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Network-based differential gene expression
analysis suggests cell cycle related genes
regulated by E2F1 underlie the molecular
difference between smoker and non-smoker lung
adenocarcinoma
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Abstract

Background: Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular
mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each
gene independently without considering interactions between them. Top-ranked differentially regulated genes
prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases.
Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules
underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene
relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing
signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression
strength and corresponding expression level changes so that both types of information can be leveraged optimally.

Results: In this paper, we develop a gene module based method for differential gene expression analysis,
named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing
deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing
methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets.
When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially
regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined
by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene
module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular
differences between smoker and non-smoker lung adenocarcinoma.

Conclusions: In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules
by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both
simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to
smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and
non-smoker lung cancer.
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Background
High throughput technologies enable people to monitor
the transcriptome of complex diseases. It’s a great
opportunity as well as a big challenge for us to reveal
the deregulated molecular mechanisms of complex
diseases from transcriptomic data. Over the decade,
differential gene expression (DGE) analysis has been
widely used to discover differentially regulated genes and
deregulated molecular mechanisms [1]. However, changes
in multiple genes coupled with interactions among them-
selves and between them and other genes interfere normal
biological functions of cell and cause diseases [2]. Trad-
itional DGE analysis such as the t test or the rank sum test
doesn’t always perform well on identifying deregulated
genes and deregulated molecular mechanisms because it
processes each gene independently without considering
gene-gene relationships [3,4]. Genes most significantly
differentially regulated might not directly relate to dis-
eases. More suitable tools need to be developed for iden-
tifying the deregulated molecular mechanisms from
transcriptomic data.
Functional genomics studies reveal that genes and

their products are well governed in cell: they are elabor-
ately assembled and disassembled by regulatory forces
beyond genetic code [5]. Revealing gene-gene relation-
ships among differentially regulated genes and identify-
ing causal relationships or gene modules in them will
lead to a better understanding of deregulated molecular
mechanisms and discovery of potential causal factors.
Many efforts have been devoted to integrate gene-gene
relationships and gene expression level changes to prio-
ritize signature genes, such as some gene prioritization
methods and gene module based methods [3,6-13]. How-
ever, most of the methods involve multiple separate steps
in defining gene expression changes and gene-gene rela-
tionships related to disease without maximally leveraging
all information available simultaneously.
In this work, we extend our previously developed

Networked Gene Prioritizer (NGP) method [10] and
develop a gene module based method for differential
gene expression analysis, named network-based differen-
tial gene expression (nDGE) analysis to prioritize
deregulated genes and group them into gene modules.
NGP leverages a protein-protein interaction network
and differential expressed genes in a network neighbor-
hood to prioritize genes. Improvement of nDGE compar-
ing to NGP and other existing methods is that it uses a
one-step integrative process to simultaneously define
gene-gene relationships and gene expression level changes
associated with diseases while most existing methods
involve two separated steps to define them. The resulted
advantage is that no hard cutoff parameters are needed in
nDGE to determine neither gene-gene relationships nor
gene expression changes associated with disease while
hard cutoff parameters are needed in most existing
methods and might lead the methods sensitive to the
selection of parameters. No hard cutoff parameters are
needed in NGP, either. However, NGP’s ability to prioritize
all the genes on chips is limited because it relies on
protein-protein interaction network which only covers a
fraction of whole proteome. In addition, NGP might not
be able to accurately prioritize some genes because of
limitations of its underlie assumption that a physical
interaction implies a co-expression relationship.
We first compare nDGE with a traditional DGE, NGP

and two gene module based methods using simulated
data sets. The DGE is carried out by the rank sum test.
One version of gene module based methods in our
comparison is to construct co-expression network using
only differentially expressed genes and detecting modules
within it. The other version is to apply co-expression
analysis using all genes in data sets, then to extract co-
expression gene modules and apply gene set enrichment
analysis to identify the differentially expressed gene mod-
ules. We demonstrate that nDGE outperforms the com-
pared methods on accuracy of prioritizing deregulated
genes and identifying deregulated gene modules with a
large range of parameter of co-expression measurement.
Then, we apply nDGE to a series of smoker and non-

