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Abstract

Background: Determining sample sizes for metabolomic experiments is important but due to the complexity of
these experiments, there are currently no standard methods for sample size estimation in metabolomics. Since pilot
studies are rarely done in metabolomics, currently existing sample size estimation approaches which rely on pilot data
can not be applied.

Results: In this article, an analysis based approach called MetSizeR is developed to estimate sample size for
metabolomic experiments even when experimental pilot data are not available. The key motivation for MetSizeR is
that it considers the type of analysis the researcher intends to use for data analysis when estimating sample size.
MetSizeR uses information about the data analysis technique and prior expert knowledge of the metabolomic
experiment to simulate pilot data from a statistical model. Permutation based techniques are then applied to the
simulated pilot data to estimate the required sample size.

Conclusions: The MetSizeR methodology, and a publicly available software package which implements the
approach, are illustrated through real metabolomic applications. Sample size estimates, informed by the intended
statistical analysis technique, and the associated uncertainty are provided.

Background
In many metabolomic experiments, one of the most
important objectives is to discover the set of metabo-
lites that plays a significant role in distinguishing sam-
ples from two different groups or populations and thus,
in the identification of novel biomarkers [1]. As in any
experiment, designing the experiment is critical if reli-
able statistically significant metabolites are to be obtained.
Since metabolomic experiments are expensive, it is cru-
cial to determine the optimal sample size n̂ to attain the
desired power to identify discriminatingmetabolites with-
out wasting resources or unnecessarily sampling many
subjects. However, metabolomic data are typically high
dimensional and correlated meaning sample size esti-
mation using classical statistical methods is not straight
forward.
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Currently, in the metabolomics literature, there is no
standard method for the determination of sample size
when designing ametabolomic experiment. Several meth-
ods currently exist in the literature for sample size
selection in the high-dimensional data setting [2-5]. How-
ever, none of these methods are suitable for metabolomic
experiments since many either assume variables have
equal variance or are independent. More importantly,
these methods rely on the existence of some experimen-
tal pilot data on which the actual sample size selection is
then based, and are not based on the method to be used
to analyze the data. In metabolomic studies, experimen-
tal pilot data are rarely available, making such sample size
selection approaches redundant.
In this article, we propose a method known as MetSizeR

for sample size estimation for metabolomic experiments
that addresses some of these limitations. MetSizeR is
founded on the idea that the method for selecting sam-
ple size firmly depends on the type of data analysis the
researcher intends to employ. In a situation where exper-
imental pilot data are not available, pseudo-metabolomic
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data are simulated from a statistical model. The specific
statistical model from which the pseudo-metabolomic
data are simulated depends on the type of statistical anal-
ysis that the metabolomic scientist intends to use. In its
current form the MetSizeR approach assumes the user
intends to employ one of the following three statistical
analysis techniques on completion of their experiment:

1. Probabilistic Principal Components Analysis (PPCA)
[6,7].

2. Probabilistic Principal Components and Covariates
Analysis (PPCCA) [7].

3. Dynamic Probabilistic Principal Components
Analysis (DPPCA) [8].

Intuitively the MetSizeR method can be naturally
extended to include other analysis approaches, assuming
they are based on a statistical model rather than being
non-parametric in nature.
MetSizeR draws on two currently existing methods

(see [2] and [3]) for sample size calculation in high-
dimensional data settings. While the approach in [3] is
based on the existence of an experimental pilot data set,
the approach detailed in [2] simulates pilot data from a
statistical model. Further, while independence in the data
is assumed in [2], the approach in [3] uses permutation
methods to account for the correlation in the experimen-
tal pilot data. MetSizeR combines these ideas of prior
simulation and permutation based techniques to estimate
the sample size for metabolomic experiments. The main
advantage of the developed approach is its ability to deter-
mine sample size without experimental pilot data and
without assuming variable independence.
A graphic user interface (GUI) software calledMetSizeR

was developed to implement this approach to estimat-
ing sample sizes in R [9]. Effort was focused on design-
ing the interface of MetSizeR to encourage its wide use
in the metabolomics community regardless of previous
knowledge of R. The software is available through the R
statistical software environment www.r-project.org.

