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Abstract

Background: Modern biological science generates a vast amount of data, the analysis of which presents a major
challenge to researchers. Data are commonly represented in tables stored as plain text files and require line-by-line
parsing for analysis, which is time consuming and error prone. Furthermore, there is no simple means of indexing
these files so that rows containing particular values can be quickly found.

Results: We introduce a new data format and software library called wormtable, which provides efficient access to
tabular data in Python. Wormtable stores data in a compact binary format, provides random access to rows, and
enables sophisticated indexing on columns within these tables. Files written in existing formats can be easily
converted to wormtable format, and we provide conversion utilities for the VCF and GTF formats.

Conclusions: Wormtable’s simple API allows users to process large tables orders of magnitude more quickly than is
possible when parsing text. Furthermore, the indexing facilities provide efficient access to subsets of the data along
with providing useful methods of summarising columns. Since third-party libraries or custom code are no longer
needed to parse complex plain text formats, analysis code can also be substantially simpler as well as being uniform
across different data formats. These benefits of reduced code complexity and greatly increased performance allow
users much greater freedom to explore their data.

Background
Despite the ever increasing volumes of data being pro-
cessed in bioinformatics, the methods used are almost
entirely based on plain text files. Data is usually encoded
in lines of text, with each row consisting of a series of tab-
delimited values. These files are easy to view and interpret
and can be processed on any platform with the minimum
of library dependencies. Using compression, text files can
be quite compact, and specialised indexing methods are
available to retrieve specific rows, for example rows which
intersect with a given genomic interval [1].
It is not sufficient, however, to simply store and retrieve

data. To use data it must be processed. This is the major
flaw in using text files as a data format; before we can
perform calculations, we must first parse the encoded
information into native machine values. This is a com-
putationally expensive process, and compression (if it
is used) adds substantial overhead. As a result, simple
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calculations over a large dataset may take many hours to
complete.
Another problem with tables stored as text files is that it

is difficult to index the information in particular columns.
This means that many operations on a table require a
complete scan through the file. The only viable means
of working with a subset of the data, therefore, is to
create another file consisting of the subset of interest.
This is inflexible and error prone, and multiplies already
significant storage requirements.
The obvious solution to these problems is to load tabu-

lar data into a relational database. Databases store values
in binary form so that parsing is not required, and sup-
port efficient retrieval and indexing. However, there are
many problems with this approach. Relational databases
are complex systems, each supporting different features
and SQL dialects. It is not a straightforward task to
design a schema for a particular dataset, particularly not
if portability across different databases is required. Simi-
larly, accessing data requires a knowledge of SQL. In the
most common case, a database server must be maintained
and so storage and user permissions must be carefully
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managed. All of these aspects require significant expertise
which is why so many researchers and programs continue
to use textual data formats.
A relational database server is far more than we require

in the majority of cases. Data files are usually written
once and not subsequently expected to change. Thus,
storing this information in a relational database with its
sophisticated concurrency control is entirely unnecessary.
Centralised storage of datasets creates an unnecessary
administration burden, as does an extra layer of user man-
agement. Therefore, although relational databases provide
powerful data management technologies, they are com-
plex to use and maintain and are rarely used for static
datasets.

Implementation
Wormtable (write-once read-many table) is a new data
format and software library designed specifically to deal
with the challenges of data processing in bioinformat-
ics. It provides a portable, compact, read-only store for
tabular data of essentially unlimited size. Tables can be
either written directly using the library, or converted from
existing formats via command line tools. Wormtable pro-
vides a simple, user friendly Python API to access rows
in the table, facilitating efficient and convenient access to
data. The core data manipulation and storage facilities are
written in C for efficiency.
Data is stored in rows using a compact binary format.

