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Abstract

Background: Boolean models are increasingly used to study biological signaling networks. In a Boolean network,
nodes represent biological entities such as genes, proteins or protein complexes, and edges indicate activating or
inhibiting influences of one node towards another. Depending on the input of activators or inhibitors, Boolean
networks categorize nodes as either active or inactive. The formalism is appealing because for many biological
relationships, we lack quantitative information about binding constants or kinetic parameters and can only rely
on a qualitative description of the type “A activates (or inhibits) B”. A central aim of Boolean network analysis is
the determination of attractors (steady states and/or cycles). This problem is known to be computationally complex,
its most important parameter being the number of network nodes. Various algorithms tackle it with considerable
success. In this paper we present an algorithm, which extends the size of analyzable networks thanks to simple and
intuitive arguments.

Results: We present lnet, a software package which, in fully asynchronous updating mode and without any
network reduction, detects the fixed states of Boolean networks with up to 150 nodes and a good part of any
present cycles for networks with up to half the above number of nodes. The algorithm goes through a complete
enumeration of the states of appropriately selected subspaces of the entire network state space. The size of these
relevant subspaces is small compared to the full network state space, allowing the analysis of large networks. The
subspaces scanned for the analyses of cycles are larger, reducing the size of accessible networks. Importantly,
inherent in cycle detection is a classification scheme based on the number of non-frozen nodes of the cycle member
states, with cycles characterized by fewer non-frozen nodes being easier to detect. It is further argued that these
detectable cycles are also the biologically more important ones. Furthermore, lnet also provides standard Boolean
analysis features such as node loop detection.

Conclusions: lnet is a software package that facilitates the analysis of large Boolean networks. Its intuitive
approach helps to better understand the network in question.
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Background
The use of Boolean models I n the study of biological
networks was proposed and worked out already in the
1970s [1-5]. A Boolean network model is characterized
by the topology of a biological interaction network and a
set of qualitative parameters termed “logical functions”
by Thomas and D’Ari [6]. Logical functions determine
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the activation state, or value, of any node in a network
as a function of its activating and/or inhibiting inputs. In
general, for a target node with k different input nodes,
each of which can again be either “active” or “inactive”,
the logical functions assign the resulting values of the
target node for each of the 2k possible input patterns.
Boolean networks are best suited to analyze and de-

scribe steady states of systems (which are independent
of kinetic parameters). As demonstrated by Thomas,
non-trivial steady states are determined by the presence
of negative or positive feedback loops, with the former
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characterizing homeostatic or oscillatory processes, and
the latter leading to switch-like or differentiation
behaviour.
The analysis of Boolean networks comprised of more

than a few nodes is feasible thanks to tools developed by
various groups. Garg et al. [7] introduced the concept of
binary decision diagrams and developed SQUAD [8].
GINsim, a tool implementing Thomas’ program was pro-
vided by Gonzalez et al. [9]. Himkelman et al. [10] used
algebraic methods to develop ADAM, Helikar et al. [11]
developed the simulation platform ChemicalChains and
Müssel et al. developed BoolNet [12].
Algorithms were also developed that simplify network

architectures without affecting the steady state proper-
ties. They eliminate iteratively single nodes that: do not
regulate their own function [13,14] or: have one incom-
ing and one outgoing edge (simple mediator nodes) or
have the same value in all attractors [15,16]. Both ap-
proaches preserve the fixed point structure of the net-
work. The latter preserves also the cycle attractors,
while the former may, in certain cases, introduce spuri-
ous ones.
For a binary Boolean network with n nodes, there are

2n possible activation patterns that form the state space:
every state is represented by an n-dimensional binary
vector. In the case of multi-valued Boolean networks,
where some of the nodes can have more than 2 values,
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Figure 1 State complexity and parameter complexity. A: Schematic rep
transcription factor TF (striped circle) interacts with either one of two comp
genes (triangles T1, T2). Presence of an inhibitor (grey, rounded rectangle)
interactions, the network from A can be simplified into this diagram, with t
C. C: For the 24 possible activation patterns of the 4 input nodes in B, logic
knowledge is about the activating or inhibiting influence of the input node
introduced by Thomas et al. [6], i.e. parameter KTF,R,CA2 stands for the value
influence (i.e., presence of activators, absence of inhibitors) of the input nodes
for every node are pre-defined (values assigned in bold). Two additional colum
the system as depicted in A.
the number of activation patterns grows even faster. We
refer to this number as the “state complexity” of a
network.
For every node in a network, the logical parameters