Methods
Metabolomic data sets are typically acquired using ana-
lytical technologies such as nuclear magnetic resonance
spectroscopy (NMR) [10] and mass spectrometry (MS)
[11]. The spectrum resulting from NMR spectroscopy is
usually divided into spectral bins (representing variables)
and the signal intensities within the bins are related to
the relative abundances of metabolites. MS is typically
used for targeted metabolomics in which a specified list
of metabolites is measured [12]. The following section
describes how the number of samples required for either
an NMR or an MS metabolomic experiment can be deter-
mined under the MetSizeR approach.

Sample size estimation
Let x̄jg be the estimate of the average signal intensity μjg
for metabolite j in samples from the treatment group g
which has corresponding sample size ng , where g = 1, 2.
Often in metabolomics, the goal of discovering a set of
metabolites that discriminates between samples from two
treatment groups is achieved by testing the hypothesis
Hoj : μj1 − μj2 = 0, on each metabolite j, where j =
1, . . . , p. The aim of discovering discriminating metabo-
lites can be framed as a multiple testing problem as there
are p hypotheses to be tested and the probability of falsely
declaring a metabolite as significant increases with p. It
is therefore important to estimate sample size while con-
trolling an error rate to improve the power of the test
for identifying significant metabolites. MetSizeR focuses
on controlling the false discovery rate (FDR, [13]). Here,
the FDR is the expected number of metabolites incor-
rectly deemed to be significantly different between the
two treatment groups, as a proportion of the total number
of metabolites declared to be significant.

The test statistic and its distribution
A test statistic widely used to identify discriminating
metabolites is a two sample t-statistic. The t-statistic TS
is evaluated for all metabolites, j = 1, . . . , p, under the
assumption that the null hypothesis of no differenceμj1 =
μj2 is true:

TSj = (x̄j1 − x̄j2)
Sj + cf

,

where Sj =
{(

1
n1

+ 1
n2

)
(n1 − 1)(sj1)2 + (n2 − 1)(sj2)2

n1 + n2 − 2

} 1
2

,

where Sj is the estimate of the pooled standard error for
metabolite j. The corresponding within treatment vari-
ability estimate is s2jg = (ng − 1)−1 ∑ng

i=1(x(jg)i − x̄jg)2
for g = 1, 2 where x(jg)i denotes the signal intensity for
metabolite j in sample i from the treatment group g. A
correction factor cf is a small positive value added to
the standard error of each metabolite to prevent some
metabolites with signal intensity near zero from hav-
ing large test statistic TSj; such a metabolite may have
TSj ≈ 0/0.
The typical assumption about the null distribution

(i.e. the distribution under the null hypotheses) of the
test statistic TSj is the t-distribution with n1 + n2 − 2
degrees of freedom. However, when the data violate such
an assumption, misleading sample size estimates would
result. Hence, as in [3], MetSizeR estimates the null dis-
tribution of TSj using a permutation technique. This is
a non-parametric method based on the assumption that
under the null hypothesis of no difference, the distribu-
tion of the test statistic does not change no matter how
the group labels of the pilot data are permuted. The data
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generated using this approachmaintains the between sub-
ject variability and the amount of noise in the data. The
null distribution of the test statistic TS is estimated by
randomly permuting the group labels of pilot data and cal-
culating the test statistic for each metabolite, TSjt , where
t = 1, . . . ,T permutations.

