the
acceptable therapy of leishmaniasis.
In Leishmania sp., sugar uptake and gluconeogenesis

are essential to synthesize hexose-phosphates necessary
for the production of glycoconjugates and the intracellular
polysaccharide mannan, which form essential components
for both replication and virulence of the parasite [17].
Therefore, glycolytic enzymes are extremely pertinent for
the growth and infectivity of the parasite.
Glycolysis pathway and enzymes in the pathway has

been extensively reviewed as a potential drug target
candidates [18]. One of the well characterized enzymes in
the pathway is Pyruvate kinase, which also has been
extensively studied as a candidate drug target. Trypa-
nosomatids entirely depend on the carbon sources
available inside the host to meet their energy requirements
and the only source of ATP generation is glycolysis as they
lack Kreb’s cycle. Pyruvate kinase plays an important role in
carbohydrate and amino acid metabolism and catalyses the
last step in glycolysis to produce ATP and pyruvate kinase.
Several reports have exploited the features of glycolytic
enzymes on the basis of the enzyme’s structure further
leading to the utilization of these features for the design of
specific inhibitors [19-21]. Leishmania mexicana is known
to encode for two copies of the enzyme, organized tandem
to one another [19]. The crystal structure of the enzyme
has also been elucidated recently [22]. The recent availabil-
ity of high throughput screens for drug discovery of
neglected diseases has motivated us to create predictive
models based on molecular properties and machine
learning approaches [23-26]. Recently a large dataset
of high-throughput screens have been made available
in public domain for Leishmania Mexicana Pyruvate
Kinase and forms the baseline for the present study.
In the present study, we have used a computational

strategy to create predictive classification models from
the high-throughput assay which target pyruvate kinase
enzyme from L. mexicana (LmPK). We have further
analyzed chemical substructures to find enriched bioactive
molecules using Maximum Common Substructure (MCS)
approach and we also show that machine learning
based cheminformatic modeling can create predictive
models with high accuracy which can be effectively
used to screen large molecular databases in silico,
thus drastically reducing the cost of finding hits for
drug discovery.

Methods
Bioassay and data sources
The assay used in the current study targets pyruvate
kinase from Leishmania mexicana (LmPK). The datasets
for the assay have been deposited at PubChem, a database
collecting information on small molecules and datasets on
high throughput biological assays and maintained by the
National Centre for Biotechnology Information (NCBI)
[27]. The assay [AID: 1721] consisted of a total of 292,740
compounds capable of inhibiting the enzyme, pyruvate
kinase, derived from Leishmania mexicana. Compounds
were characterized based on a PubChem activity score.
The compounds that had an activity score between 40 and
100 were defined as active (N = 1,087) and the compounds
having an activity score of 0 were defined as inactive
(N = 289,657). All the compounds having activity score
between 1 and 39 were considered to have inconclu-
sive activity and were not included in our analysis in
order to avoid uncertainty in the predictive ability of
the models.

Dataset pre-processing and calculation of molecular
descriptors
The chemical structure of each of the molecules was
downloaded in the Structural Data Format (SDF) from
PubChem. These structures were imported into the
molecular descriptor generator and visualization software
PowerMV [28]. PowerMV generates 2D molecular descrip-
tors and is freely available. The dataset was split into
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smaller SDF files using SplitSDFiles Perl script available
from Mayachem tools [29]. A total of 179 descriptors were
computed for the molecules. These descriptors encom-
passed different categories and included 147 descriptors
which were pharmacophore fingerprints, 24 descriptors
which were weighted burden numbers and 8 which
belonged to property descriptors. The bit-string fingerprint
attributes of only one value (all 0’s or all 1’s) all across the
molecules were removed to reduce the dimensionality of
the dataset. The full set of compounds were randomly
divided into 20% independent test set and 80% training
cum validation set using a bespoke Perl script. We
used 5-fold cross validation in our study.

