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Abstract

Background: Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing
(smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity
RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to
gather biologically relevant information, i.e. detection and differential expression analysis of known and novel
non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools
from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical
workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large
numbers of datasets need to be analyzed at once.

Results: We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising
specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and
other useful options by integrating multiple open source modules and resources in an automated workflow. As
statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different
statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be
efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to
select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline
to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human
breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression
analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA
targets of differentially expressed miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-inter-
acting RNAs), some of which differentially expressed in proliferating vs growth arrested cells.

Conclusion: The integrated data analysis pipeline described here is based on a reliable, flexible and fully automated
workflow, useful to rapidly and efficiently analyze high-throughput smallRNA-Seq data, such as those produced by
the most recent high-performance next generation sequencers. iMir is available at http://www.labmedmolge.unisa.
it/inglese/research/imir.

Keywords: Next generation sequencing, SmallRNA-Seq, Data analysis pipeline, Breast cancer, Small non-coding
RNA, microRNA, Piwi-interacting RNA
* Correspondence: aweisz@unisa.it
†Equal contributors
1Laboratory of Molecular Medicine and Genomics, Department of Medicine
and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
3Division of Molecular Pathology and Medical Genomics, “SS. Giovanni di Dio
e Ruggi d’Aragona – Schola Medica Salernitana” University of Salerno
Hospital, Salerno, Italy
Full list of author information is available at the end of the article

© 2013 Giurato et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited. The Creative Commons Public Domain Dedication
ain/zero/1.0/) applies to the data made available in this article, unless otherwise

http://www.labmedmolge.unisa.it/inglese/research/imir
http://www.labmedmolge.unisa.it/inglese/research/imir
mailto:aweisz@unisa.it
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Giurato et al. BMC Bioinformatics 2013, 14:362 Page 2 of 9
http://www.biomedcentral.com/1471-2105/14/362
Background
Small RNA analysis by massively parallel sequencing
(smallRNA-Seq) represents an increasingly popular method
to address different questions concerning the biological role
of miRNAs and other regulatory small transcripts, such as
piwi-interacting (piRNAs), small inhibitory (siRNAs), tran-
scription initiation (tiRNAs), transfer (tRNAs) and other
small non-coding (sncRNAs) RNAs, including also extra-
cellular small RNAs (exRNAs). Among sncRNAs, miRNAs
and piRNAs are emerging as key regulators in multiple
cellular functions and for this reason are widely studied
by direct sequencing. miRNAs, the best know and stud-
ied class of sncRNAs, are interesting to investigate due
to their ability to control gene expression in eukaryotes
by fine tuning mRNA translation [1-3]. They represent
a class of short (~ 22 nucleotides) RNA molecules that
play pivotal roles in a variety of molecular processes,
such as immune response [4], differentiation [5], develop-
ment [6-8], infection [9,10] and carcinogenesis [11-13].
miRNA genes are synthesized as long precursor RNA
molecules (pri-miRNAs), usually by RNA polymerase II
[14], that are rapidly processed in the nucleus by Drosha
RNase III to release approximately 70 nucleotides long
miRNA precursor stem loop (pre-miRNA) [15] that in
turn are exported to the cytoplasm by Exportin 5 [16]. In
the cytoplasm, mature miRNAs are produced through the
action of Dicer RNase [17]. These small RNAs regulate
gene expression by binding to targets sites generally in the
3′ untraslated region (3′ UTR) of target mRNAs, resulting
in mRNA degradation or translation inhibition [1,18].
miRNAs recognition of the 3′ UTR of their target mRNA
is mediated by hybridization between nucleotides 2–8 at
5′ end of the small RNA (seed sequence) and the comple-
mentary sequences present in the 3′ UTR of the mRNA
[1,19,20]. On the other hand, small non-coding RNAs that
interact with Piwi proteins, called piRNAs, are emerging
as regulatory transcripts able to control a broad range of
biological processes. The main roles of these molecules
has been investigated mainly in germline stem cells, where
they are involved in: (i) regulation of transposone activity;
(ii) modulation of genome epigenetic state, (iii) develop-
ment and (iv) spermatogenesis [21]. However piRNAs
have been also identified in somatic cells, including
human cancer cells [22], suggesting their possible in-
volvement in tumors. This aspect highlights the need
for sensitive and efficient bioinformatics tools to study
these novel class of sncRNAs in smallRNA-Seq datasets.
SmallRNA-Seq allows detection of RNAs with a high
dynamic range and reliably measures small differences
in RNA concentration between samples, enabling also to
discover novel RNA molecules not annotated in databases.
Generally, data analysis is performed by combining mul-
tiple statistical and bioinformatics tools available from dif-
ferent sources. Many useful programs for processing these
data exist nowadays, such as RandA [23], Shortran [24],
UEA sRNA Workbench [25], DSAP [26], miRTools 2.0
[27] and miRExpress [28]. Two main issues hamper diffu-
sion and implementation of such programs: (i) web-based
tools have some restriction on data upload; (ii) stand-
alone programs often lack one or more analysis steps,
such as for example prediction of novel sncRNAs. As
main consequence, the analytical workflow is slowed
down by the need for the continuous interventions by
the operator, a critical factor when a large number of
samples need to be analyzed at once. A main challenge
in bioinformatics is thus to create comprehensive com-
putational tools for handling and analyzing, in an auto-
mated manner, the huge amount of data generated by
these experiments.
We describe here a modular analysis pipeline, iMir, for