Analysis based data simulation
Unfortunately, in most cases, experimental pilot data are
not readily available in metabolomics since pilot studies
are rarely done. Therefore, MetSizeR uses the intended
statistical analysis model to simulate pilot data. The sim-
ulated pilot data are then used to learn about the null
distribution of the relevant test statistic for estimating
sample size. This simulation approach is similar to that in
[2] in which pilot data are simulated from the marginal
model:

p (x) =
∫

p (x|u, θ) dp (u, θ),

where x is the n × p data matrix, u denotes the latent
variables, and θ is a vector of unknown model parame-
ters. Simulating from the marginal model is achieved by
first generating values of the parameters and the latent
variables from the prior distribution p(u, θ), and then sim-
ulating the data from the assumed model p(x|u, θ) given
the simulated values of u and θ .
Currently, MetSizeR assumes the metabolomic practi-

tioner will use one of three different statistical models
p(x|u, θ) to analyse the data from their metabolomic
experiment – either the PPCA, PPCCA or DPPCAmodel.
Simulation of the parameters of these models is based on
the model assumptions and on prior expert knowledge
of metabolomic data properties. As PPCA is equivalent
to the widely used Principal Components Analysis (PCA)
method, simulating from the PPCA model is discussed
here; details of the simulation of pilot data from the closely
related PPCCA and DPPCA models are provided in the
Additional file 1. Specifically, PPCA is a probabilistic for-
mulation of PCA based on a Gaussian latent variable
model [6,7]. PPCA models the high dimensional spec-
trum xTi = (xi1, . . . , xip) of subject i (i = 1, . . . , n where
n = n1 + n2) as a linear function of the corresponding
low dimensional latent variable uTi = (ui1, . . . ,uiq), where
(q � p). The PPCA model can be expressed as follows

xi = Wui + μ + εi

where W is a p × q loadings matrix, μ is a mean vec-
tor and εi is multivariate Gaussian noise for observation i,
i.e. p(εi) = MVNp(0 , σ 2I) where I denotes the identity
matrix. The latent variable ui is also multivariate Gaus-
sian distributed, p(ui) = MVNq(0 , I). The maximum
likelihood estimates of the loadings matrix W and the
latent variable u in the PPCA model are equivalent to

the traditional PCA loadings matrix and principal compo-
nent scores. For a given sample size n, pilot data x can be
simulated from the PPCA model as follows:

1. Generate parameter values from their prior
distributions:

p (ui) = MVNq(0, I) for i = 1, . . . n.
p (wj) = MVNq(μW ,�W ) for j = 1, . . . p.

p (σ 2) = IG(α1,α2)

2. Given the generated model parameters and latent
variables the pilot data x are then simulated from the
PPCA model:

p (xi|ui,W, σ 2) = MVNp (Wui, σ
2I) for i = 1, . . . , n.

Estimating sample size based on pilot data simulated in
this way ensures the estimated sample size is firmly depen-
dent on the type of model being used to analyse the real
experimental metabolomic data. Hence, MetSizeR repre-
sents an analysis based approach to sample size estimation
formetabolomic studies. The specific steps involved in the
MetsizeR algorithm are detailed in the next section.

TheMetSizeR algorithm
The MetSizeR procedure for sample size estimation starts
with a number ntry of different sample sizes and a user-
specified FDR (denoted by target.fdr). It then searches for
the optimal sample size n̂ by estimating the FDR for each
of the ntry sample sizes. In order to estimate FDR for each
sample size, the null distribution of the test statistics of all
metabolites is estimated and then a shift constant is added
to the test statistics of some po metabolites to allow them
to be truly significant. The null distribution is estimated
by calculating the test statistics of the permuted pilot data.
After obtaining the critical values of the null distribution,
the FDR is estimated. The optimal sample size n̂ is then
set to be the sample size with FDR equal to target.fdr.
In summary, the MetSizeR sample size estimation

method proceeds as follows:

1. Specify the input parameters which include the
desired level of FDR (target.fdr), the expected
proportion m of significant metabolites and the
model to be used when analyzing the observed
metabolomic data.

2. Simulate pilot data of sample size nk from the
assumed analysis model, where k = 1, . . . , ntry. Pilot
data simulation from the PPCA model is detailed in
the previous Section; the Additional file 1 details
pilot data simulation from the PPCCA and DPPCA
models.

