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Abstract

Background: Significance analysis plays a major role in identifying and ranking genes, transcription factor binding
sites, DNA methylation regions, and other high-throughput features associated with illness. We propose a new
approach, called gene set bagging, for measuring the probability that a gene set replicates in future studies. Gene set
bagging involves resampling the original high-throughput data, performing gene-set analysis on the resampled data,
and confirming that biological categories replicate in the bagged samples.

Results: Using both simulated and publicly-available genomics data, we demonstrate that significant categories in a
gene set enrichment analysis may be unstable when subjected to resampling. We show our method estimates the
replication probability (R), the probability that a gene set will replicate as a significant result in future studies, and
show in simulations that this method reflects replication better than each set’s p-value.

Conclusions: Our results suggest that gene lists based on p-values are not necessarily stable, and therefore
additional steps like gene set bagging may improve biological inference on gene sets.

Keywords: Gene set enrichment analysis, Gene expression, DNA methylation, Gene ontology

Background

The gene expression program of cells can be organized
into a diverse set of pathways that perform specific func-
tions [1]. Human health depends on the functionality
of these pathways; de-regulation at the pathway level
may be more important for diseases like cancer than
de-regulation of specific genes [2]. The most common sta-
tistical approach for identifying pathways of interest in a
high-throughput experiment is to perform a significance
analysis gene-by-gene and then summarize the significant
hits using gene set or gene pathway analyses. Each path-
way or gene-set analysis is performed once on the entire
data set. However, there is variability in the identified gene
sets due to both the instability in gene rankings from the
original gene ranking analysis and from the pathway/set
analysis. Furthermore, scientists are often interested in
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whether these results will replicate as significant in future
similarly-designed studies using independent samples.
Here we propose a new approach to evaluate the sta-
bility of biological inference drawn from an experiment,
and estimate the probability that the result replicates in
future studies. Our approach, called gene set bagging, per-
forms a resampling of the entire discovery algorithm -
significance analysis and gene set enrichment - to identify
the most stable and reproducible enriched gene sets. Bag-
ging, also known as bootstrap aggregating, is traditionally
used for assessing the predictive accuracy and stability
of prediction models [3]. While bagging and bootstrap-
ping procedures have been used for differential expression
analyses [4] and other genome-wide applications [5-8]
here we introduce a new bagging procedure for signifi-
cance analysis. This procedure can be useful for both eval-
uating significance rankings and also for describing the
most reproducible genes and biological gene sets within
genomics experiments in a platform-independent fashion.
We perform resampling by drawing observations with
replacement from the (full) original data set with sample
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size equal to the original, performing a significance anal-
ysis followed by gene set analysis, and then identifying
which sets are enriched. We can identify which observed
gene sets are consistently enriched in resampled data, and
compute the gene set replication probability (R), a mea-
sure of gene set stability based directly on the biological
quantity of interest, representing the probability that an
observed gene set will be enriched in future experiments.

The replication probability (R) has some important
advantages over the traditionally-reported p-value for
summarizing gene set enrichment. The structure of the
gene set testing problem is fundamentally different than
other multiple hypothesis testing problems - correlations
between genes, different gene set sizes, and different lev-
els and fraction of differential expression within gene
sets make the hypotheses fundamentally not compara-
ble with standard significance testing [9,10]. We propose
to estimate directly the probability that a gene set will
replicate because an estimate of the probability of repli-
cation may be of more interest than a measure of sta-
tistical significance. Given the emphasis on replication
in genetics/genomics studies, this replication probability
may be another metric for directing molecular valida-
tion of important biological processes involved in human
disease.

We perform our gene set bagging method on two types
of genomics measurements: gene expression and DNA
methylation. Even after adjusting the genomic data for
potential batch effects, we demonstrate that some sig-
nificant gene sets fail to replicate well, yet other non-
significant sets have high replication rates. The results
for these different genomic technologies suggest that the
signal and noise structure of the specific genomic data
type contribute greatly to stability of gene sets. We use
a simulation study to assess replication across two sim-
ulated datasets, and evaluate the concordance between
replication probability (R) and the traditionally-reported
significance metric (P-value). In simulations we show that
the replication probability better quantifies the chance
that a significant gene set will be consistent across studies.
Our results suggest that: (1) gene set enrichment analy-
ses based on significance analysis may be unstable in some
cases, and (2) gene set bagging is a resampling approach
for measuring the stability of gene sets and estimating
replicability of biological conclusions.

Methods
For a given gene set, the goal is to estimate:

R; = Pr(Gene set [ will be significant in a new study).