comprehensive analyses of smallRNA-Seq data integrating
multiple open source modules and resources linked to-
gether in automated way. The pipeline allows identifica-
tion of miRNAs and other sncRNAs, such as piRNAs, to
perform differential expression analysis and, for miRNAs,
to predict the corresponding mRNA targets. In addition,
iMir provides the possibility to perform hierarchical clus-
tering and to apply different statistical approaches to the
analysis, improving discrimination of expressed sncRNAs
and allows to identify those more likely to be biologically
relevant. The pipeline output includes graphics and text
files that are useful for a better interpretation of the re-
sults. iMir is well suited for the analysis of smallRNA-seq
data obtained from animal samples. Moreover, it can be
used to investigate the role of sncRNAs in plants adding
the appropriate reference tracks in iMir database.

Implementation
One of the main problems when dealing with the large
datasets generated with the currently available Next Gen-
eration Sequencing (NGS) technologies are represented by
the difficulties in their management and analysis. Analysis
of smallRNA-Seq data, for example, requires implementa-
tion of different bioinformatics tools and the possibility to
perform multiple, subsequent file format conversions that
slows-down and makes cumbersome the analytical pro-
cedure. The need of a bioinformatics instrument that may
help solve these problems in a user-friendly and handy
way led us to devise a tool, called iMir, that integrates vari-
ous open source modules and resources and, in addition,
implementing different statistical approaches for sncRNAs
expression analyses allows users to select the most per-
forming and relevant method for analysis of their data.
The analytical modules included in iMir, selected among
the best available, have been made more performant
thanks to home-made scripts that allows the user to create
self-defined analytical flows. Indeed, the resources inte-
grated in iMir were selected after careful comparison and
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throughout evaluation of the performance of software
widely used in smallRNA-Seq data analysis, according also
to what recently reported by Cordero et al. [29] and
Williamson et al. [30]. iMir was implemented using an
object-oriented programming language, Python, and com-
prises also a Graphical User Interface (GUI, Figure 1A-C
and Additional file 1) that makes it easier the use of com-
mand line tools, so that the pipeline is particularly suited
for biologist and early stage bioinformaticians, also be-
cause it simplify the way how projects are created, param-
eters are specified for each of several steps of the analysis
and the different algorithms are run on project data
(Figure 1A). In addition, terminal display window
(Figure 1C) can be used to follow the flow of analysis. iMir
provides stepwise planning that allows user to select the
desired combination of analytical tools in the workflow.
Some modules are mandatory while others are, instead,
Figure 1 iMir Graphical User Interface. iMir GUI screen-shots. A: Once iM
and set different parameters for adapter cleavage. B: In the next step, the u
C: allows to set parameter for detect known and novel miRNAs and differe
optional. A schematic representation of the iMir workflow
is shown in Figure 2A-F. The pipeline takes in input the
deeply sequenced reads in FASTQ format. As mentioned
above, iMir offers the possibility to run different modules
independently and this can be considered one of its main
advantages. Indeed, in some cases user can work using
pre-analyzed datasets (e.g. reads clipped from adapters
sequences, or table with read-counts for each sncRNAs
detected in test vs control samples), or may need to
perform only a specific analytical step, such as adapter
cleavage from input reads, detection of known and/or
novel miRNAs, or to map sequence reads against other
sncRNA libraries and then to perform differential expres-
sion analysis. In all cases, it is possible to start the analyt-
ical flow at that step simply by using the input file specific
for it. The initial analytical step described in Module 1
(Figure 2A) allows to perform a pre-process analysis of the
ir is launched the user can define which step of the analysis perform
ser can select and rename the samples, while the next windows
ntial expression analysis.