3. Estimate the null distribution for all metabolites by
randomly permuting the group labels of the
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simulated pilot data and computing the test statistic
TSjt for each metabolite j and each permuted data
set t for T permutations.

4. Estimate the FDR for each permuted data set
t = 1, . . . ,T :

(a) Consider the corresponding p-vector of the
test statistics TSt = (TS1t ,TS2t , . . . ,TSpt) for
all metabolites on permutation t.

(b) Randomly sample po = m × p of the test
statistics TSt and add δ

�jt(
√

1
n1

+ 1
n2

)
to their

intensities. This allows po metabolites to be
truly significant. Here, δ is the effect size, and
�jt is the true within group standard
deviation estimated by Sjt√

1
n1

+ 1
n2

.

(c) A cut off point crit is set to be the ptho largest
absolute value of the test statistics TSt . All
metabolites with |TSjt| > crit are declared as
significant. The FDR for permutation t can
then be calculated.

5. Estimate the FDR for data simulation s by taking the
50th percentile of the FDR values of 1, . . . ,T
permutations.

6. Repeat steps 2 to 5 for s = 1, . . . , SIM simulations
and report the 10th, 50th and 90th percentiles of the
FDR values for sample size nk .

7. Repeat steps 2 to 6 for k = 1, . . . , ntry different
sample sizes and select the optimal sample size n̂ as
the nk with FDR = target.fdr.

The total number of permutations T used to estimate
the sampling distribution of the test statistics TS was
chosen to be twenty. In the samr R package [3] 20 per-
mutations were used to estimate the null distribution and
they give accurate estimates of the FDR. Here, the value
of the effect size δ is chosen based on the variance of the
underlying model. The optimal sample size n̂ is estimated
by predicting the sample size at target.fdr using a simple
linear regressionmodel on values of FDR above and below
the target.fdr with their corresponding sample sizes nk .
The estimated sample size by MetSizeR ensures that the
power or the confidence level in statistical tests reaches
(1-target.fdr).

Parameter specification: details and guidelines
The MetSizeR algorithm requires the specification of sev-
eral parameters; some are parameters relevant to the
intended analysis model, and some are parameters rele-
vant to the sample size estimation procedure itself.
In terms of the MetSizeR GUI which has been devel-

oped, the user is requested to specify parameters specific

to the sample size estimation procedure i.e. the num-
ber of bins in the NMR or MS spectrum, the expected
proportion of significant bins, the target FDR and the
minimum sample size they wish to be considered. The
default settings of these parameters are 200 spectral bins,
20% significantly different bins, a target FDR of 5% and
a minimum sample size of 4. The choice of the number
and proportion of significantly different spectral bins will
naturally be informed by the metabolomic practitioner’s
knowledge, as will the minimum sample size choice. For
the target FDR, again this depends on the conservatism of
the metabolomic practitioner and/or the research ques-
tion of interest, but a FDR of 5% is indicative of typical
statistical practice. The user can easily re-run the Met-
SizeR algorithm for different settings of these parameters
to ascertain the influence of their particular specifica-
tions. However, within the MetSizeR GUI the user has
the option of requesting plots of the expected propor-
tion of significant bins versus the FDR, over different
sample sizes, giving insight to the influence of this par-
ticularly influential parameter on sample size estimation.
Regarding the specification of parameters relevant to the
intended analysis model, in the MetSizeR GUI, the user
is only required to specify the intended analysis model
(PPCA, PPCCA or DPPCA), and in the case of PPCCA,
the number of covariates to be included. Both of these
decisions are again practitioner informed, depending on
the particular experiment under consideration. The Met-
SizeR manual, available through the developed MetSizeR
GUI, guides the user through these parameter specifica-
tion steps using a number of illustrative examples.
The remaining parameters in the MetSizeR algorithm

