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Abstract

Background: Amyloids are proteins capable of forming aberrant intramolecular contact sites, characteristic of beta
zipper configuration. Amyloids can underlie serious health conditions, e.g. Alzheimer’s or Parkinson’s diseases. It has
been proposed that short segments of amino acids can be responsible for protein amyloidogenicity, but no more
than two hundred such hexapeptides have been experimentally found. The authors of the computational tool Pafig
published in BMC Bioinformatics a method for extending the amyloid hexapeptide dataset that could be used for
training and testing models. They assumed that all hexapeptides belonging to an amyloid protein can be regarded
as amylopositive, while those from proteins never reported as amyloid are always amylonegative. Here we show
why the above described method of extending datasets is wrong and discuss the reasons why the incorrect data
could lead to falsely correct classification.

Results: The amyloid classification of hexapeptides by Pafig was confronted with the classification results from
different state of the art computational methods and the outputs of all methods were studied by clustering
analysis. The clustering methods show that Pafig is an outlier with regard to other approaches. Our study of the
statistical patterns of its training and testing datasets showed a strong bias towards STVIIE hexapeptide in their
positive part. Different statistical patterns of seemingly amylo -positive and -negative hexapeptides allow for a
repeatable classification, which is not related to amyloid propensity of the hexapetides.

Conclusions: Our study on recognition of amyloid hexapeptides showed that occurrence of incidental patterns in
wrongly selected datasets can produce falsely correct results of classification. The assumption that all hexapeptides
belonging to amyloid protein can be regarded as amylopositive and those from proteins never reported as amyloid
are always amylonegative is not supported by any other computational method. This is in line with experimental
observations that amyloid propensity of a full protein can result from only one amyloidogenic fragment in this
protein, while the occurrence of amyliodogenic part that is well hidden inside the protein may never lead to fibril
formation. This leads to the conclusion that Pafig does not provide correct classification with regard to
amyloidogenicity.
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Background
Amyloids are proteins capable of forming aberrant intra-
molecular contact sites that are characteristic of the beta
zipper configuration, and can lead to fibrils instead of
the functional structure of a protein [1-5]. The processes
of amyloid oligomerization, which precedes fibril forma-
tion is currently regarded as responsible for serious
health conditions, such as Alzheimer’s disease (amyloid-
β, tau), Parkinson’s disease (α-synuclein), type 2 diabetes
(amylin), Creutzfeldt-Jakob’s disease (prion protein),
Huntington disease (huntington), amyotrophic lateral
sclerosis (SOD1), and many others (for a review see e.g.)
[6]. Therefore, it is of great interest to develop methods
for predicting mechanisms leading to this phenomenon.
It has been proposed that short segments of amino acids
can be responsible for the amyloidogenic properties
[7,8]. Those fragments are harmless only when they are
buried inside a protein. The fragments responsible for
amyloidogenicity of the whole protein are believed to be
4–10 residues long and it is often assumed that 6-residue
fragments with amyloidogenic properties are sufficient
“hot spots” [9]. Recognition of amyloidogenic fragments
can be obtained by computational approach, for ex-
ample physico-chemical methods, e.g. Tango [10], Zip-
perDB [9,11], Pasta [12], AggreScan [13], PreAmyl [14],
Zyggregator [15], CamFold [16], NetCSSP [17], FoldA-
myloid [18], AmyloidMutant [19,20], BetaScan [21], and
consensus AmylPred [22]. Statistical methods have also
been employed in the classification. In our previous
work we used classical machine learning methods [23]
based on WEKA [24]. Other methods include Waltz
[25] using Position Specific Scoring Matrices (PSSM),
or Bayessian classifier and weighted decision tree ap-
plied to long sequences of bacterial antibodies [26].
No more than two hundreds of such hexapeptides have