Figure 2 iMir workflow. Graphic summary of iMir workflow: the pipeline accepts NGS data as input and then proceeds automatically to perform
several independent analyses, most of which can be selected or excluded according to the user’s needs. Dotted lines represent optional steps of
the pipeline. (A) Module 1: Pre-process analyis. (B) Module 2: Detection of known miRNAs. (C) Module 3: Detection of other sncRNAs and novel
miRNAs prediction. (D) Module 4: Statistical analysis to remove low expressed sncRNAs. (E) Module 5: Differential expression analysis. (F) Module
6: Target prediction.
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input files by setting user-defined options for performing
adapter cleavage with cutadapt tool [31], as well as quality
filtering and analysis of the length distribution of reads.
Cutadapt is used for adapter trimming and differs from
other adapter trimming tools because it provides several
useful option, e.g. error rate assessment in adapter cleav-
age or search and removal of multiple adapter sequences,
essential to get rid of adapter duplications occurring dur-
ing sequencing library preparation. Module 2 (Figure 2B)
allows detection of known miRNAs. To this aim, iMir in-
tegrates in its pipeline miRanalyzer stand-alone tool [32],
that in its last version (miRanalyzer version 0.3) was im-
proved in speed and features, including a comprehensive
analysis of sequences corresponding to isomiR [33]. At
this step it is possible to perform also cluster analyses,
carrying out PCA analysis and/or applying different
hierarchical clustering algorithms. This feature, in fact,
is useful when dealing with a very large number of sam-
ples to assess similarities and differences among them,
such as for example when analyzing results from large
cohorts of tumor biopsies. One main advantage of small
non-coding RNA sequencing is the possibility to predict
novel miRNAs not annotated in databases. This proced-
ure (Module 3, Figure 2C) is performed in iMir with
miRanalyzer stand-alone tool [32] and miRDeep2 [34].
With this process it is possible to achieve a dual pur-
pose: (i) to obtain more accurate results on novel miR-
NAs, that can then be experimentally validated and (ii)
to evaluate presence and concentration of reads relative
to other sncRNAs in the same datasets. We included in
iMir the possibility to implement an intermediate step
(Module 4, Figure 2D), before proceeding to differential
expression analysis step (Module 5, Figure 2E), to re-
move the noise and less informative reads, e.g. miRNAs
or sncRNAs expressed with very low read counts, that is
based on the following statistics: (i) cumulative distribu-
tion function and (ii) arbitrary value approaches. Further-
more, low read counts might not reveal a real biological
information, being due to sequencing errors or inaccuracy
during the procedure of read alignment to the reference
genome, such as cross mapping artefacts. To account for
this problem, a minimum read count value can be used to
filter out reads detected below the cutoff (“Minimum Read
Count”, Figure 1B). In addition, after known miRNAs
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detection (Module 2, Figure 2B), we included statistical
approaches to evaluate the cumulative distribution func-
tion, such as quartile or percentile values that are com-
puted considering the whole reads-counts to exclude from
the list of expressed miRNAs in a given sample those
showing read count below that value. This approach can
be used also with any sncRNA libraries. The other statis-
tical approach implemented in iMir addresses a common
problem encountered when calculating fold-change
values (test/control read counts ratios) for RNAs
present in the samples at very low levels. Considering a
fold-change threshold of ±1.5 and p-value <0.05, when
read counts for a given sncRNA are very low this setting
can generate biologically irrelevant results. For example,
considering a case where 10 tags are assigned to a given
RNA in the test sample and 5 in the control, both de-
rived for large cell populations, the resulting fold-
change (2.0) may be statistically significant but of
doubtful biological relevance [35], contrary to what oc-
curs for sncRNAs showing in the same conditions high
read counts. To overcome this problem, we included in
iMir the possibility to add in such cases a correction fac-
tor. This, computed automatically by the tool as the me-
dian of the read count distribution relative to the
sncRNA datasets of interest, can be added to the actual
read counts of all entries in the datasets. In the case de-
scribed above, considering a calculated correction factor
of 30 the fold-change value calculated for such low-
expressed sncRNA will be 1.14, and thus below the
threshold set, while for an RNA of the same dataset that
shows 4,000 read counts in the sample and 2,000 in the
control this adjustment will be irrelevant (see also: Results
and discussion). Of note, the user can either disregard this
function or use at will an alternative value for this param-
eter, calculated by any other means desired. These ap-
proaches are useful to reduce the number of false-
positives detected by differential expression analysis, as
these most likely occur among RNAs expressed at a very
low level.
Identification and analysis of differentially expressed