smoker lung adenocarcinoma data sets to explore the
molecular mechanisms and regulators that drive differ-
ences between smoker and non-smoker lung adenocar-
cinoma. Lung cancer is the most common cancer in
terms of both incidence and mortality. In 2008, there
were 1.61 million new cases, and 1.38 million deaths due
to lung cancer [14]. Tobacco smoke is the most com-
mon cause of lung cancer. But non-smokers account for
10–15% of lung cancer cases [15]. This percentage is
even higher in Asian women [16]. Although studies have
suggested that lung cancers arising in non-smokers have
a distinct natural history, profile of oncogenic mutations,
and response to targeted therapy comparing to smokers
[17], lung cancer in smokers and non-smokers is treated
similarly to date. Identifying the molecular mechanisms
and capturing the regulatory factors that explain the
differences between smoker and non-smoker lung
cancer can extend our understanding of smoking and
non-smoking related lung cancer and will provide benefits
for the treatment of lung cancer. We apply nDGE and the
rank sum test on multiple smoker and non-smoker lung
cancer data sets. Top differentially regulated genes identi-
fied by the rank sum test in different sets are not consist-
ent while top ranked genes defined by nDGE in different
data sets significantly overlap. A differentially regulated
gene module identified by nDGE, which is enriched for
cell cycle genes and E2F1 targeted genes, plays a role
attributing to the differences between smoker and non-
smoker lung adenocarcinoma. Existing data support that
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E2F1 regulates cell cycle genes that lead to the molecular
differences associated with different response to
chemotherapies between smoker and non-smoker lung
adenocarcinoma. In conclusion, our nDGE results provide
a better understanding of smoker and non-smoker lung
cancers which can lead to better early lung cancer
detection and personalized treatment of smoker and non-
smoker lung cancer.

Methods
Data sets
Six types of simulated data sets and six smoker and non-
smoker lung adenocarcinoma data sets are used in this
paper. Information about the smoker and non-smoker
lung adenocarcinoma data sets is listed in Table 1. For
Smoker1 and Smoker5 data sets, probe sets whose inten-
sities are less than log2(40) in more than 20% samples
are filtered. 18981 probe sets representing 11563 Entrez
genes in Smoker1 data set and 32761 probe sets repre-
senting 14904 Entrez genes in Smoker5 data set are used
for further analysis. For Smoker3 and Smoker6 data sets,
probes whose detected p values are larger than 0.05 in at
least 20% of samples are filtered, and 14230 probes
representing 10908 Entrez genes in Smoker3 data set
and 14297 probes for 11293 Entrez genes in Smoker6
data set are retained for further analysis; in Smoker2 and
Smoker4 data sets which are based on two-color micro-
array, all probes are used for further analysis.
Six types of data sets are generated in simulation

experiments to simulate the scenarios that might occur
in the cellular regulatory programs which might directly
relate to diseases. The six types of data sets are called
data sets 1–6 for the convenience of description. For
each type of data set, we generate 100 simulation exam-
ples. We compare nDGE with NGP using simulated data
sets 1 and 2. In data set 1, a gene with differentially
expressed co-regulated neighbors that are common in
two different subtypes and subtype-specific is created.
Some of the neighbors are co-expressed with the candi-
date gene in both subtypes of samples and some are co-
expressed with the candidate gene in only one subtype
of samples. In data set 2, a gene whose co-regulated
neighbors are differentially expressed is created. We
compare nDGE with the rank sum test using data set 3
Table 1 Information about the empirical data used in this wo

Data set GEO ID Sample subtypes

Smoker1 gse10072 42(smoker):16(non-smoker)

Smoker2 gse11969 44(smoker):45(non-smoker)

Smoker3 gse29016 28(smoker):9(non-smoker)

Smoker4 gse26939 69(smoker):7(non-smoker)

Smoker5 gse31210 111(smoker):115(non-smoker)