been experimentally found. New computational algorithms
are trained or validated on the scarce experimental dataset.
Two papers published in BMC Bioinformatics, presenting
machine learning methods - Pafig [27] and another
approach based on Pafig [28], used their own method
for extending the training and testing datasets. The authors
assumed that all hexapeptides that belong to an amyloid
protein can be regarded as amylo-positive, while those
from proteins never reported as amyloid are always
amylo-negative. Different machine learning methods
were then applied to classify amyloid hexapeptides trained
on a few thousand of full-length proteins cut into hexa-
peptides, which were labeled according to this scheme. The
classification, validated on hexapeptides obtained in the
same way, produced seemingly good results.
However, due to experimental observations, amyloid

propensity of a full protein can result only from one
amyloidogenic fragment in this protein, while the occur-
rence of amyloiodogenic part, which is well hidden inside
the protein, may never lead to fibril formation. This was
confirmed by results of 3D profile method [9], which pro-
duced the largest computational database of potential
amyloid hexapeptides – ZipperDB [11]. In the database
there are very many examples of proteins including highly
amyloidogenic fragments that have never been observed
to form an amyloid. It is possible that those fragments are
screened inside the protein and deprived of contacts with
other fragments of high amyloid propensity, hence unable
to start oligomerization and fibril formation.
Therefore, we decided to look closer at the datasets pro-

posed in Pafig (Hexpepset) and validate the results of this
method, which was trained on a dataset obtained contrary
to these observations. For this purpose we performed stat-
istical analysis of the dataset with regard to possible false
patterns or undesirable biases. Then we used other state
of the art computational methods to classify amyloid hex-
apeptides and compare their results with Pafig by means
of clustering approach. The objective was to study how
compatible is Pafig to other classification methods.

Results and discussion
Dataset
The analysis of the total Hexpepset shows strong bias
towards STVIIE hexapaptide, which can be observed at
the Hexpepset logo (Figure 1), generated with WeBLogo
[29]. This bias originates from the contribution of the
largest up-to-date experimental amyloid hexapeptide
dataset - AmylHex [9], which was incorporated into the
Hexpeptset. In the positive part of the Hexpeptset, 66
hexapeptides (5.4%) come from AmylHex(+). Addition-
ally, Hexpeptset(+) includes 13 incorrect hexapeptides
(1%) that belong to AmylHex(−). Hexpeptset(−) does not
include any hexapeptide from AmylHex. The influence
of AmylHex on Hexpeptset is strong. The bias also
means that the peptides are not representative of the
protein world, which was the main criticism towards
AmylHex dataset [10]. We tested the Hexpeptset with
regard to its representativeness by comparing to UniProt
statistics. Table 1 presents the ratio of each residue con-
tained in Hexpeptset versus UniProt representation,
which takes into account unequal contribution from dif-
ferent amino acids. Numbers greater than 1 indicate
over-represented residues; STVIIE is presented in bold,
the most abundant residues are in red.
The positive (Figure 1) and negative (Figure 1) parts of

Hexpeptset exhibit patterns, which are different for posi-
tive and negative sets. This fact can be sufficient reason
for the machine learning methods, trained and tested on
this dataset, to be able to learn to distinguish hexapep-
tides from these two datasets. The question arises as to
whether these patterns are related to amyloid propensity
or did they appeared incidentally with strong contribu-
tion of AmylHex bias to positive Hexpeptset.



A

B
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Figure 1 Statistical distribution of aminoacids in hexapeptides from training Pafig dataset. Graphical representation of the Hexpeptset
logo: (A) all hexapeptides, (B) positive and (C) negative parts of the Hexpeptset.
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Machine learning methods reveal two clusters
The Hexpeptset dataset, containing a binary classifica-
tion of 2452 hexapeptides, was applied to three state of
the art methods FoldAmylod [18], Waltz [25], and
AmylPred [30]. The results of classification can be seen
as a binary matrix (see Additional file 1). To identify
similarity or dissimilarity between all examined methods
(i.e. Pafig, FoldAmyloid, Waltz, and AmylPred) the clus-
tering was applied (see Methods for details).
The clusterSim package of R programming language,

applied for testing all combinations of the number of
clusters, distance metrics, and clustering methods, re-
vealed two distinctly different groups of methods, i.e.
FoldAmyloid, Waltz, and AmylPred located in one clus-
ter, and Pafig in the other one. The Baker and Hubert
index gained the highest possible value of 1. The exem-
plary dendrograms for different linkage metrics created
by unsupervised hierarchical clustering (agnes and
diana) are presented in Figure 2. All of them indicate
two main clusters, in which Pafig is always located in a
separate cluster. Interestingly, two distinct subgroups
in the first cluster can be found: the first sub cluster