sncRNAs using digital data is implemented in iMir with
two different methods (Module 5, Figures 1C and 2E).
The first one, based on the DESeq bioconductor package
[36], is particularly suited when biological or technical
replicates are available [29]. The second, based on quan-
tile normalization and Fisher’s exact test to assess the
statistical relevance, is specially designed for use when
no replicates are available [37]. The last iMir module
(Module 6, Figure 2F) is designed to perform mRNA tar-
gets prediction of expressed, or differentially expressed,
miRNAs. mRNA targets are predicted by using miRanda
[38,39], that includes current knowledge on target rules
and uses a compendium of mammalian miRNAs, and
TargetScan [40,41], that computes mRNA targets by
searching for the presence of 8mer and 7mer sites match-
ing the seed region of each miRNA. iMir includes in its
databases different sncRNAs, such as miRNAs, piRNAs,
tRNAs, mRNAs and data from RFam for human, rat and
mouse (Additional file 2: Table S1). Performance of iMir
was compared with that of the individual bioinformatics
tools considered by Williamson et al. [30], selected on the
basis of their popularity highlighted by number of cita-
tions in the literature. Furthermore, the number of known
(available in miRBase) and of novel (absent from the latest
release of miRBase) miRNAs detected and the time re-
quired to carry to completion the whole analytical flow
were evaluated on multiple datasets generated in our la-
boratory and available from public data repositories and
then taken as indicators of iMir performance. The results
obtained are in line with what previously reported [30],
suggesting reliability of this new tool.

Results and discussion
As an example of the performance of the iMir pipeline,
the tool was applied to analyze patterns of sncRNA ex-
pression and changes in human breast cancer MCF-7
cells maintained in two different culture conditions affect-
ing cell cycle progression, e.g. growth-arrest and exponen-
tial growth [42,43] (see: Additional file 3 for details). For
each experimental condition, three sequencing replicates
were analyzed to gather a correct estimation also of the
technical variability occurring during differential expression
analyses. A comprehensive smallRNA-Seq data analysis was
performed running all iMir functions with default parame-
ters and the performances of the tool are summarized in
Figure 3. To detect classes of sncRNAs other than miRNAs,
the raw reads not mapping to known mature miRNAs were
aligned against tRNA and mRNA sequences from UCSC
Genome Browser, rRNA and piRNA sequences from Nu-
cleotide NCBI database and other sncRNA sequences from
RFam [44] (see: Additional file 3 for details). One of the
main advantages when applying this procedure is the possi-
bility to reduce false-positive rate in novel miRNAs predic-
tion, while at the same time allowing to search for and
analyze other classes of sncRNAs in the datasets. For each
sncRNA library sequenced, ~4,0 M raw reads/sample for
exponentially growing and ~5.8 M reads/sample for growth
arrested cells were obtained (Figure 3 and Table 1). After
the pre-process analysis, a small percentage of reads, all
<15nt-long, is discarded as the algorithm is unable at
present to manage them. The read-length distribution after
adapter cleavage in all samples is reported to the right of
Module 1 in Figure 3, to show how the majority of reads
obtained after this first step are ~22nt long, suggesting that
they are mainly due to miRNAs. This observation is further
confirmed by the number of reads that actually match
known miRNAs (Table 1), computed to account for more
than 50% of the entire dataset in each case. The remaining