determine how it reacts to the input it receives from
other nodes, more specifically, to which value (0 or 1) a
node will tend under any given input pattern, also re-
ferred to as the “image” of the node for this input pat-
tern. In general, for a node with k inputs (activating or
inhibiting), there are 2k possible input patterns and cor-
responding logical parameters. We refer to this as “par-
ameter complexity” of a network. For the choice of
logical parameters, there are some obvious constraints,
e.g., adding an activating input to an already active node
should not lead to its inactivation. For simplicity rea-
sons, Boolean network analyses often adopt the conven-
tion that a node under the influence of at least one
inhibitor always tends towards being inactive irrespective
of the presence of any activators; in the absence of any
inhibiting influences, a single activator will be sufficient
to activate it. This effectively eliminates the parameter
complexity of the problem. Here, we deviate from this
convention, motivated by biological examples where, for
example, both a transcription factor and a co-activator
are required for a certain function, or where co-
activators and co-repressors compete for a target tran-
scription factor (Figure 1). The only assumption we
Rep CA1 CA2 T1 Ex1 T2 Ex2

0 0 0 KR,CA2 0 KR 0

0 0 1 KR 0 KR,CA2 0

0 1 0 KR,CA1,CA2 0 KR,CA1 0

0 1 1 KR,CA1 0 KR,CA1,CA2 0

1 0 0 KCA2 0 K                = 0 0

1 0 1 K                  = 0 0 KCA2 0

1 1 0 KCA1,CA2 0 KCA1 0

1 1 1 KCA1 0 KCA1,CA2 0

0 0 0 KTF,R,CA2 0 KTF,R 0

0 0 1 KTF,R 0 KTF,R,CA2 1

0 1 0 KTF,R,CA1,CA2   = 1 1 KTF,R,CA1 0

0 1 1 KTF,R,CA1 0 KTF,R,CA1,CA2 = 1 1

1 0 0 KTF,CA2 0 KTF 0

1 0 1 KTF 0 KTF,CA2 0

1 1 0 KTF,CA1,CA2 0 KTF,CA1 0

1 1 1 KTF,CA1 0 KTF,CA1,CA2 0

resentation of a hypothetical regulatory biological network. A
eting co-activators (CA1, CA2) to drive expression of one of two target
blocks TF. B: In the absence of detailed knowledge of the underlying
he state complexity translated into parameter complexity as shown in
al functions for the two targets T1 and T2 are specified. The only
s on the targets. For the logical functions, we use the convention
(either 0 or 1) to which the target node tends under the positive
mentioned as subscripts. For lnet, only two of the logical parameters
ns, Ex1 and Ex2, specify the concrete values of all parameters for
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make here is that under “optimal” conditions, i.e., pres-
ence of all activators and absence of all inhibitors, a
node must be activated, and likewise, in the presence of
all inhibitors and absence of any activators, it must be
inactivated. These minimum assumptions ensure that
every node must in principle be able to switch between
its two values. We note that state and parameter com-
plexity are related and it is often possible to reduce par-
ameter complexity by adding symbolic nodes to the
network that represent complexes or intermediate steps
along a process; however, this comes at the expense of
higher state complexity.
For any given network and network state, it is not ob-

vious if all nodes satisfy the logical functions, i.e., have
values in agreement with their inputs; in fact, it is not
even obvious if such a state exists. Node values can be
updated by switching them in agreement with the input
pattern. Whenever stated that in a given state a node
satisfies the equations, it is meant that the node will re-
tain its value should we choose to update it (i.e., the
value is identical to the image for the current input pat-
tern). For simplicity, we refer to such a node as a “con-
tent” node. A fixed state of the network is, by definition,
a state in which all the node equations are satisfied, i.e.
all the nodes are content. In contrast, a node whose
current value is in disagreement with its current input,
and which will be modified when chosen for an update,
is called a “discontent” node.
Boolean networks have often been studied using “syn-