Smoker6 gse32863 29(smoker):29(non-smoker)
where a differentially expressed co-expressed gene
module is simulated. Using simulated data sets 4–6, we
compare nDGE with two co-expression based methods.
In data set 4, we simulate a scenario that the regulator
of a gene module is not dysregulated between subtypes of
disease (Scenario 1a in Figure 1). As a result, genes in the
gene module are not differentially expressed so that their
co-regulated neighbors are not differentially expressed,
either (Scenario 1b in Figure 1). In data set 5, dysregula-
tion of a regulator leads to the differential expression of its
target genes (Scenario 2a in Figure 1). Thus, genes in the
gene module are differentially expressed as well as their
co-regulated neighbors (Scenario 2b in Figure 1). In data
set 6, we simulate a complex scenario where the regulator
of a gene module is dysregulated but only part of its target
genes are differentially expressed (Scenario 3a in Figure 1).
As a result, a gene with differentially expressed neighbors
and non-differentially expressed neighbors is generated
(Scenario 3b in Figure 1). This is in line with the redun-
dancy principle in gene regulation which indicates that
genes might be regulated by multiple other regulators to
keep their expression stable when their master regulator is
deregulated [18]. More details about the simulated data
sets are given in Additional file 1.

Methodology of nDGE
nDGE contains 3 steps (flowchart showed in Figure 2).
All pairwise Pearson Correlation Coefficients (PCCs) of
probe sets’ in each subtype of samples are calculated.
Although both positive and negative expression correla-
tions between genes are employed to infer gene-gene rela-
tionships in literatures, we focus on positively correlated
(co-expressed) genes as co-regulated neighbors in nDGE.
Step 1- For each candidate probe set, all probe sets on

the chips are sorted by their PCCs with the candidate
probe set. We identify its co-regulated probe sets by
their values of PCC. We assume that the probe sets are
co-regulated if they are highly co-expressed in a subtype
of samples (at PCC > 0.707).
Step 2 - We calculate probe sets’ differential expres-

sion between the compared samples as Z score of the
rank sum test statistic assuming the rank sum test statis-
tic is normally distributed. We calculate activity score
(AS) of candidate probe set as following: at first, we walk
rk

Platform Normalization

Affy133a Quantile

Agilent Homo sapiens 21.6 K custom array Loess

Illumina HumanHT-12 V3.0 Quantile

Agilent-UNC-custom-4X44K Loess

Affy133plus2 Quantile

Illumina HumanWG-6 v3.0 Quantile



Figure 1 A toy model of potential regulatory programs in complex diseases. The figure illustrates the potential regulatory programs in
complex diseases-Scenario 1a, 2a and 3a. A gene in each regulatory program is randomly selected. Differential expression pattern of the
co-expressed neighbors of the genes is illustrated in Scenario 1b, 2b and 3b respectively. The colour bar indicates co-expression strength
between the co-expressed genes.
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in the co-regulated probe sets (the probe sets before the
green line in Figure 2) step by step; in each step we
generate two gene sets-Ai and Bi (the colored bar in
Figure 2), Ai contains the top-i probe sets, Bi contains
the other probe sets; next, we test whether the differen-
tial expression of genes in Ai and Bi is different by the
rank sum test. AS of the candidate probe set is for-
mulated as the product of the Z score of rank sum test
statistic and a correction factor:

AS ¼ −1ð Þαx maxi ∈neighbor
Wi−ui
σ i

x Wi−ui
W max−ui

� �
, where

Wi ¼
X
j ∈Ai

rank zj
� �

, ui ¼ i Nþ1ð Þ
2 , σ i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i N−ið Þ Nþ1ð Þ

12

q
, Zj is

the Z score of probe sets’ differential expression by
the rank sum test, N is the number of probe sets on
the chip, Wi−ui

σ i
is the Z score of the rank sum test

statistic which shows whether the differential expression
of genes in Ai and Bi is different,

Wi−ui
W max−ui

is the ratio of the

true Z score of the candidate gene with the largest
possible Z of the candidate gene, which is used as a
correction factor of the Z score for adjusting different set
sizes of co-regulated neighbors. If Wi−ui

σ i
> 0 parameter

a = 0, else a = 1.
Step 3 – For each probe set, their co-regulated neigh-

bors that contribute to AS are defined as its differentially
expressed neighbors (DE neighbors).
Statistical significance of AS is estimated by permuta-

tion tests. We keep the size of co-regulated neighbors of
a candidate probe set the same but randomly select its
neighbors from probes on the chip. If the true AS of a
candidate probe set is negative, then we calculate the
“negative AS” which is the minimum of −1ð Þα x Wi−ui

σ i
x

Wi−ui
Wmax−ui

, whereWi ¼
X
j ∈Ai

rank zj
� �

, Ai is the aforementioned
neighbors set, Zj is the Z score of probe sets’ differ-

ential expression by the rank sum test, ui ¼ i Nþ1ð Þ
2 ,

σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i N−ið Þ Nþ1ð Þ

12

q
, Wmax ¼

Pi−1
j¼0 N−j, N is the number

of probe sets on the chip, if Wi−ui
σ i

> 0 parameter a = 0,

else a =1.
If AS of a candidate probe set is positive, then we

calculate the “positive AS” which is the maximum of
−1ð Þαx Wi−ui

σ i
x Wi−ui
Wmax−ui

.