Table 1 Statistical distribution of Pafig training dataset

Residue position 1 2 3 4 5 6

K 1.5 1.5 1.5 1.5 1.5 1.4

R 0.7 0.7 0.7 0.8 0.8 0.7

D 0.9 0.9 0.9 0.8 0.8 0.9

E 1.3 1.3 1.3 1.3 1.3 1.8

N 1.1 1.0 1.1 1.0 1.0 1.0

Q 0.9 0.9 1.0 1.0 0.9 0.9

P 0.7 0.7 0.6 0.7 0.6 0.6

H 1.0 1.1 1.1 1.0 1.1 1.0

M 0.8 0.7 0.7 0.7 0.8 0.7

C 0.5 0.6 0.6 0.6 0.6 0.5

S 1.3 0.8 0.8 0.8 0.9 0.9

T 1.1 1.7 1.0 1.0 1.0 1.0

F 1.2 1.2 1.2 1.2 1.2 1.1

W 0.9 1.0 0.9 0.9 0.9 0.8

Y 1.2 1.2 1.2 1.2 1.2 1.5

V 1.1 1.1 1.6 1.1 1.2 1.1

L 0.7 0.7 0.8 0.7 0.7 0.7

I 0.8 0.8 0.8 1.4 1.4 0.8

G 1.1 1.0 1.0 1.0 1.1 1.1

A 0.9 0.9 1.0 1.0 1.0 0.9

Statistical distribution of Pafig full training dataset, including all positive
and negative hexapeptides, normalized versus frequencies of aminoacid
occurrence in all proteins deposited in UniProt. The expected values
for a well balanced training dataset should equal 1. The values above 1
denote over-representation of a residue at the specific location of
training hexapeptides, values below 1 show under-representation.
The bias from STVIIE is in bold.

Kotulska and Unold BMC Bioinformatics 2013, 14:351 Page 4 of 8
http://www.biomedcentral.com/1471-2105/14/351
consists of FoldAmyloid variants, whereas the second
sub cluster is composed of Waltz variants and
AmylPred. Since AmylPred is a consensus method in-
corporating several other methods, this can show
greater similarity to Waltz approach.
To confirm the obtained results, the stability-based

clustering method was applied. The merged consensus
clustering, which used resampling of data and different
clustering algorithms (agnes, k-means, pam, hclust, and
diana), created the merged consensus matrix that was
generated by unweighted averaging of the consensus
matrices provided by each clustering algorithm. The
merged matrix could be used as a distance matrix. Figure 3
presents the heatmap of merged consensus matrix calcu-
lated for two clusters. Bootstrapping of data and using a
bunch of clustering algorithms reaffirmed the conclusions
drawn above – all methods are divided into two branches,
Waltz and AmylPred are recognized as sub-branch within
one branch with FoldAmyloid, whereas Pafig is clustered
within the other branch.
Figure 4 shows a box plot with the robustness values as-

sociated with two clusters. From the Figure 4 it is clear, that
the membership robustness values are noticeably lower, on
average, for the Pafig method. Pafig results have to be
treated as significantly different from the results gained by
the other methods.
In the additional file (“Dataset of hexapeptides with amy-

loidogenic classification”) we compare the classification re-
sults of PAFIG and other classical computational methods
used in this study. The file also includes the sheets called
“non-amyloids” and “amyloids”, which compares the unani-
mous voting (“all agree”) of the classical methods over the
dataset Hexpepset with the Pafig classification. The classical
methods (except Pafig) are regarded as base learning algo-
rithms in heterogeneous ensemble method with unanimous
strategy. The results of this analysis show that hexapeptides
regarded as non–amyloids by the unanimous voting (1648
instances) are identically recognized by Pafig in only 57%,
which is close to random. On the other hand Pafig identi-
cally recognized 100% of hexapeptides classified as “amy-
loids”, however this set included only 28 instances.