Figure 3 Graphic representation of iMir pipeline performances. Datasets obtained from smallRNA-Seq analysis in exponentially growing
(sample A) or growth-arrested (sample B) MCF-7 cells, performed in triplicate as described in the text, were input in iMir and analyzed with the
standard, complete analytical workflow of the tool. The processing time of each module are highlighted in yellow and the graphic outputs of
Modules 1 (histograms showing sequence read length distribution in each replicate) and 5 (heat-map visualization of sncRNA profile differences
among samples and pie-chart summarizing the results of the differential expression analysis) are shown to their right.
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reads, showing a length distribution between 26 and 31nt
could include piRNAs, while those 36nt-long could result
from longer RNA degradation products. The heatmap
reported in Figure 3 to the right of Module 5 highlights the
high degree of similarity of miRNA profiles in the three
replicates for each sample sequenced (A1-3 for the Case and
B1-3 for the Control). A similar results was obtained for
piRNAs (data not shown). After that, the iMir module that
computes differential expression analysis (Module 5, Figure
2E) was run. miRNA analysis led to the identification of
about 460–70 miRNAs per sample (Figure 3 and Table 2),
some of which differentially expressed. The pie-charts in
Figure 3 summarizes the results of miRNA differential
expression analysis performed with DESeq [36], expressed as
percentage of detected RNAs showing statistically significant
differences in concentration between samples beyond a
standard threshold (fold-change ≤ −1.5 or ≥1.5 in exponen-
tially growing vs quiescent cells, p-value ≤ 0.05) or not
(70.5%). These results, when compared with previously pub-
lished data relative to miRNA modulation in the same cell
line [13,42,43], confirm that iMir is useful to rapidly and
efficiently perform differential analysis for these sncRNAs.



Table 1 Number of reads before and after adapter cleavage and reads mapped in each sncRNA library included in iMir

MCF-7 cells Raw
reads

Reads after
adapter
Cleavage

miRNA
reads

tRNA
reads

rRNA
reads

mRNA
reads

piRNA
reads

Remaining reads
mapping on
the genome

Reads not
assigned

Exponentially
growing

Replicate 1 4,327,501 4,068,141 2,310,200 16,989 91,040 391,750 15,753 597,037 69,516

Replicate 2 4,337,535 4,075,320 2,314,040 17,042 92,178 404,148 16,438 614,614 70,165

Replicate 3 4,354,046 4,091,633 2,374,218 17,737 94,961 420,175 16,949 636,708 71,737

Growth-arrested Replicate 1 6,071,484 5,844,875 4,626,170 13,588 72,460 181,084 14,831 234,955 40,941

Replicate 2 6,075,950 5,846,690 4,621,008 12,470 75,251 185,803 15,122 242,065 40,667

Replicate 3 6,085,784 5,855,090 4,725,975 12,705 77,842 192,161 15,582 249,638 41,494
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Recently, an increasing number of studies highlighted
the role of piRNAs in breast cancer [45,46]. Since the
average length of these RNAs is ~30nt (see: Figure in
Additional file 3: Figure S1), smallRNA-Seq represents
an efficient analytical approach to assess also absolute
and relative expression of these molecules. Based on this
assumption, we searched for and analyzed piRNAs in
the datasets selected to test iMir performance. To re-
duce cross-mapping artifacts, reads corresponding to
other RNAs, in particular miRNAs, tRNAs, rRNAs and
mRNAs, were first filtered out with iMir mapping them
against the selected transcribed RNA libraries. This
allowed at once to start from a set of more reliable data
and to gather information concerning other small RNAs
detected by sequencing (Table 1 and Table 2). This
analysis led to the identification of 70 and 85 piRNAs
expressed in growth-arrested and exponentially growing
MCF-7 cells, respectively. Differential piRNA expression
analysis and statistical significance testing performed
with iMir revealed 12 downregulated and 25 upregulated
piRNAs in growing cells, when compared to quiescent
ones (p-value = 0.05, threshold = 1.5; Figure 3). We do
not have a ready explanation for these relatively low
numbers of piRNAs identified in breast cancer cells, ex-
cept for the fact that piRNAs know to date have been
identified in germ cells [21] and it is thus possible that
the majority of them is expressed only in these cell
types. Furthermore, most piRNAs identified so far asso-
ciate with the piRNA biogenesis factor Piwil1 (Hiwi)
Table 2 Number of known RNAs and of predicted novel miRN
from MCF-7 cells