chronous” update strategies, where the values of all dis-
content nodes are switched simultaneously. (Note that
this switching can lead to the generation of new discon-
tent nodes.) While this approach is technically conveni-
ent, it does not properly reflect the characteristics of
biological networks, and it may even introduce artifacts
in their behavior. “Asynchronous” updates proceed with
one node at a time, often selecting them in random
order. This method, referred to as “general asynchron-
ous” in [15], is the one we choose.
In the following, we are referring to random asyn-

chronous updating and to binary Boolean networks
(although the algorithm is also valid for multiple discrete-
valued ones). Furthermore, all results were generated
from testing on networks having: (i) values of the ratio
of edges to nodes between 2 to 3 and (ii) all their nodes
with non-zero in- and out-degrees and with at least one
of them larger than one (i.e., without simple mediator
nodes).

Implementation
The software application has been written in ANSI C
and it is single-threaded. The only hardware require-
ments concern available random access memory. The
network topology can be loaded using the straightforward
format also used in [7]. In the input text file each line
corresponds to either an activation A→ B or to an in-
hibition C − | D.
The source code is freely available from the authors.

Results
Fixed states detection
Crucial for the development of the algorithm is the
realization that the discrete nature of Boolean networks
allows us to restrict the search to selected subspaces of
the state space in which the fixed states (if any exist) res-
ide. These subspaces turn out to be orders of magnitude
smaller than the actual state space rendering possible an
exact enumeration. This is achieved via a two-step
process (Figure 2).
Assume a Boolean network of n nodes. For k of them

(typically, k around 10), generate the 2k × k matrix
representing all their 2k possible states. Then for each
one of the remaining n-k nodes go through the following
iterative process:
Extend the matrix by first duplicating it and then add-

ing to it an extra column with the values of an appropri-
ately chosen (k + 1)st node (0 and 1 for each pair of
identical rows). The outcome is a 2k+1 × (k + 1) matrix.
The choice of the new node is crucial: All its incoming
nodes must be present in the initial k-member group
(see remark below). Then, for each row, we check
whether the value of the added node satisfies its node
equation. If it violates it then we remove the row, for it
cannot lead to a fixed state. By doing so, all its 2n-(k+1)

downstream successors are effectively removed once and
for all. The same procedure is followed for any of the k
initially selected nodes, if all its incoming nodes are in
the matrix.
Then a (k + 2)nd node is added, further extending the

matrix, its equation is tested against all rows, and the
process is repeated until all the nodes have been taken
into account. At each iteration step, if no remaining
node is found having all its incoming nodes already
present in the matrix, the one with the maximal out-
degree is chosen. The algorithm is simply trying to in-
crease the probability that at each step at least one node
having all its incoming nodes already present will be
available. The choice of the first k nodes is based on this
reasoning too: the ones with the highest out-degree
values are selected.
The successive removal of equation-violating states

(i.e., states containing at least one discontent node) leads
to a dramatic decrease of the number of states exam-
ined. It can simplify the problem by many orders of
magnitude, depending on network size and complexity.
In a typical network the number of examined states
reaches its maximum value at about or just after the
time half of the nodes have been included in the matrix.
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Figure 2 For this simplified account of the algorithm described in the text, we analyze a 3-node network (A). We start with the full listing
of all value combinations for nodes 1 and 2 in a 2 x 22 matrix, then add node 3 as described to obtain a (2 + 1) x 22+1 matrix (B). We start with
the full listing of all value combinations for nodes 1 and 2 in a 2 x 22 matrix, then add node 3 as described to obtain a (2 + 1) x 22+1 matrix. For
this, we also specify the images 1′, 2′, 3′ to which the three nodes tend for any input combination, using logical parameters. In this simple
example, only node 3 receives multiple inputs and thus has non-trivial logical functions. Removing the states which cannot match their image
state for any valid choice of the logical functions, we obtain two candidates for fixed states. Comparing the states to their image states, we realize
that state (1, 1, 0) is a fixed state if 31 equals 0 (i.e., node 3 is not activated by the presence of its activator 1 alone), whereas state (0, 0, 1) is fixed
if 32 equals 1 (i.e., node 3 is already activated by the absence of its inhibitor 2 alone). Setting both 31 = 0 and 32 = 1 renders both states fixed.
Experimental data in agreement with state (1, 1, 0) but not with (0, 0, 1) thus help in estimating the logical functions.
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Then it decreases rapidly as many of the node equations
are taken into account during the evaluation. When the
full set of nodes has been processed, only the fixed states
remain in the final matrix.
We note that the approach described here simultan-