The quantity R; is useful as a measure of the stability of
the significance of an identified gene set. Gene sets are fre-
quently used to interpret the biological results of studies,
so it is important to know if the biological interpretation
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would change if the study was repeated. This is partic-
ularly true since gene set analysis is subject to errors in
annotation, variation due to technological noise, and vari-
ation due to biological noise. We define “replicability” as
the ability to achieve similar results when experiments are
rerun, and note this differs from “reproducibility’, which
we view as the ability to run the analysis code again and
get the same answer within a dataset [11].

As an example of our general approach, we focus on
a real dataset examining the role of cigarette smoking
on gene expression (further explained in the following
“Datasets and implementation” section), which examined
expression differences associated with smoking exposure
in 40 smokers and 39 never-smokers. We define gene
expression measurements m; for each of j = 1,...,79
samples over i = 1,..., M genes/probes (corresponding
to gene g;) and a covariate of interest per sample (z; €
[currentsmoker, neversmoker]). We first want to identify
differentially expressed genes between the two outcome
groups, so we calculate an empirical Bayes regularized t-
statistic and resulting p-value for each gene [12]. We can
convert these p-values to q-values to identify which genes
are significant according to the false discovery rate. We
then test for enrichment among the significant genes in L
predefined gene sets using the usual hypergeometric test.
Each gene set yields a p-value (p;,/ = 1,..., L), reflecting
the degree of enrichment. Another approach to obtain-
ing the gene set p-value (p;) is to calculate them directly
from the significance ranks of the genes (thereby bypass-
ing the need to call a particular set of genes signifi-
cant). For example, the Wilcoxon rank-based gene set
enrichment test [13] available in the limma Bioconductor
package [14] can be used to test for a difference in the sig-
nificance ranks of the genes in the gene set versus all of
the other genes.

We then perform the gene set bagging algorithm over
B = 100 iterations. In each iteration, b, we resample
the gene expression vectors of the 40 smokers and 39
never-smokers, respectively, with replacement. Each gene
or probe yields a p-value via calculating a t-statistic in the
resampled data, and these statistics are passed to a gene
set analysis algorithm to produce a enrichment p-values
for the gene sets (pf’ ,1 =1,.,L), which are stored in col-
umn b of a L x B matrix, forb = 1,2,...,B. For each row,
which represents a gene set, we count the number of times
each subsampled p-value (p?) is less than « (here, 0.05),
and divide it by the number of iterations (B), resulting in
an estimate of the replication probability for that gene set
(R)). A

Estimated replication probabilities (R) are between 0
and 1, where 0 means that the gene set always had a p-
value greater than « in every iteration, and 1 means that
the category always had a p-value less than « in each itera-
tion. For analyses where the gene ranking is stable and the
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gene set calculation is stable, the replication probability
will be higher. This estimate of replication assesses the sta-
bility of the gene sets, and might be a better estimate of
biological reproducibility than the traditionally reported
p-values. Our goal is to identify the stable gene sets, akin
to Meinshausen and Bithlmann (2010) [15] in selecting a
more stable set of covariates in a regression model.

Algorithm 1 Gene set bagging procedure

1. Calculate a test statistic for each gene T;
2. Use the test statistics to calculate a P-value for each
gene set, p;, [ = 1...,L, using any standard gene set
analysis algorithm.
3.For(bel,..., B):
i. Resample individuals within outcome groups
ii. Estimate a bootstrap test statistic for each gene Ti*b
iii. Use the test statistics to calculate a bootstrap p-
value
for each gene set,p}kb, [=1...,L,using any standard
gene
set analysis algorithm.
4. Estimate the replication probability R =

B *b
1 1[p)" <a]
% for each gene set.

Datasets and implementation

Simulated data

We designed two simulation studies to assess different
properties of the replication probability based on the
Affymetrix Human Genome 133 Plus 2.0 gene expres-
sion microarray. Basing the simulation on an existing array
design, with probes annotated to genes that were already
mapped to gene ontology categories, allowed us to real-
istically add differential expression signal to specific gene
sets. We first selected a random sample of 100 gene sets to
use in our simulation, which corresponded to 2288 unique
genes. Then, for each simulation, we simulated genes via
the following model:

mjj = Po + Bizj + €;

where €;; ~ N(6,1), B; ~ N(1,0.5) if g; is differentially
expressed, and B; = 0 if g; is not differentially expressed.
The variables #;; and z; (defined above) correspond to the
expression value and group label, respectively.