Exponentially growing ce

Replicate 1 Replicate 2

miRNA (miRBase v.20) 473 469

tRNA (UCSC Genome Browser) 56 56

rRNA (NCBI Nucleotide) 4 4

mRNA (RefSeq) 308 307

piRNA (NCBI Nucleotide) 86 85

Novel miRNA predicted 46 57
[21,47], that is not detectable in MCF-7 cells, where only
Piwil 2 (Hili) and Piwil4 (Hiwi2) are detected [Hashim
et al., manuscript in preparation]. As new validated piRNA
datasets will become available, for example those identi-
fied by association to Piwil 2 and 4, the possibility built
into iMir to customize its database will allow to include
these in the analysis. The decision to focus here on
individual piRNAs instead of considering their genomic
organization in clusters is based on the observation that in
somatic cells piRNAs deriving from a given cluster show
different levels of steady-state expression, possibly due to
a specific mechanism of precursor RNA maturation active
in these cells or to differences in their half-life. In addition,
recent results suggest that individual piRNAs could play
important roles in tumor cells [48-50].
We then tested another function of iMir by performing

differential miRNAs expression analysis in two different
ways: (i) starting directly from the number of raw read-
counts obtained with miRanalyzer [32] or (ii) by adding
to each of these counts a correction factor (31), com-
puted as the median of the whole read dataset (see
above). Once compared, the results obtained with the
two approaches showed slight but substantial differences,
since ~10% of the miRNAs identified with the first
method (pvalue ≤ 0.05) were excluded by the second one
(Additional file 4: Table S2). This is explained by the fact
that the RNAs expressed at a very low level under both
experimental conditions, and thus of uncertain biological
significance, were filtered out when using this correction.
As identified with iMir in replicate smallRNA-Seq datasets

lls Growth-arrested cells

Replicate 3 Replicate 1 Replicate 2 Replicate 3

476 461 467 473

54 45 48 47

4 4 4 4

307 297 320 325

84 73 70 67

55 38 39 42
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iMir offers the possibility to choose this method, when
needed, also to other classes of sncRNAs.
With respect to the possibility to perform target predic-

tion for selected miRNAs using miRanda and TargetScan
databases, another useful function of the tool, it is worth
mentioning the possibility for the user to update when re-
quired these and the other databases associated to the pipe-
line, such as those of miRNAs from miRBase, [51-53], of
other sncRNAs from different sources and of mRNA tar-
gets from TargetScan [40,41,54] and miRanda [38,39].

Conclusion
We designed, built and describe here iMir, a pipeline
that integrates multiple open source modules/resources
and implements statistical approaches, combined in an au-
tomated flow for high-throughput smallRNA-Seq data ana-
lysis. iMir is rapid, accurate and efficient, allowing to
examine multiple samples at once and thereby addressing
a critical factor for high-throughtput analysis of sncRNA
sequencing data, represented by the need for continuous
interventions by an operator skilled in informatics and pro-
gramming. The graphical user interface of iMir, allows a
simplified use of the many tools integrated in the pipeline
and to customize data analysis according to different needs.
In addition, the implementation of different statistical ap-
proaches provides the possibility to analyze data according
to standard, widely used, as well as to specific needs. Fi-
nally, iMir works on Linux and Mac operative systems,
user-friendly for biologists with limited skills in informat-
ics. In the future, following the evolution of NGS technolo-
gies and recommendations by the scientific community,
we plan to keep improving iMir features, including for ex-
ample tools for sequence variants detection, evolutionary
sncRNAs analysis across multiple species and adding spe-
cific functions for analysis of emerging classes of small
RNAs (pi-, si-, sn-, sno-, ti-RNA, etc.).

Availability and requirements
Project name: iMir.
Project home page: http://www.labmedmolge.unisa.it/
inglese/research/imir.
Operating System(s): Unix/Linux based.
Other requirements: Python, Java, Perl, R, DESeq, Bowtie,
Vienna RNA Secondary Structure package.
License: GNU GPL v3.
Any restrictions to use by non-academics: specified by
GNU GPL v3.
Additional files

Additional file 1: User Manual.

Additional file 2: Table S1. Summary of annotated small non-coding
RNAs included in iMir database.
Additional file 3: Additional Materials and Methods and Additional
Figure Legend.

Additional file 4: Table S2. List of miRNAs differentially expressed in
exponentially growing vs growth-arrested MCF-7 human breast cancer cells
(raw and adjusted read-counts, with associated fold-changes and p-values).

Abbreviations
sncRNA: Small non-coding RNA; miRNA: microRNA; NGS: Next generation
sequencing.
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