eously copes with both state and parameter complexity.
When testing if the actual value of a node is compatible
with the node equations, we accept any states for which
this condition holds for at least one choice of the logical
parameters. Thus, the algorithm does not only yield
fixed states for a concrete combination of logical param-
eters, but for all possible ones. The conditions on the lo-
gical parameters needed to realize a fixed point can then
be read from the final matrix (Figure 2B). This aspect is
of key importance for reverse-engineering problems.
The generalization to multiple-valued case is straight-

forward: At each iterative step, instead of just duplicat-
ing the rows, the algorithm adds m-1 replicates of the
previous matrix when adding a node with m levels, with
the corresponding level (from 1 to m-1) appended. Then
it proceeds as previously described, namely by removing
all equation-violating states.

Cycle detection
Preliminaries
The system equations direct each state to flow to neigh-
boring states and (in asynchronous mode) neighboring
states differ by the value of at most a single node. The
changing node is set to a value that satisfies the system
equations, which increases the number of content nodes
by one; however, this change will typically have effects
on other nodes, and other discontent nodes can result. If
the state space contains basins of attraction then the sys-
tem will eventually flow towards them. Basins of attrac-
tion signal the existence of fixed states or of stable
cycles, i.e., sets of states out of which the system cannot
escape once it reaches them. Once a system enters a
basin of attraction then the equations drive it deeper
into it, gradually increasing the number of content
nodes. However, for any basin of attraction, it is not triv-
ial to find out if it can be reached from any given
current state.
We consider a state to be the more unstable/disordered

the higher the number of its discontent nodes, and we
refer to the state as being 1-, 2- up to n-discontent.
Intuitively, the system equations tend to drive the sys-
tem towards the more stable/ordered regions of the
state space. We note that most of the interesting
stable cycles reside in sufficiently ordered space state
regions, where a good part of the node values of their
members satisfy the equations. Stable cycles including
states with a large number of discontent nodes are less
relevant which is apparent from the following consi-
derations (compare Figure 3).
If a state of a system with n nodes is k-discontent, it

has k successor states, because each one of the k discon-
tent nodes could be updated, and the equations do not
change the values of content nodes.
A cycle is stable when all its member states flow

within the cycle. A single cycle member having a succes-
sor that is not part of the cycle renders the cycle meta-
stable (Figure 3A).
A stable cycle containing a state with even a moderate

number of discontent nodes is necessarily a long cycle
(state “c” in Figure 3B is 3-discontent); this state has
multiple successors and all of them must be members of
the cycle as well as all their successors, etc. On the other
hand, cycles whose members have very few discontent
nodes are often short. We refer to a k-cycle to indicate
that its most discontent member state(s) is (are)
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Figure 3 Analysis of simple and complex cycles. Filled circles
represent states of the system, not to individual nodes. In
asynchronous update mode, two neighboring states differ by the
value of exactly one node. Thus, the shortest possible cycle (0, 0) →
(0, 1) → (1, 1) → (1, 0) → (0, 0) → …, composed of two changing
nodes, has length 4 in state space. A: The cycle “abcd” is fixed only
in the absence of the dashed transition a → g. In the presence of
this transition, the cycle leaks into state g, and the system has only a
single fixed point, g. B: In the cycle “abcd”, here state c is
3-discontent and, hence, can transition to three different successor
states d, e, and f. For the cycle to be fixed, as shown here, all the
successor states of d, e, and f have to return to the cycle. As a
consequence, complex fixed cycles are expected to be rare in
biologically motivated networks.
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k-discontent states. A 1-cycle, in which each state mem-
ber has a single successor, is also referred to as a simple
cycle (Figure 3A, in the absence of the a → g transition).
Otherwise it is a mixed cycle and in such cycles “branch-
ing” is present (Figure 3B). Simple cycles are necessarily
stable. A typical example is: a 1-cycle that consists of 4
states distinguishable by the 4 combinations (0–0, 0–1,
1–0, and 1–1) of the values of two nodes. The remaining
k-2 nodes in the network are all content and shared by
all the 4 cycle states.
We note that, in principle, there can be cycles that are

long despite the fact that all their states have few discon-
tent nodes.