Each row consists of a defined number of columns, and
each column holds elements of a given type and size. Each
column is allocated a fixed number of bytes within the
‘fixed region’ of a row. For columns with fixed length,
the encoded elements are stored entirely within the fixed
region; for columns of variable length, the encoded ele-
ments are stored in the ‘variable region’ of the row, and
the location and number of elements stored in the fixed
region. The type, size and number of elements of each col-
umn are specified in the table schema, which is defined in
XML as part of the table’s metadata.
Wormtable currently supports signed and unsigned

integers, floating point and character data. Integer sizes
range from one to eight bytes, and real numbers are stored
as IEEE half, single, and double precision [2] floating point
values. Fixed and variable length character strings are also
supported. Using this flexible type system, columns can be
assigned the most appropriate type and size for the range
of values to be represented.
Rows are stored sequentially in a data file, and the off-

set and length of each row is stored in a Berkeley DB
[3] database. Thus, any given row can be found by first
looking up the database for its offset and length, and by
then reading the required set of bytes from the data file.
Berkeley DB is a free and open-source embedded database
toolkit that provides a scalable key-value store. It is a

mature and stable platform, and is currently the most
widely deployed database toolkit in the world [4].
Besides random access to rows, wormtable also pro-

vides indexes over arbitrary combinations of columns.
An index is a Berkeley DB database in which the keys
are the elements from the columns in question concate-
nated together, and the values are pointers to the original
rows. Indexesmakemany operationsmuchmore efficient,
because we can go directly to the rows we are interested in
without performing a full table scan. They also provide a
very efficient means of calculating a histogram for a given
set of columns. Moreover, wormtable supports binned
indexes, in which a range of values is mapped to a single
index key. This is very useful for floating point columns,
where it may not be necessary to distinguish between very
similar values.
Each table corresponds to a directory in the file sys-

tem which is used to store the data files, indexes and
metadata. Files within a table’s home directory are not
intended to be manipulated directly by users, and the
wtadmin program is provided to perform administration
tasks such as adding and removing indexes. This approach
is very flexible, since no centralised storage is required
and tables can be moved around and between systems
at will. Tables are portable across operating systems and
hardware architectures.

Results
API
The principle goal of wormtable is to provide efficient
access to data using an easy to learn interface. In Python,
the Table class provides the main interface, and imple-
ments the standard Python sequence protocols. Effi-
cient iteration over rows is provided by the cursor
method, which takes as an argument the list of columns
to read. Only the values for the columns of interest
are then retrieved, leading to considerable time savings.
The cursor method can take two additional arguments,
start and stop, which specify the rows of interest. This
allows us to efficiently seek to an arbitrary location in the
table and to read a given number of rows sequentially from
this point.
The Index class also has a cursor method with the

same signature, but in this case, rows are returned in the
order defined by the index. The start and stop argu-
ments are now defined in terms of index keys: all rows
in which the index key is greater than or equal to start
and less than stop are returned. Partial keys may also be
provided for multi-column indexes. The Index class also
provides an iterator over all keys, as well as a means of
counting the number of rows with a given key.
The API is straightforward, but it is flexible, pow-

erful and extensible. This simplicity ensures that pro-
grammers of all experience levels can take full advantage
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of the powerful data processing facilities that wormtable
provides. In the following subsections we illustrate the
performance advantages of wormtable via some examples.
These are not intended to be definitive benchmarks but
are simple examples to demonstrate the type of improve-
ments that can be expected by using wormtable over
existing methods.

Scan performance
The Variant Call Format (VCF) encodes information
about variant sites in a genome as tab-delimited rows in
a text file [5]. VCF is one of the most commonly used for-
mats to store genomic data from next generation sequenc-
ing. To illustrate the advantages of wormtable when
performing calculations over a whole table, we converted
a large publicly available VCF file (produced as part of the
Drosophila genetic reference panel [6]) to wormtable for-
mat. This VCF [7] consists of 15GB of uncompressed text
and contains data from the whole genome over 6,146,611
rows. Using the included vcf2wt program, the VCF was
converted to wormtable format on a workstation with an
Intel Xeon processor, 12GB of RAM and a single hard
disk. The conversion required approximately 69 minutes,
and the size of the resulting wormtable was 10GB (using
the smallest type required to represent the data in each
column).
Values are stored in wormtable in a portable binary for-

mat, so that no parsing is required when reading in rows.
To illustrate this advantage, we wrote a script to count
the number of transitions and transversions in the dataset
using wormtable and PyVCF [8], a Python VCF parser.
In this example we proceed row-by-row, examining the
REF and ALT columns and counting the transitions and
transversions we encounter. Using PyVCF this required
approximately 126 minutes, whereas the wormtable ver-
sion required 57 seconds. To compare against methods
that are known to be extremely efficient, we repeated
the same example using the Unix tools cut, grep and
awk, which required 80 seconds. Both the Unix pipeline
and wormtable were limited by the sequential read band-
width of the hard drive, and would therefore be much
faster using modern solid state storage. It should be noted,
however, that although Unix pipelines are efficient, it is a
difficult and error prone method of processing data when
more complex calculations are required.
Full table scans are often unnecessary in wormtable.