have been fixed within the R code underlying the Met-
SizeR GUI, but given the open source nature of R, these
can be changed by the user if desired. In the context of the
PPCA model discussed above the hyperparameters of the
prior distributions of the loadings matrixW and the vari-
ance σ 2 are based on previous estimates ofW and σ 2 from
applications of PPCA to metabolomic data (eg. [7,8]).
Each row of the loadings matrix W is simulated from a
standard multivariate Gaussian distribution MVNq(0, I)
and the noise variance σ 2 is simulated from an inverse
gamma distribution with shape parameter α1 = 3 and
scale parameter α2 = 4. Hyperparameter settings for the
PPCCA and DPPCAmodels are detailed in the Additional
file 1. Within the MetSizeR algorithm four final parame-
ters are specified: the effect size δ (fixed at 2.3, the 99th
quantile of the assumed prior distribution of the loadings),
the correction factor cf (fixed as the fifth percentile of the
estimated standard errors of all metabolites), the number
of permutations T (set to 20) and the number of simula-
tions SIM (set at 20). These specifications are based on
the choices in [3,5,14] in similar sample size estimation
settings.
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Results
This section illustrates the application of MetSizeR to
different metabolomic experimental settings. In the first
section, MetSizeR is employed to estimate sample size in
the setting where experimental pilot data are not available;
the second section considers the case where experimental
pilot data are available.

Sample size estimation using simulated pilot data
Here the MetSizeR approach to sample size estimation is
illustrated in the setting where experimental pilot data are
not available and it is assumed that the user has indicated
that a PPCA model will be used to analyze the observed
experimental data. Further, it is assumed that the user has
specified that the spectra will consist of 300 spectral bins,
the target FDR is 5% and the expected proportion of sig-
nificant spectral bins is 20%. In this example, the user
has also specified that they wish to consider a minimum
sample size of ten, with five in each treatment group (i.e.
n1 = 5 and n2 = 5). All otherMetSizeR parameters are set
at their default values, as detailed in the previous section.
TheMetSizeRmethod was then applied, and the 10th, 50th
and 90th percentiles of the FDR were calculated across a
range of sample sizes and are shown in Figure 1. The sam-
ple size at which the target FDR of 5% was achieved was

estimated to be 30 with 15 in each treatment group as
shown in Figure 1(A).
The expected proportion of significant spectral bins

specified by the user impacts on the estimated num-
ber of samples required for the metabolomic experiment.
Figures 1(B), 1(C) and 1(D) demonstrate the effect on FDR
of varying the expected proportion of significant spec-
tral bins for three different sample sizes. The figures show
that, increasing the expected proportion of significant
spectral bins reduces the FDR.
A second example which demonstrates the applicability

of MetSizeR is based on an experimental paradigm where
additional information is available in the form of covari-
ates. In this instance, the PPCCA model will be used to
analyze the acquired data and thus was used to simulate
pilot data with 300 spectral bins, five samples from each
treatment group and two covariates. Fixing the target FDR
at 5% and the expected proportion at 20%, Figure 2(A)
demonstrates that when two covariates are included in the
PPCCA model, the total number of samples required for
such an experiment increases to 36 with 18 samples in
each treatment group.
Figure 2(B) illustrates a third example of the setting

where no experimental pilot data are available and the
practitioner aims to conduct a longitudinal metabolomic
experiment. The pilot data for this example are simulated
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Figure 1 Sample size estimation without experimental pilot data using the PPCAmodel. In each panel is the estimated FDR (solid red lines)
as well as the 10th and 90th percentiles (dashed red lines). A horizontal dashed black line is the target FDR at 5%. (A) The sample size n̂ is estimated
to be 30 with 15 samples in each treatment group. (B-D) show the effect of varying the proportion of significant bins over a range of sample sizes.
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from the DPPCA model; the data are simulated by only
focusing on the first time point of the experiment as it
is expected that the same number of subjects will be fol-
lowed over time and that, while there may be dropouts,
the largest number of subjects will be present at the first
time point. Figure 2(B) shows that the expected number
of samples required for a longitudinal study of 300 spec-
tral bins with 20% significant bins and a target FDR of 5%,
is 24 with 12 samples from each treatment group.