In Simulation 1, we generated 1000 datasets, where each
consisted of 100 individuals (50 cases and 50 controls). For
each dataset, we made 100 genes differentially expressed
and computed the observed p-value (p;) and then the
replication probabilities (i;) for each geneset/ =1,. .., L.
In Simulation 2, to directly assess the replication prob-
ability across two datasets with the same differentially
expressed genes, we generated 100 pairs of datasets, where
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each dataset contained 50 individuals (25 cases and 25
controls). For each data set, we set 500 genes to be differ-
entially expressed, with the same parameter settings from
the above model. This simulation mimics a perfect repli-
cation of the gene-set experiment where all parameters are
the same. On each dataset, we then computed observed
p-values (p;) and replication probabilities (R) for each
gene set [.

Gene expression: cigarette smoking data

We tested the gene set bagging method in a differential
expression analysis with publicly-available data obtained
from Gene Expression Omnibus (GSE17913). This study
(initially approved by the Weill Cornell Medical College
Institutional Review Board) examined the association of
cigarette smoking with the oral epithelial transcriptome
by comparing buccal biopsies in 39 never-smokers with
40 active-smokers using the Affymetrix Human Genome
U133 Plus 2.0 microarray [16]. We processed the raw CEL
files using the RMA algorithm to perform intra-array nor-
malization and then performed quantile normalization to
adjust for between-array biases [17].

We performed surrogate variable analysis (SVA) to
adjust for potential batch effects [18,19]. Briefly, this
approach identifies the number of right singular vectors
that are associated with more variation than expected by
chance, and then in the subsets of genes driving this vari-
ation, constructs a ‘surrogate’ variable for each subset.
These surrogate variables are then included as covariates
in our differential expression analysis (so that the model
becomes: m;; = o + Bizj + viSV; + €).

We identified differentially expressed genes compar-
ing cases and controls while controlling for the surro-
gate variables using an empirical Bayes approach [20].
To determine statistical significance, resulting p-values
were converted to q-values to control for the false discov-
ery rate [21] and all transcripts with g-values less than
0.05 were considered significant. We performed a full
gene ontology analysis, and then ran the gene set bagging
algorithm.

DNA methylation: brain tissue

This approach is likely generalizable to most genomics
platforms, and we first tested this hypothesis using
DNA methylation data processed on the Illumina
HumanMethylation27 platform (obtained from GEO
[GSE15745]) from a recent paper [22] that assessed quan-
titative trait loci using methylation and expression data
in four different brain tissues (exempt from human sub-
jects research due to being postmortem tissue from brain
banks). Previous work has identified that DNA methyla-
tion signatures can distinguish brain tissues, and might
play a role in determining and stabilizing normal brain
differentiation [23]. We conducted our gene set bagging
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algorithm on the differential DNA methylation analysis
between the frontal and temporal cortices. We performed
the full differential methylation analysis comparing 131
front cortex and 126 temporal cortex samples using SVA
and the empirical Bayes approach as described above. All
probes with q-values less than 0.05 were considered sig-
nificant. We performed a full gene ontology analysis on
the gene associated with each probe (from the annotation
table), and ran the gene set bagging algorithm.

Results

R estimates the probability a gene set will be significant in
arepeated study

The interpretation of the replication probability reflects
the underlying stability of each outcome group. We simu-
lated 1,000 datasets from a common model (as described
in section “Datasets and implementation’, Simulation 1),
each with 100 differentially expressed genes. We then per-
formed gene set analysis (based on gene sets described
in section “Datasets and implementation”) using both the
hypergeometric and Wilcoxon tests and calculated the
replication probability estimates for each of gene set in
each of the 1,000 simulated studies. The average replica-
tion probability estimate across all 1,000 repeated stud-
ies very closely approximates the frequency that a gene
set is observed to be significant in those 1,000 studies
(Figure 1A and 1B). In other words, the estimate of the
replication probability is close to the probability a gene set
will be significant in a repeated study.

R correlates better with replication in repeated studies
Besides identifying which gene sets are the most sta-
ble, we can also assess how well the replication prob-
ability (R) reflects biological replication by generating
two independent simulated datasets with the same dif-
ferentially expressed genes, meant to represent repeated
studies of the same biological effect (described fully in
section “Datasets and implementation’, Simulation 2). We
performed traditional gene ontology analysis on both
datasets, obtaining p-values for each gene set calcu-
lated from the hypergeometric distribution, and then per-
formed our gene set bagging algorithm. There was very
strong Spearman correlation between pairs of datasets
across 100 simulation runs when all gene sets were con-
sidered regardless of whether the replication probability
(median = 0.854, IQR: 0.826-0.876) or p-value (median =
0.836, IQR: 0.809-0.869) was used (Figure 1C). However,
when only gene sets where at least 1 of 2 datasets was
significant at p < 0.05 per simulation run, the replica-
tion probability had much stronger correlation (median =
0.755, IQR = 0.678-0.817) than the p-value (median =
0.535, IQR: 0.387 - 0.648) (Figure 1D).