Conclusions
Our study on recognition of amyloid hexapeptides showed
that occurrence of incidental patterns in wrongly selected
datasets can produce falsely correct results of classification.
In the Hexpeptset dataset, used for training machine
learning methods of Pafig, “amyloid” part of data ap-
peared strongly biased towards STVIIE hexapeptide,
which comes from experimental AmylHex dataset.
This bias contributed to the pattern, which could be
recognized by machine learning. On the other hand,
“non-amyloid” part of Hexpeptset lacks this bias, al-
though it exhibits a different pattern of its hexapep-
tides, which is not position-dependent. The difference
in patterns of these sets was sufficient for “successful”
training of machine learning methods. However, this
training did not allow for a correct classification of
amyloid hexapeptides. Comparison of classification re-
sults between Pafig and other computational state of
the art methods, by means of clustering methods,
showed that Pafig is an outlier with regard to the clas-
sification results. This means that its classification is
different and not related to amyloid properties of
hexapeptides.
Our results of data analysis are in line with experimen-

tal observations – amyloid propensity of a full protein
can result from only one amyloidogenic fragment in this
protein, while the occurrence of amyliodogenic part that
is well hidden inside the protein may never lead to fibril
formation.

Methods
Dataset
The analysis was performed on Hexpepset dataset, in-
troduced in Pafig. The Hexpepset dataset was down-
loaded from website of Pafig [31] and consisted of
2452 hexpeptides (1226 positive samples and 1226



Figure 2 Dendrograms of unsupervised hierarchical clustering for different linkage metrics and Sokal & Michener distance.
Dendrograms for Sokal & Michener distance and (a) average, (b) single, (c) complete, (d) ward, (e) weighted, and (f) diana linkages. Pafig method
is placed in a separate cluster, regardless of distance metric and hierarchical clustering method.
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negative samples). The positive samples in the Hexpep-
set dataset were collected by Pafig’s authors scanning
proteins that are proved as fibrils forming with a six-
residue window. The negative part contained samples
obtained by scanning the proteins that had not been
experimentally proved to form fibrils.

Validation with other classification methods
To test a homogeneity of the Pafig dataset with other
state of the art amyloid datasets, we used the Pafig
Hexpeptdataset dataset, denoted by P, as an input for
three methods: FoldAmyloid [18,32], Waltz [25,33],
and AmylPred AP [30,34] (as of December 2012). All
standard FoldAmyloid methods were applied: contacts –
denoted by FAEC, bone-bone donors FABBD, bone-bone
acceptors FABBA, hybrid (contacts + donors) FAH, and
triple hybrid (contacts + donors + acceptors) FATH. Waltz
was run with its standard optimizations for overall
performance and sensitivity. The following notation
was used: Waltz pH = 2.6 threshold 79 was denoted
as W2679, Waltz pH = 7 threshold 79 - W779, Waltz
pH = 2.6 threshold 92 - W2692, Waltz pH = 7 threshold
92 - W792, Waltz pH = 7 threshold 97 - W797, Waltz
pH = 7 threshold 79 - W779. The objective was to calcu-
late the similarity (dissimilarity) of different predictive
models (i.e. Pafig, FoldAmylod, Waltz, AmylPred) over
one dataset. To obtain this goal we used clustering
techniques.