For many tasks, creating an appropriate index allows
us to seek directly to the rows of interest. To illustrate
this, we repeated the example of counting transitions
and transversions using an index on the REF and ALT
columns. The index required 3m40s to build and con-
sumed 66MB of storage space. Counting the number of
transitions and transversions using this index required
less than a second.

Seek performance
One of the most serious problems with tabular data stored
in text files is that it is not possible to access a particu-
lar row efficiently without some auxiliary index. Unless
we have some information on where a particular row is
located in a file, there is little that can be done except
to read the file line-by-line until the required row is
found. Tabix [1] solves this problem by compressing a
tab-delimited text file into blocks, and then storing an
index mapping genome position to the location of the
compressed block, and the position of the row within
the block. Tabix is specifically designed for range queries,
allowing us to efficiently retrieve all of the rows within a
given genomic range.
To compare the seek performance of wormtable with

Tabix, we compressed the VCF file mentioned in the pre-
vious subsection using bgzip (which required 11m8s)
and indexed it with tabix (1m12s). The size of the result-
ing compressed file was 2.9GB and the size of the index
file was 106KB. To duplicate the functionality of Tabix
on VCF data, we simply need to create an index on the
CHROM and POS columns using wtadmin add. This
required approximately 2 minutes and the resulting index
consumed 115MB of space.
We compared the seek performance of Tabix and

wormtable by generating a genomic location randomly
and retrieving all rows within 1Kb of this location. This
was repeated 104 times, and we measured both the
elapsed and processor time. The Tabix Python module
was used for the comparison, ensuring that no overheads
associated with process forking were incurred. The same
set of random locations were used for wormtable and
Tabix, ensuring a fair comparison.
When using a cold cache (i.e., no pages of the files in

question are present in the operating system’s cache) the
elapsed time for Tabix was 103 seconds with a processor
time of 65 seconds. For wormtable, the elapsed time was
181 seconds with a processor time of 5 seconds. Thus, the
time required to perform this test is dominated by waiting
for I/O in both cases. Since the wormtable file is con-
siderably larger than the compressed file used by Tabix,
more and larger hard drive seeks were required to bring
the required pages into memory. Once the pages were in
memory, however, Tabix needed to do much more work
to decompress then and make them usable, as shown by
the difference in processor times.
This difference is well illustrated by immediately repeat-

ing the same experiment, so that all the relevant pages
are in cache. In this case, the elapsed time was 56 sec-
onds for Tabix and around 2 seconds for wormtable. Thus,
the use of compression is a trade-off: it reduces file size,
which reduces the number of random seeks required, but
decompression is expensive and must be repeated each
time a block is accessed. The advantages of a smaller file
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in terms of reducing the number of seeks incurred would
also be largely negated by using solid state storage, where
random seeks do not incur such a heavy penalty.
The test used here is also highly synthetic, and unlikely

to be indicative of most real-world applications. The
majority of workloads have strong locality of reference
[9], and such large and extreme jumps across genomic
regions are unlikely to occur. In this case, wormtable is
much faster than Tabix, since there is no CPU overhead
of decompression. Furthermore, since Tabix returns rows
of text, the problem of parsing rows must still be solved.
This is expensive (as illustrated in the previous subsec-
tion), and creates extra code complexity. Wormtable, by
providing a simple API to access both rows and columns,
gives a unified interface for accessing data that is both
straightforward to use and highly efficient.

Discussion
The problems of enabling efficient random access to rows
and avoiding the large overhead of parsing text are well
understood, and efforts to address them are proceeding
in parallel for different file formats. BCF, for example, is
the binary version of the VCF format discussed above, in
which values within rows are stored in a packed binary
format. Similarly, BigBed and BigWig [10] are compressed
binary versions of the BED and WIG file formats, which
offer efficient random access along with the ability to
operate over a network.
There are significant difficulties, however, with having

many different binary file formats for bioinformatics data.
Each binary format requires a library and set of tools to
view and process it, as it is not reasonable to expect users
to decode binary files. Bindings for several different lan-
guages must also be provided, if the file format is to be
widely used. Maintaining these libraries, tools and lan-
guage bindings across different processor architectures
and operating systems is a complex software engineer-
ing task. Maintaining this ecosystem separately for many
different file formats is surely unsustainable.
Wormtable alleviates the need for these different for-