These results suggest that globally, there might not be
a large difference between the replication probability and
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the p-value, but when there is any signal in a particular
gene set, the replication probability better captures inde-
pendent replication of that set in future studies. We also
performed the more robust Wilcoxon rank rest on these
simulated paired datasets, which also had less correlation
between the resulting gene set p-values than the repli-
cation probability (Figure 1E). There were many fewer
significant gene sets by this enrichment approach than
the hypergeometric test, and it was rare that both inde-
pendent datasets within a simulation were significant at
p < 0.05.

R may add biological interpretability

While many gene sets have both small p-values and high
replication probabilities, examining discordant gene sets
may improve the biological interpretation of the research
question at hand. For example, in the gene expression
dataset (Figure 2), there were 8 GO categories with p >
0.05 and R > 0.8 under the hypergeometric test, includ-
ing sets associated with phosphorylation (GO:0006468,
G0:0016310), a process affected by cigarette smoking
[24] and regulation of metabolic processes (GO:0019222,
G0:0044267).

Similarly, examining the categories associated with
DNA methylation differences across brain tissue types
that had at least moderate replication and non-significant
p-values demonstrates support for the gene set bag-
ging approach as well as the shortcomings of relying on
strict gene set p-value cutoffs for gene ontology anal-
ysis (Figure 3). Several biologically plausible GO cate-
gories for a comparison of methylation differences in
brain tissues fell into the “marginally significant” bin of
observed p-values between 0.05 and 0.1 but had consistent
replication.

There were many smaller gene sets that had statisti-
cally significant p-values (p < 0.05) but never appeared in
any of the resampled datasets (R = 0) in both the gene
expression (32 gene sets) and DNA methylation datasets
(12 gene sets). These represent very unstable gene sets,
and should be interpreted with caution. Categories with
(p > 0.05,R > 0.8) would have been ignored in a tradi-
tional gene set analysis given their statistical significance
measure, but might be biologically important to the ques-
tion of interest. Likewise, gene sets with (» < 0.05,R = 0)
may be less biologically meaningful even though they are
“statistically significant”.

We can characterize some global properties of the repli-
cation probability via these two datasets. Overall, in the
cigarette smoking gene expression dataset, the correlation
between the replication probability R is correlated with
the number of significant genes in a gene set (0gpearman =
0.630). The gene set p-value shows a stronger correla-
tion with the number of significant genes in a gene set
(Ospearman = —0.985). Both quantities are also correlated
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Figure 1 Replicability assessed from the simulations. Simulation 1. Observed gene set p-values based on the (A) hypergeometric and (B)
Wilcoxon Rank tests and then subsequent replication probabilities were calculated. The x-axis is the proportion of observed p-values that are less
than 0.05 for each gene set and the y-axis is the average replication probability for that gene set. Spearman correlations were calculated to avoid
issues with non-linearity. Simulation 2. The gene set p-values p; and replication probabilities R; were calculated for each data set, where 100 pairs
of data sets with common differentially expressed genes were simulated. The Spearman correlation of the gene set p-values p;, I = 1,.. ., L was
calculated for each pair of datasets, and analogously for the replication probabilities ;. The 100 resulting correlations of gene set p-values or
replication probabilities for (C) all gene sets and (D) those significant in either paired dataset at p < 0.05. The replication probability offers better
correlation between independent datasets for significant gene sets, but similar correlation across all significant and non-significant gene sets, than
the p-value for the hypergeometric test.

with the total number of genes in a gene set R (Ospearman =
0.569) and gene set p-value (Ospearman = —0.544). We
also observe that larger datasets lead to better estimates of
replication via the replication probability. Comparing the
smoking expression dataset (N = 79) to the brain DNA
methylation dataset (N = 257), we note that the smaller
study has more gene sets with R>0 (7,373 versus 3,708)
and has more gene sets with 0 < R < 0.15. However, the
larger dataset has more gene sets with R > 0.15.