Clustering of binary data
A binary matrix is used as data when clustering all
binary classifications of 2452 hexapeptides taken from



Figure 3 Heatmap of merged consensus matrix for two
clusters. Heatmap showing the similarity within of the two groups
of methods: Waltz (denoted by Wxxx, where, for example, Waltz at
pH = 2.6 and threshold = 79, was denoted by W2679, and Waltz at
pH= 7 and threshold = 79 was denoted as W779), AmylPred (AP), and
FoldAmyloid (Fxxxx). Pafig (P) was clustered as a quite different approach.
Similarity was calculated using merged distance matrix over different
clustering algorithms (agnes, pam, hclust, kmeans, and diana).
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Pafig dataset over FoldAmyloid, Waltz and AmylPred
methods (see Additional file 1). Up to now numerous
binary similarity measures and distance measures have
been used. In the survey by Choi et al. [35], 76 binary
similarity and distance measures were collected for
Figure 4 Box plots showing the robustness values associated with th
represents the membership robustness values of a method over different c
diana). The membership robustness is calculated as the average connectivi
While consensus clustering produces more or less identical membership ro
method is noticeably lower reflecting its heterogeneity.
dichotomous data. We employ three different distance
measures: Sokal & Michener [36]:

sSM ¼ aþ dð Þ
aþ bþ cþ dð Þ

Rogers & Tanimoto [37]:

sRT ¼ aþ dð Þ
aþ 2 bþ cð Þ þ dÞ

and Sokal & Sneath [38]:

sSS ¼ a d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ aþ cð Þ d þ cð Þp

where a, b, c, d are the elements of the contingency
table of binary data, N2x2, in which a = n1,1, b = n1,0, c =
n0,1, and d = n0,0. Note that all mentioned above binary
similarity measures take into account both positive (n11)
and negative matches (n00). This is because it is import-
ant to reflect the same classification of a hexapeptide by
examined methods.
To measure an internal cluster quality index and find

the optimal number of clusters, we used Baker and Hu-
bert clustering criterion [39] which is among the most
effective ones [40,41]. Baker and Hubert index is an
adaptation of Goodman & Kruskal’s Gamma statistics,
and it is calculated as follows:

G uð Þ ¼ sþ−s−
sþ þ s−

;

where s+ is the number of concordant comparisons (the
number of times that a pair of samples not clustered to-
gether have a larger separation than pairs that were in
e structures of each of the two cluster outcomes. Each box plot
onsensus clustering algorithms (agnes, pam, hclust, k-means, and
ty between the method and all of the other methods of the cluster.
bustness values for all methods but for Pafig, the robustness for Pafig
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the same clusters), s− is the number of discordant com-
parisons (within-cluster dissimilarity is strictly greater
than a between-cluster dissimilarity), u is the number of
clusters (u = 2,.., n −1), and n is the number of objects.
The value of u, which maximizes G(u), is regarded as
specifying the number of clusters.
The clusterSim package of the R programming lan-

guage was employed to determine the proper cluster
numbers [42]. To find the optimal value of an internal
cluster quality index (Baker and Hubert index), and
thereby the optimal number and content of clusters, the
package varies all combinations of distance measures
(Sokal & Michener, Rogers & Tanimoto, and Sokal &
Sneath) and clustering methods (single link, complete
link, average link, McQuitty, k-medoids, Ward, centroid,
median). All these combinations are tested against differ-
ent number of clusters (from 2 to 8).
To prove a reliability of the obtained results, i.e. the

identification of the correct number of clusters, we used
stability-based method for cluster validity. The stability-
based methods are the most robust and best performing
in terms of prediction [43]. Here, consensus clustering
[44] extended to merge consensus clustering by Simpson
[45] was chosen as a stability-based method of creating a
robust cluster outcome. In consensus clustering multiple
clustering algorithms are applied with a bootstrapping
approach, i.e. sampling and clustering is repeated many
times to find reliable cluster members. The obtained re-
sults are used to calculate cluster and membership ro-
bustness. Simpson et al. [45] extended this method to so
called merged consensus clustering by applying many
different clustering algorithms.
Additional file

Additional file 1: Dataset of hexapeptides with amyloidogenic
classification. It represents the classification results of the computational
methods and the consensus result of all those methods (except Pafig)
showing which hexapeptides seem improbable to form amyloids. The
additional spreadsheets in the file (called “non-amyloids” and “amyloids”)
include comparison of unanimous voting of the methods over the
dataset Hexpepset with Pafig classification“.
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