Sample size estimation with experimental pilot data
In a situation where experimental pilot data are available,
parameter estimates used for simulations are based on fit-
ting the underlying model to the experimental pilot data.
Here, the application of MetSizeR is illustrated using real
metabolomic data sets as experimental pilot data.
The first experimental pilot data set is from a longi-

tudinal metabolomic animal study. Urine samples of 18
animals in two treatment groups were collected over a
15 day period and the animals’ weights were measured.
Details of this study have been previously detailed in
[15]. Data from day 10 of the study were used as exper-
imental pilot data here; the NMR spectra consist of 189
spectral bins with nine samples in each treatment group.
The PPCCA model was fitted to the experimental pilot
data, with weight as a covariate and the maximum likeli-
hood parameter estimates from fitting this model are used
for data simulations in MetSizeR. Controlling the target
FDR at 5% and setting the expected proportion of signif-
icant bins at 20%, the MetSizeR method was employed.
Figure 3(A) depicts that the sample size estimate is 40,
with 20 samples in each treatment group. It is interesting
to note that, the 10% and 90% curves in Figure 3(A) are
much narrower than in the previous examples in which
MetSizeR was used to estimate sample size with no exper-
imental pilot data (Figures 1 and 2). This reduction in
uncertainty is due to the fact that MetSizeR simulations
are now based on fixed parameter values not on draws
from prior distributions as used when experimental pilot
data are not available.
The approach developed here for sample size estima-

tion is not limited to NMR data. The method has been
developed to accept data from targetedmetabolomic anal-
ysis using MS, thus ensuring its applicability across the
metabolomics community. Setting MetSizeR specifica-
tions as in the previous examples, the PPCA model was
fitted to a targeted metabolomic MS pilot data set and
under the MetSizR algorithm, the estimated sample size is
shown in Figure 3(B).

Discussion and conclusions
Determining sample sizes in metabolomics is important
but due to the complexity of these experiments, there are
currently no standard methods for sample size estimation

in metabolomics. Moreover, since pilot studies are rarely
done in metabolomics, sample size estimation approaches
for high dimensional data studies requiring experimental
pilot data, cannot be applied.
The method presented in this article is a straight

forward approach for determining sample sizes for
metabolomic experiments whilst controlling the FDR.
The main advantage of the developed approach is its abil-
ity to determine sample size even when experimental pilot
data are not available. Another key advantage is that it
takes the type of analysis the researcher intends to use
into consideration when estimating sample size and this
can improve the power of the study. Also, since MetSizeR
employs permutation techniques to estimate sample size,
it accounts for correlation between metabolites and effect
size variability. The method has been developed to accept
both NMR and targeted MS data which will ensure wide
applicability in the metabolomics community. Further, a
software package facilitates easy implementation of the
MetSizeR approach.
Areas of future work are multiple and varied. MetSizeR

is currently designed to estimate the number of sam-
ples required for metabolomic experiments which involve
two groups; modifications to the MetSizeR approach are
possible to accommodate different metabolomic experi-
mental designs. Alternatives to the permutation approach
employed in MetSizeR could be examined – bootstrap
sampling would provide an interesting alternative. Proof
of concept metabolomic experiments are currently under-
way to validate the MetSizeR approach.

Availability and requirements
The package MetSizeR has been developed for the R
statistical environment (www.r-project.org) and is freely
available at cran.r-project.org. The package is accompa-
nied by documentation files to facilitate its use.
Project name: MetSizeR
Project home page: cran.r-project.org/web/packages/
MetSizeR/
Operating system(s): Platform independent.
Programming language: R platform.
Other requirements: No.
License: GPL (≥ 2)
Any restrictions to use: It is available for free download.
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Additional file 1: Simulating from the PPCCA and DPPCAmodels.
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