We repeat the aforementioned process 100,000 times
to generate negative (or positive) AS background distri-
butions. At last, p value is estimated as the frequency of
AS background smaller (or larger) than the true AS.
Two prioritization lists are returned in nDGE, one is

for treatment samples and the other is for control
samples. Different co-expression and differential gene
expression patterns might exist in the different types of
samples which suggest different regulatory programs
might be deregulated in the different subtypes of disease.
For this reason, we independently prioritize genes in
treatment and control samples and draw conclusions in
each subtype of samples.
More details about nDGE are discussed in Additional

file 1. Please refer Additional file 1 for the detail.
Identification of differentially regulated gene modules
nDGE prioritizes deregulated genes and groups them
into gene modules. At first, deregulated genes are
extracted according to their p value; then, DE neighbor
relationships between these genes are extracted; next,
interactions indicating genes are DE neighbors of
each other are retained to construct a gene-gene
network; at last, if the network is densely connected
we employ a spectrum clustering algorithm [19]
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Figure 2 Flowchart of nDGE. In step 1, we identify neighbors of the candidate probe set. In step 2, we calculate activity score (AS) of the
candidate probe set. In step 3, we identify DE neighbors of the candidate probe set.
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followed by a coherence-based module detection algo-
rithm [20] to identify gene modules, else we define
gene modules as connected components in sparse
network.
Comparison of nDGE with two gene module based
methods
A straightforward approach to identify differentially
regulated gene modules is to determine co-expression
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gene modules first and then to inspect differential ex-
pression of genes in the modules or vice versa. We name
the approach as two-steps approach. A problem of two-
steps approach is that gene modules are determined by
the parameter of co-expression measurement without le-
veraging the information of differential gene expression.
The selection of the parameter for co-expression mod-
ules will affect the differentially regulated gene module
results. Here we develop nDGE which simultaneously
considers gene-gene co-expression and differential gene
expression to identify differentially regulated gene mod-
ules. Thus, the variation of co-expression parameter has
few impacts on the results.
We compare nDGE with two two-steps methods. One

approach, noted as method 1, is to construct co-
expression network of differentially expressed genes and
detecting modules within it. An alternative approach is
first to apply co-expression analysis on all the genes to
identify co-expression gene modules then to apply GSEA
[13] to identify modules enriched for differentially
expressed genes. We apply the leading edge analysis
(LEA) to GSEA result to further refine the identified
gene modules. We note the method as method 2.
We compare nDGE with method 1 and 2 on simulated

data sets 4–6. Performances of the methods on revealing
deregulated gene modules are measured by whether they
can identify the candidate genes and their differentially
expressed neighbors in the simulated data sets. In each
data set, the number of true co-regulated neighbors is
50. The “detected” co-regulated neighbors are set as 50,
100, 150, 200, 250, 300, 350, 400, 450 and 500. In data
set 4, any neighbors identified by the methods are
regarded as false positives. In data sets 5 and 6, the over-
lapped genes and unique genes of the detected neighbors
by the methods with the truly differentially expressed
neighbors are counted and their ratio is defined as a true
positive rate.
No hard cutoff parameter is needed in nDGE and

method 2 to determine differential gene expression while
a cutoff parameter is needed in method 1. In order to
fairly compare the three methods on the variation of co-
expression parameter, we set top 1–100 genes as the
differentially expressed genes in method 1, which is close
to the true differentially expressed neighbors in data sets
5 and 6. In method 2, the p parameter of GSEA is set 0
and co-regulated neighbors are identified by LEA
analysis of GSEA.