Relationship to the problem of regions

The set of test statistics corresponding to genes within an
individual set can be viewed as a multivariate random vec-
tor. When viewed in this way, a gene set is significant if
the vector of test statistics falls into a multi-dimensional

region defined by the significance threshold. The repli-
cation probability is then a first-order approximation
estimate of the posterior probability a gene set will be sig-
nificant, assuming a non-informative prior distribution on
the vector of test statistics. This problem has been consid-
ered in the case of multivariate normal data [25] and for
estimating confidence in inferred phylogenies [26]. As has
been previously pointed out, this posterior probability is a
reasonable first approximation to the posterior probability
in question, but should not be interpreted as a frequentist
measure of statistical significance [25,27].

As an example of the relationship between the boot-
strap and a posterior probability, suppose zi,. ..,z
N(u,02). A non-informative prior distribution for the
parameters (i, o2) is the Jeffrey’s prior [28]. The Jeffrey’s

~
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Figure 2 Expression dataset gene set analysis, smokers versus never-smokers. Gene set analyses were performed by the (A) hypergeometric
and (B) Wilcoxon rank tests using gene sets defined by the Gene Ontology, and the replication of each gene set was assessed via our gene set
bagging procedure (each point is one gene set). The relationship between the estimated replication probability (R) and traditionally reported
p-value appears much more concordant using the Wilxocon rank test.

prior for w is an improper uniform prior across the
real line and the Jeffrey’s prior for 62 o ﬁ Using
these prior distributions, the posterior distribution for
w is N(z,7%) where v ~ InverseWishart,_1((ns?>)~1)
and 2 = %Z;’Zl (zi — 2)%. In this case, since p is one
dimensional, the InverseWishart distribution is equiva-
lent to an InverseGamma distribution. Drawing bootstrap
samples from the z; and recalculating the mean approxi-
mates sampling from the posterior distribution of i (see
supplemental R code). It is important to note that the
variance of the posterior for u is inflated compared to
o2 assuming a frequentist model [25,27]. Note that the
p-values from these bootstrap samples should not be

interpreted as measures of statistical significance, because
they are no longer distributed uniformly.

Discussion and conclusions

We have developed a resampling-based strategy for
assessing the stability of gene sets which also estimates
the probability a gene set will replicate (being statisti-
cally significant) in a future study. This direct approach
to estimating replicability may be more useful than sta-
tistical significance for investigators who aim to identify
stable and reproducible biological interpretations of their
results. By utilizing resamplings of the observed data that
respect the study design, the reproducibility of gene sets
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Figure 3 DNA methylation dataset gene set analysis, human brain regional differences. Gene set analyses and gene set bagging were
performed by the (A) hypergeomgtric and (B) Wilcoxon rank tests using gene sets defined by the Gene Ontology. The relationship between the
estimated replication probability (R) and traditionally reported gene set p-value are only slightly more concordant with the Wilxocon rank test.
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can be quantified, represented by the replication proba-
bility R of each gene set category across all subsamples.
This approach can offer an additional metric beyond the
gene set p-value for identifying important biological path-
ways. We have applied this method to gene expression and
DNA methylation under two commonly-used enrichment
metrics: the hypergeometric test and the Wilcoxon rank
test. We demonstrated that some seemingly statistically
significant GO categories fail to replicate consistently. A
strength of our approach is the likely generalizability of
this algorithm to other genomics applications, including
incorporating bias-correcting approaches like SVA into
the analysis, to assess the stability and replicability of
significance results.

Gene sets with high replication probabilities and low
p-values represent statistically significant, stable, and con-
sistent sets that might best represent the underlying
biology within the experiment. Overall, the Wilcoxon
rank test appears more stable than the hypergeomet-
ric p-value, using simulated and real data. There was
less disagreement between gene set p-values and repli-
cation probabilities, and the quantitative relationship
between the replication probability and p-value was
more precisely defined (Figure 1B and 2B). Given that
most genomics studies require some form of exter-
nal replication and that R appears more correlated
with replication in future studies than p-values alone,
we might also suggest following up gene sets that
have high replication probabilities (R) even if the p-
values are marginally, or even non-significant. The gene
set bagging algorithm has been implemented in the
R package “GeneSetBagging”, available through GitHub
(https://github.com/andrewejaffe/ GeneSetBagging). Users
may choose different gene set p-value and replication
probabilitiy cutoffs depending on their resources for
follow-up studies.

Genomics studies often involve drawing the major-
ity of biological conclusions from the results of a gene
set analysis without assessing the stability of the results.
We envision replication probabilities used in conjunction
with standard measures of statistical significance, as the
emphasis on replication in genetics and genomics makes
the replication probability a useful quantity to estimate
and use in conjunction with p-values. We have demon-
strated that gene lists are not necessarily stable, and
therefore additional steps like gene set bagging should be
undertaken to improve the biological inference of a given
study.
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