Machine Learning methods and implementation
Machine learning is a scientific discipline that broadly
refers to a collection of algorithms and computational
methods for predictive learning from tagged datasets [30].
In cheminformatics, such methods have been extensively
used to predict molecular properties, or biological activities.
Generally, molecular datasets are tagged on the basis of their
activity; say active/inactive and binary classification based on
a set of molecular descriptions could be attempted. We have
earlier shown that such an approach could accurately predict
the activities in diverse sets of datasets with activities as
diverse as anti-tubercular [23,24] molecules, anti-malarial
molecules [25] and RNA-binders [26]. Similar tagging and
learning could be attempted for multiple classes, rather than
binary sets and have been extensively reviewed in [31].
Multiple algorithms and implementations have been used in
the area previously; nevertheless we attempted four popular
classifier algorithms, that is, Naïve Bayes, Random Forest,
J48 and SMO. All four methods have been previously
determined to be quite efficient in terms of both computa-
tion time and classification accuracies. The Naive Bayes
classifier is based on the Bayesian theorem, which assumes
that for a given target value, the description of each
predictor is independent of the other predictors. The final
prediction is obtained by considering all descriptor-based
properties [32]. Random Forest algorithm is based on
decision trees, where each tree is independently constructed
and each node is split using the best among a subset of
predictors randomly chosen at the node. It is the most
accurate classifier and produces most precise results for all
the datasets [33]. J48 is a version of an earlier algorithm, the
very popular C4.5, developed by J. Ross Quinlan and
employs a tree pruning approach which produces fewer but
more easily interpreted results. The J48 algorithm chooses
one attribute of the data and splits the set of samples into
subsets, one for every value of the attribute. The attribute
having the maximum information gain is chosen to make
the decision [34]. Sequential Minimization Optimization
(SMO) algorithm developed by John Platt in 1998 is widely
used for training support vector machines. SMO, an
iterative algorithm, breaks up the quadratic programming
(QP) optimization problem into smaller problems which
are then solved analytically. The SMO algorithm is simple,
easy to use and faster in comparison to the standard SVM
training algorithm [35].
Cost sensitive classification
One of the key issues that needs to be taken into consider-
ation while using machine learning technique on a highly
imbalanced dataset is the cost of misclassification. This is
an important issue because standard classifiers presume
equal weighing for all the classes and thus are unable to
handle imbalanced data [36]. The use of cost-sensitive
classifiers can abrogate this issue and minimize misclassi-
fication errors. In cost sensitive learning, misclassification
costs are used in which molecules are predicted to have
the class with lower expected cost [37].
In the present study, we have used Weka (Waikato

Environment for Knowledge Analysis), a collection of
machine learning algorithms, for data mining tasks [38].
Weka uses a confusion matrix consisting of four sections:
True Positives (TP) for correctly classified actives; False
Positives (FP) for inactive classified as actives; True
Negatives (TN) inactive classified as inactive and false
negatives (FN) for active compounds incorrectly classified
as inactive. One of the most important points to be well
thought-out during the development of classifiers is the fact
that the false negatives are considered to be more important
than the false positives. Consequently, we can minimize the
% of false negatives at the expense of increasing false posi-
tives. To keep a check on the rate of false positives, an
upper limit of 20% is set on the false positives. In Weka,
there are no rules to set misclassification cost. It exclusively
depends on the base classifier used [39].
Statistical measures for evaluation of cheminformatics
models
A variety of measures were used to evaluate the perform-
ance of models such as sensitivity, specificity, accuracy,
and BCR. Sensitivity (TP/(TP + FN)) is the proportion of
positively labeled molecules predicted correctly. Specificity
(TN/(TN + FP)) is the percentage of negatively labeled
instances predicted as negative. Accuracy ((TP + TN)/
(TP + TN + FP + FN) * 100) is the percentage coverage
of correct predictions. Balanced Classification Rate (BCR)
(½. (Sensitivity + Specificity)) is the mean of sensitivity and
specificity which introduces a balance amid the classification
rate of the two classes. Matthews Correlation Coefficient
(MCC) is regarded as the balanced measure that measures
the quality of a binary classification. We also evaluated the
models based on the Receiver Operating Characteristic
(ROC) curve which is the plot between the true positive rate
and false positive rate.