Function and regulator analyses for differentially
regulated gene modules
Functional annotation analysis is carried out to investigate
the potential biological functions of modules identified by
nDGE. The tool we used is “Functional Annotation
Clustering” analysis of DAVID [21], the parameter is
default except enrichment thresholds is set as 0.0001 and
Bonferroni corrected p < 0.01. Only Gene Ontology terms
are showed in the results. Regulator analysis is imple-
mented to discover potential regulators of modules. The
tool we used is “Transcription Factor Target Analysis” of
WebGestalt (WEB-based GEne SeT AnaLysis Toolkit)
[22] and the parameter is set as Bonferroni corrected
p < 0.01.
Result
We first compare nDGE with traditional DGE which is
carried out by the rank sum test, NGP and two gene mod-
ule based methods using simulated data sets. nDGE out-
performs NGP on accurately prioritizing deregulated
genes (see Additional file 1 for the detail). Here we focus
on comparing nDGE with other existing methods. Then
we apply nDGE to a series of smoker and non-smoker
lung adenocarcinoma data sets to reveal the molecular
differences between smoker and non-smoker lung cancer.
nDGE outperforms the traditional DGE on gene
prioritization
Differential gene expression (DGE) analysis is widely
used to reveal the deregulated molecular mechanisms
underlying complex diseases from transcriptomic data.
However, traditional DGE analysis (e.g., the t test or the
rank sum test) tests each gene independently without
considering interactions between them. Developing a
method that performs better than currently available
DGE methods is one of motivations of nDGE. nDGE
and the rank sum test are applied on simulated data set 3.
Z score of the rank sum test statistic is taken as the meas-
urement of differential gene expression. The Spearman
Correlation Coefficient (SCC) between Z score and AS of
candidate genes without co-expressed neighbors is calcu-
lated. The SCC is always 1 in 100 simulation experiments.
Thus, nDGE returns the same prioritization list as the
rank sum test when candidate genes have no co-expressed
neighbors. The ranks of candidate genes that have differ-
entially expressed co-regulated neighbors are counted.
The 50 candidate genes that are co-expressed and differ-
entially expressed are always ranked at 1th to 50th in the
prioritization list in 100 simulation experiments. The can-
didate genes whose neighbors are differentially expressed
are top-ranked in nDGE. Comparing to the rank sum test
analysis, nDGE sets a higher rank for genes that are co-
expressed and differentially expressed than genes that are
only differentially expressed. We think this feature enables
nDGE to more accurately capture coherently deregulated
genes because co-expression relationships among genes
reflect co-regulation relationships among them [12,23].
Top-prioritized genes by nDGE are likely to involve in
deregulated regulatory programs of the studied disease.
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nDGE outperforms two gene module based methods on
discovering deregulated gene modules
Differentially regulated gene modules in transcriptome
level may shed light on the dysregulated molecular
mechanisms underlying complex diseases. A straightfor-
ward approach to identify these gene modules is to
determine co-expression gene modules first and then to
inspect differential expression of genes in the modules
or vice versa. For example, in GSEA software [13], a set
of co-expression gene modules centered on cancer-
related genes have been defined in MigSDB and used to
test whether they are differentially expressed in query
data sets. In WGCNA software [11], gene significance
measurement is based on biological significance of the
identified co-expression gene modules such as the
correlation with clinical traits. The problem of two-steps
approach is that the information of gene-gene co-
expression and differential gene expression is not
maximally leveraged. Thus the variation of the param-
eter of co-expression measurement will influence the
differentially regulated gene module results. We
compare nDGE with two simple and straightforward
two-steps methods which are named methods 1 and 2
(see “Methods” for the details).
We apply nDGE and method 1 and 2 in simulated
data sets 4–6 with a range of co-expression parameters.
Numbers of co-regulated neighbors in the simulation
sets are 50, 100, 150, 200, 250, 300, 350, 400, 450 and
500. No co-regulated genes are expected in data set 4.
nDGE detects less false positive genes than method 1
and 2 with different sizes of co-regulated neighbors in
100 simulation experiments (Figure 3A). Fifty differen-
tially expressed co-regulated neighbors of the candidate
gene are expected in data 5. nDGE reveals the most
true-positive genes among tested methods in 100 simu-
lation experiments (Figure 3B). In data set 6, we con-
sider the redundancy principle in gene regulation that
genes might be regulated by other regulators to keep
their expression stable when their master regulator is
deregulated [18]. Only 30 of 50 co-regulated neighbors
of a candidate gene are differentially expressed. nDGE
reveals the most true neighbor genes among test
methods in 100 simulation experiments (Figure 3C).
In all tests, nDGE has high sensitivity in revealing

deregulated co-regulated genes and high specificity with-
out detecting many false positives across a large range of
co-expression parameters. Altogether, simulation results
suggest that nDGE robustly performs better than