Stable cycle finding
The fixed point search described above is performed in
states that satisfy all the system equations. It cannot be
used to detect a cycle since each member state of a cycle
has to be at least 1-discontent. It follows naturally that
relaxing the above restriction can be used for cycle find-
ing. Namely, a search in the enlarged subspace that in-
cludes all the states up to and including k-discontent
states will result in the detection of all j-cycles, where
j ≤ k). Unavoidably, the enumeration of more states re-
sults in a reduction of the size of resolvable networks.
The value of k can vary from k = 1 (1-cycle search) to

n (search for all cycles). The number of selected states
grows very fast as k increases. Cycle finding is feasible
only when the number of selected states is manageable
because of memory restrictions. In addition, execution
running times increase fast because the algorithm, in
line with the “standard” graph-theoretical approaches,
first finds all parent–child state relationships and then
searches for stable cycles. If and when one is found, it
“creates” its basin of attraction via a bottom-up
approach.
The algorithm goes through two main stages:

(i) Determine the appropriate subset of the state space.

a. As in the fixed state case, go through iterations

adding a node at a time and keeping at each step
all states up to and including k-discontent states.
Each state is labeled by its number of discontent
nodes (in {0, 1, …, k}). The end result is the set of
all these states. The current implementation can
readily handle sets with up to tens of millions
states. Note that all network fixed states are in-
cluded and labeled by zero.

b. The predecessors and successors of each selected
state are recorded in appropriate data structures.
All states that do not have any of their successors
in the selected set of states (i.e., they flow
“outside”) cannot be assessed and are from now
on excluded.

(ii) Search for cycles within the selected set of states:
a. First, identify the basin of attraction of each fixed

state. This is done by “walking uphill” the
collected information on successor/predecessor
relationships, labeling and counting along the way
all states belonging to the current basin. Any
remaining, non-labeled states belong exclusively
to basins of cyclic attractors. In subsequent steps,
the search is restricted to these states (apart from
the basin size calculations). Absence of non-
labeled states clearly implies the absence of cycles
in the selected state set; the search is effectively
terminated at this point.

b. Starting from state(s) with the lowest k-value,
look for directed cycles using again the successor/
predecessor data structures, by creating all di-
rected walks in the graph of selected states. If any
such cycle is found then it is checked whether
any of its member states belong to any of the cur-
rently detected basins. If this is the case then the
cycle is discarded as unstable. Otherwise, check
whether the cycle is “closed”, i.e., whether the
children of all its members are also members of
the cycle. If this is not the case, the cycle either
has members (or successors) belonging to a basin
that was not yet found or it is part of a larger
mixed cycle. At the current step, such a cycle is
simply registered; it will be dealt with at a later
stage. If the cycle is found to be closed, then it is
stable and constitutes an attractor. All its basin
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states are counted and any non-previously labeled
ones are now labeled. (Note that a state can be-
long to multiple attractors.) This step is repeated
until all registered states have been considered.

c. Detected cycles, whose members do not flow
towards identified basins, can still remain. Each
one of them may be part of a larger mixed cycle.
An iteration process is called which, starting from
an appropriately chosen “seed” cycle, keeps
enlarging it by adding any new states from cycles
with states flowing into it. The iterations continue
until this enlarged cycle becomes “closed”. As
previously, the corresponding basin is determined
and the process continues for any remaining non-
labeled states.
30 40 50 60 70 80 90 100 110 120

Network nodes

Figure 5 Dependence of the duration of fixed state searches
on the number of network nodes. Explanation in the main text.

25
The time needed for the exact determination of all
successor/predecessor relationships and for the enumer-
ation of the members of a basin grows linearly with the
number of selected states. This fact is instrumental in
rendering the algorithm fast. Another crucial element is
that the size of the search space is reduced each time an
attractor basin is determined.