Figure 1 Comparison of Accuracy and Balanced Classification
Rate of the models generated in the present study.
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Evaluation of enriched substructures
We used a hierarchical clustering algorithm ‘LibMCS’,
available from Chemaxon to find out potentially
enriched molecular substructures in bioactive molecules
[40]. The maximum common substructure (MCS) based
approach retrieves and compares the substructure com-
mon to a group of molecules. The MCS size which cor-
responds to the number of constituent atoms was set to
an empirical threshold of 14 atoms in this study. The
scaffolds obtained were then used to search for similar
molecules in active and inactive datasets using the ‘jcsearch’
algorithm available from Chemaxon [41]. The Chi-square
test and the associated p-value were used for the further
evaluation of substructures and to test the significance of
enrichment, respectively. We calculated the enrichment
factor and used a threshold of 2 to prioritize the molecules
for further analysis. Using vROCS (release 3.1.2) [42], we
further performed a molecular alignment of the selected
scaffolds with the molecules in the active dataset and visu-
alized the alignment in VIDA software [43] available from
Open Eye Scientific Software [44].

Results and discussion
The dataset of active (1,087) and inactive (289,657) mole-
cules was downloaded from PubChem. A total of 179 2D
molecular descriptors were generated using PowerMV for
the entire set of molecules. After the pre-processing of data
(as described in Methods), the number of molecular de-
scriptors was further pruned to 154, which accounted for an
approximate 15% reduction in the number of descriptors.
To begin with, the standard classifiers were used to generate
the models, however, cost sensitive classification was used
in case of models having low FP rate and the cost was
increased for FP up to 20%. The final mis-classification cost
used for each classifier is presented in Table 1. The Naive
Bayes classifier required lowest misclassification cost and
was quite fast in terms of compute time.
A number of models were generated using different clas-

sifiers described in the materials and methods section. The
best models for each classifier were selected on the basis of
accuracy of the models generated. In the present study, all
the models generated had around 80% accuracy (Figure 1).
Various other statistical figures such as sensitivity, specificity
and BCR were also used to check the robustness of the
models. Since accuracy alone cannot be used to assess the
performance of the models owing to the high imbalance in
Table 1 Classification results

Classifier TP rate FP rate ROC Accuracy BCR MCC Cost

NB 72.4 19.7 84 80.26 76 0.08 60

RF 87.1 20 91.3 80.01 83 0.10 80000

J48 82 20.2 80.5 79.76 80 0.09 1200

SMO 85.7 19.2 89.8 80.79 82 0.10 250
the data, we have used Balanced Classification Rate (BCR)
which introduces a correct balance in the sensitivity and
specificity and gives a more accurate measure of the per-
formance of the models. All the models had around 80%
sensitivity and specificity with the RF model being the most
sensitive and NB the least (Figure 2). Also the RF model
turned out to be the most accurate classifier having BCR, the
average of sensitivity and specificity, value as 83%. We also
performed an analysis of the Receiver Operator Characteris-
tics (ROC) which was further used to compare and evaluate
the performance of each of the models for their efficiency
and robustness. All the models had a significant Area under
Curve (AUC) on the ROC plot, which can be seen in
Figure 3. It can be easily interpreted from the results that
among all the classifiers, i.e. NB, RF, SMO and J48, Random
Forest performed better than the rest and was established as
the best classifier providing an overall good classification.
We further evaluated whether we could understand the

common or frequent molecular substructures which were
associated with the molecular activity. To this end, all the
active dataset compounds were clustered using LibMCS
algorithm. We obtained a total of 3,418 substructures
Figure 2 Plot of Sensitivity and Specificity of models generated
based on molecular descriptors.