mats and libraries, as it is flexible enough to store many
different types of data. Wormtable is portable, and has
been tested on big- and little-endian platforms with 32
and 64 bit word sizes, along with many operating sys-
tem combinations. To take advantage of the advanced data
processing features of wormtable all that is required is
a conversion program, a considerably simpler task than
designing and supporting a custom binary file format.
The library supports efficient access to any data stored

in wormtable format, and currently provides conversion
utilities for the VCF and GTF formats. The most impor-
tant aspect of future development is to develop tools to
convert other tabular formats such as PSL, GFF, SAM and
BED to wormtable format. Such tools are not difficult to

develop, since all that is required is a parser for the format
in question written in Python.
Wormtable is currently limited to supporting Python,

and another important aspect of future development is to
create a C library along with bindings for other popular
languages such as Perl, R and PHP. Wormtable does not
support interval search, and so it is not straightforward
to find, for example, all rows overlapping a given genomic
region in GTF files. This problem has been solved several
times, however, and we aim to adapt existing techniques
[1,10] and incorporate them into wormtable. Compres-
sion of data can result in poor performance, but it is often
necessary when volumes of data are very large. Thus, we
plan on introducing optional compression of the data file
in wormtable in a future release. Beyond these additions, it
is difficult predict the precise direction of future develop-
ment since this depends on feedback from the community.
Wormtable is an open and collaborative project actively
seeking feedback and contributors.

Conclusions
The volume of data being produced in biological research
is growing rapidly, but the tools available to end users
to process data are still mostly based on parsing plain
text. This approach is very inefficient, and leads to sev-
eral undesirable outcomes. Firstly, and most obviously, a
researcher’s productivity is inevitably constrained while
waiting several hours for the result of a simple calcula-
tion. Without flexible indexing, working with a subset of a
data file usually requires the creation of another file con-
sisting of the subset in question, requiring extra storage
and maintenance. Additionally, code quality is reduced,
since testing over the entire dataset is infeasible and it is
less likely that the effects of changing arbitrary analysis
parameters will be systematically examined.
The classical approach to solving problems of this type

is to use a relational database, which provide sophisti-
cated data management techniques. However, relational
databases are unsuitable for storing static datasets as they
are complex to use and incur many unnecessary over-
heads. Wormtable provides the most important features
of database technologies (packed binary storage of values;
random access to rows; general purpose indexing) with-
out additional complexities and overheads. Wormtable’s
data model is also less rigid than relational databases,
supporting, for example, columns containing a variable
number of integers. Finally, wormtable is far more adapt-
able than a relational database. All widely used database
systems are complex and adding required features (e.g.
compression) would be very difficult. Adding new fea-
tures to wormtable, on the other hand, is straightforward
because it is far simpler and does not need to be com-
patible with the relational model and decades worth of
existing software.
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Themost important aspect of wormtable is its efficiency
and ease of use for end users, and we illustrated these
points using some examples of VCF data. After converting
a file in VCF format to wormtable using vcf2wt a user
can process the data very efficiently using Python. Access-
ing data from rows in wormtable is many times faster than
is possible by parsing rows encoded as text. This is also
a very convenient way to access VCF data, since individ-
ual columns are already parsed and all that is needed is
the name of the column of interest. To access regions of
the genome efficiently the user simply needs to create an
index on the chromosome (CHROM) and position (POS)
columns using the wtadmin add command. Wormtable
is not limited to VCF, but can store any form of fixed tabu-
lar data.We provide a conversion tool for the GTF format,
and several others are planned or could be contributed by
users.
Wormtable is not intended to replace text files as the

universal interchange format for biological data. It is
intended to provide a persistent data structure that can be
efficiently processed and searched. Using this data struc-
ture, researchers with no knowledge of database systems
can take full advantage of sophisticated data management
techniques, and write straightforward code to process
data efficiently. Different file formats can be handled con-
sistently in wormtable, reducing the need for third party
libraries to parse complex files and simplifying the code
required to process data. Together, these advantages of
increased performance and reduced code complexity can
substantially increase a researcher’s productivity and abil-
ity to explore their data.
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