Benchmarking
For benchmarking purposes we generated programmat-
ically a number of sufficiently complex Boolean net-
works that have features similar to known, biologically
relevant examples. As mentioned above, nodes with a
single incoming and a single outgoing edge were ex-
cluded. The ratio of edges to nodes was around 2.5 for
most of the networks (when not then it is stated so) and
no more than 6 incoming edges per node were allowed.
We chose to compare lnet to GenYsis and GINsim be-
cause these two packages support both true asynchron-
ous updating and guarantee detection of all cycles (for
Discontent nodes
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ure 4 Schematic comparison of the three algorithms.
ored regions indicate attractors that can be analyzed using any
he three tools GenYsis, GINsim and lnet. For the region in blue,
actors having at least one discontent node and more than 30
es overall, only lnet are applicable.
networks up to certain size). lnet and GenYsis share a
common input format; for GINsim a compatible version
was generated for all relevant runs.
Only the lnet test runs, which involved hundreds of

networks, were automated The GenYsis runs, as seen
below, were limited to smaller-size networks while the
GINsim ones were difficult to automate. Therefore, we
ran just a few of them that still generate sufficiently rep-
resentative results.
The tests were performed on a Linux computer with a

Xeon 2.4 GHz processor and 96 GB of physical memory.
The GINsim version was 2.4 and it ran on Java 1.5.
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Figure 6 Enumerated states versus the total number of states.
This log2-log2 plot clearly demonstrates the significant reduction in the
number of analyzed states computed to all possible network states.
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Figure 7 The number of accessible discontent nodes decreases as the number of nodes grows. Computation time for analyses of
networks of networks of different size, depending on the maximum allowed number of discontent nodes. For larger networks, there is a gradual
reduction of the maximum number of discontent nodes the software can handle. This is also mirrored in an increased use of memory (not
shown). For example, for 40-node networks cycles with up to 4 discontent nodes were accessible. Such cycles contain tens or hundreds of states.
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GenYsis was found to be superior in detecting all fixed
points and all cycles for networks up to approximately 30
nodes. The execution time for the larger ones can reach 1
hour and the memory requirements are minimal. For even
larger networks the execution times were higher than our
testing time (1 hour) and memory utilization was becom-
ing important. These results are in overall agreement with
those of Ferhat et al. [17]. It should be emphasized that
GenYsis by design detects all existing cycles, also covering
cycles with thousands of member states.
GINsim detects fixed states for networks up to ap-

proximately 120 nodes fast and in a memory-efficient
manner as previously reported by Hinkelman [18]. Being
multithreaded, GINsim took also advantage of our multi-
core testing environment. The execution time for larger
networks was, however, higher than our testing time and
sometimes seemed not to terminate at all. Its perform-
ance when searching for stable cycles was rather poor. It
needs already few minutes to analyze 20-node networks
and fails for even moderately larger networks. The rea-
son is that it attempts exhaustive enumeration of all net-
work states. Here it should be noted that GINsim can
handle multiple-valued networks too.
lnet detects fixed states for networks up to 150 nodes,
detects all cycles for networks up to 20 or so nodes and
detects a subset of the cycles for networks with up to 70
nodes. The limiting factor is available computer memory
because the size of the space state regions enumerated
by lnet grows, inevitably, too large.
For cycle detection, up to 20-node networks, lnet’s

performance is equivalent to that of GenYsis. From 20 to
30 nodes it is still the same provided, however, that the
lnet search is restricted to k-discontent states with low k
(the actual value of k depends on the network size).
Otherwise, it can be significantly slower, for similar rea-
sons as GINsim. The slowdown can be important in the
absence of attractors with very low k (k = 0 or 1) because
these are always detected first and have their basin states
immediately removed from any downstream consider-
ation. Elucidating further the different performances of
the two algorithms, a 30-node network analysis may take
several hours in GenYsis irrespective of the numbers of
fixed states or cycles (no matter how large). On the
other hand, while lnet may fail to detect a very large
cycle, it will find fixed states and small cycles in sub-
second time.
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Figure 8 Even for cycle searches the numbers of enumerated
states remain low. For a 30-node network with approximately
109.03 states, the number of states with no more than 10 discontent
nodes still remains a small fraction of the state space.
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Above 30 or so nodes lnet is alone in detecting cycles.
For increasing numbers of nodes, we have to decrease
the allowed number of discontent nodes for any enu-
merated state because of limited computer memory.
This results in fewer detectable cycles. Recall, however,
that k-cycles with low k values are likely to be the most
relevant ones in Boolean networks representing bio-
logical systems.
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Figure 9 Overall lnet performance. lnet execution time dependence on
A schematic representation of the comparison of the
three algorithms is shown in Figure 4. The remaining
figures focus exclusively on lnet results.
The first series of tests targeted the fixed states of net-