Figure 3 ROC plot showing significant AUC values for Random
Forest, Naive Bayes, J48 and SMO classifiers.
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clustered up to 6 levels. A total of 501 clusters at level 6
were selected, from which 331 singletons were separated.
We calculated the Chi-square and p-value for the remaining
170 substructures which correspond to the clusters were
analyzed for enrichment and its significance in the active
and inactive datasets (Table 2). The substructures with a
Table 2 Significantly enriched substructures in the active dat

Serial no. Scaffold Actives Inactiv

Scaffold 1 12 3

Scaffold 2 13 29

Scaffold 3 11 82

Scaffold 4 12 143

Scaffold 5 19 234

Scaffold 6 18 223

Scaffold 7 12 271
frequency of >1% in the active dataset were taken that
accounted for a total of 10 substructure. Stringent filtering
retrieved a total of 7 substructures which had p-values less
than 0.01 and enrichment factor >2. We did the molecular
alignment of the selected 7 enriched substructures
with the active molecules (Figure 4) and inactive molecules
to calculate the enrichment of the scaffolds between the
active and inactive datasets.
The recent years have seen a wealth of information

being available in public domain on molecular structures
and biological assays of very small subsets of known
small molecule repertoire using high-throughput screening
platforms. The major challenge within the field pertains to
the assigning potential biological activities to molecules so
that they could be studied in detail. On an average less
than a percent of the molecule library screened show
some biological activity. Given the large costs associ-
ated with setting up screens for biological activities, it
would be economically not plausible to exhaustively screen
large parts of the known small molecule repertoire known
to mankind. This problem becomes acute in cases of
neglected tropical diseases. The challenge therefore would
aset

es Chi-square p-value Enrichment factor

2553.48 0.00E + 00 1065.89

1054.51 0.00E + 0 119.45

327.68 3.08E-73 35.74

226.03 4.36E-51 22.36

346.19 2.86E-77 21.36

325.98 7.22E-73 21.50

113.69 1.52E-26 11.79



Figure 4 Molecular alignment of the 7 [1-7] enriched substructures (dark green) over the top 20 molecules of the active (1087) dataset
obtained from PubChem (AID 1721).
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be to effectively mine large libraries using computational
tools so they could be effectively prioritized for experimen-
tal screening for their biological activities. This necessitates
the creation of highly accurate computational methods cap-
able of predicting biological activities in silico. In the
present study, we use machine learning as an approach to
build highly accurate predictive models for bio-activity
against pyruvate kinase on Leishmania species. We show
how high-throughput experimental datasets on a diverse
set of molecules could potentially be used to build highly
accurate predictive models. These models could poten-
tially be used to mine and annotate large molecular
datasets and prioritize molecules for biological activity
screening experiments and could contribute significantly
to the ongoing efforts for drug discovery for neglected
tropical diseases.
Conclusion
Leishmaniasis is one of the major neglected tropical
diseases in recent years, killing close to 100,000 individuals
worldwide annually, mostly in the tropical and sub-tropical
countries. The disease is majorly distributed in the tropical
and sub-tropical regions. Though efficient treatment regi-
mens are available for its therapy, the drugs used are
largely toxic. In addition, wide-spread drug resistance has
been reported in several regions, adding to the urgency
for the discovery of novel, efficient and less-toxic mole-
cules with anti-leishmanial activity. In this study, we have
employed computational strategy via machine learning
approach to create predictive models for classification of
molecules to discover new therapeutic compounds for
leishmaniasis. The approach will help in quick search of
large libraries of chemical structures in order to pick po-
tential hits which are most probable to bind to a drug tar-
get. Additionally, we have used a substructure based
approach to explore potentially enriched substructures in
the active dataset of molecules. We show that accurate
models for mining large datasets could be built based on
high throughput assays available in public domain using
machine learning approaches. We have previously reported
similar approaches for mining molecules with anti-
tubercular activities, and suggest that Random Forest
based learning can systematically learn from bioassay
datasets with high accuracies. We argue that automated
approaches based on Random Forest based algorithms
could be implemented on a large-scale to learn from
bioassay datasets and automatically annotate mole-
cules from PubChem for biological activities. We hope
that such approaches could accelerate the process and
efficiency of screening for discovery of novel mole-
cules with specific biological activities not just for trop-
ical diseases but others as well.
Model availability
The predictive model generated by Weka, a stepwise
manual and the scripts to be used for preprocessing
of the dataset are available online at http://vinodscaria.
rnabiology.org/2C4C/models.
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