works having nodes ranging from 30 up to 150. For each
one node number analyzed, a set of 100 networks was
generated, subject to the rules mentioned earlier. Then
each one of these networks was analyzed by lnet either
searching exclusively for fixed states or for stable cycles
as well. The computer execution times were recorded
and the results were used to generate the plots shown in
Figures 5, 6, 7, 8 9 and 10.
In Figure 5 a semi-log plot of the number of nodes

versus the computer execution time in seconds is shown.
Data are not shown for the 130, 140 and 150 cases be-
cause insufficient memory caused termination for 20%,
68% and 68% of them respectively. (For those networks
that were successfully analyzed the time duration trends
were in agreement with the trend shown in the plot.)
Next, as has been already explained, the lnet algorithm

relies on a drastic reduction of the number of enume-
rated states. This becomes evident in Figure 6, where
the enumerated states are plotted versus the total
number of system space states (for fixed state searches
only).
In Figure 7, the focus is on cycle searches. The 3 plots

show computation times for cycle searches in networks
of 30, 40 and 50 nodes, respectively. Data from higher
number of nodes (up to 70) are not shown but follow
similar trends.
0

Network nodes

network size and number of discontent nodes.
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Figure 10 Effect of the number of edges on fixed state
searches in 50-node networks. As the number of edges increases
the median lnet execution time increases only slightly but more
network instances take substantially longer to analyze (outlying points).
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Figure 8, also concerning cycle searches, shows counts
of system states having equal or less numbers of discon-
tent nodes, for increasing numbers of discontent nodes.
For a single 30-node network, states with up to 10 dis-
content nodes still cover less than 6% of the entire state
space. Enumerating this fraction is sufficient to detect
existing cycles with up to a few thousand member states.
Figure 9 summarizes all the lnet results concerning

both fixed states and cycles.
Finally, Figure 10 shows the effect of increasing the

number of edges for networks with a fixed number of
nodes (50 nodes were chosen).

Conclusion
We present an algorithm that, based on a build-up ap-
proach, greatly reduces the search space for fixed states
and fixed cycles in Boolean networks. It allows for the
fast and reliable detection of all fixed states in networks
of up to 150 nodes, for an edges-to-nodes ratio of up to
3. Highly ordered cycle attractors, which correspond to
the biologically most relevant cycles, are detected for
networks of approximately half the number of nodes.
Key characteristics of the approach are the exact enu-

meration of well-defined regions of the network state
spaces and the faithful reproduction of the correspond-
ing state transition graphs. The result is the detection of
all the attractors residing in these regions. Depending on
the overall fraction of the enumerated subspaces, it may
be possible to deduce information about the size of each
attractor basin.
Execution times of lnet are comparable to or faster

than other approaches. Its limitation is clearly the
available memory. With growing network size, even fo-
cusing on small sub-spaces of the entire network state
space becomes prohibitively complex at some point.
Programming-inspired optimizations will only lead to
marginal improvements because the state space of a Bool-
ean network doubles in size each time a single node is
added. A promising alternative is to apply first one of the
existing network reduction methodologies and then sub-
mit the resulting network to lnet. Such a scenario should
be able to handle networks having (prior to reduction) up
to few hundred nodes.
During the preparation of the manuscript we became

aware of a publication by SQ Zhang et al. [19], where a
fixed state detection algorithm, similar to the one pre-
sented here, is described. The authors also provide a
conceptual outline of a cycle-finding version of their algo-
rithm based on a simple periodicity check which, however,
could detect reliably only simple cycles. We did not test
this algorithm because no sufficient information is avail-
able. Finally, there is no discussion of the role of the num-
ber of discontent nodes in cycle detection.

Availability and requirements
The lnet executable, a file with instructions on how
to use it and examples of input files are provided in
Additional file 1.
Operating system(s): The source code can be com-

piled on Windows, Linux and Apple computers.
Programming language: ANSI C
Restrictions of use by non-academic users: None

Additional file

Additional file 1: Includes the lnet executable (LINUX), a help file
(text format) with detailed instructions on how to run lnet and 4
input network files that are used to illustrate the software in the
help file.
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