Table 2 Overlap ratios of the top-ranked genes by the rank sum test and nDGE

Data set Up-regulated genes Down-regulated genes

Top50* Top100 Top200 Top50 Top100 Top200

Smoker1 0.2 0.19 0.185 0 0 0.065

Smoker2 0 0.01 0.04 0 0 0.035

Smoker3 0 0 0.035 0 0.03 0.025

Smoker4 0 0.02 0.145 0.02 0.03 0.075

Smoker5 0 0.04 0.14 0 0.08 0.16

Smoker6 0.02 0.06 0.1 0 0.01 0.05

*overlap between the top-50 genes prioritized by DGE and nDGE are counted as A, and then overlap ratio is calculated as A/50.

Wu et al. BMC Bioinformatics 2013, 14:365 Page 8 of 16
http://www.biomedcentral.com/1471-2105/14/365
currently available methods in term of detecting coher-
ently differentially regulated genes.

Molecular differences between smoker and non-smoker
lung adenocarcinoma
Lung cancers arising in non-smokers and smokers are
different diseases. But they are treated similarly to date.
Discovering the molecular mechanisms that lead to the
differences between smoker and non-smoker lung
cancer will extend our understanding of lung cancer and
provide benefits for risk evaluation for early lung cancer
detection and personalized treatment of different lung
cancers. nDGE is applied to multiple smoker and non-
smoker lung adenocarcinoma data sets (listed in Table 1).
It is applied to non-smoker samples in Smoker2,
Smoker5 and Smoker6 data sets because sizes of non-
smoker samples in the other data sets are small, limiting
the power of nDGE to infer reliable co-expression
relationships. We make notation conventions on some
conceptual designations: probe sets whose DE neighbors
are of higher expression levels in smoker samples are
regarded as “upregulated”; probe sets whose DE neigh-
bors have lower expression levels in smoker samples are
noted as “downregulated”. We assign genes’ AS by AS of
Figure 4 Co-expressed genes of top-ranked genes by the rank sum te
their probe sets that have the largest absolute AS. The
rank sum test is also applied in the data sets and its
prioritization results are taken as reference for compari-
son. Z score of the rank sum test statistic is taken as the
statistic. Genes with higher expression levels in smoker
samples are regarded as upregulated genes; the ones
with lower expression levels in smoker samples are
downregulated genes. Genes’ differential expression level
is assigned by Z score of their probe sets whom have the
largest absolute Z score.

Top-ranked genes by the rank sum test and nDGE are
different
Overlap ratios between two top 50 (also 100 and 200)
gene sets prioritized by the rank sum test and nDGE
in smoker samples are shown in Table 2. The result
indicates that top-prioritized genes by the rank sum
test and nDGE are different. To further illustrate the
differences, we investigate co-expression patterns of
top 100 upregulated genes identified by the rank sum
test in smoker samples of Smoker1 data set. It is
shown that the top-ranked genes have few co-expressed
genes (Figure 4). Most of them are independent from
each other.
st. The co-expressed genes are determined by PCC > 0.707.



Figure 5 Overlaps between two top deregulated gene lists by nDGE in smoker samples of the different data sets. The S1 to S6 represent
the data sets Smoker1 to Smoker6. “#” and “*” indicate the number of overlap is significantly larger than that in permutation background with
P < 0.00005 and P < 0.00001, respectively. A to C show overlaps of top 10, 50 and 100 up regulated genes between the different data sets.
D to F show overlaps of top 10, 50 and 100 downregulated genes between the different data sets.
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Consistency of top ranked gene sets derived from different
data sets
Top upregulated genes prioritized in different data sets
by nDGE are highly consistent while top-ranked genes
identified by the rank sum test in different data sets do
not significantly overlap. Five thousand and thirty-two
genes are spotted in all 6 microarray data sets. Overlaps
between top 10 (also 50 and 100) genes prioritized by
nDGE in smoker samples in the different data sets are
Figure 6 Overlaps between two top deregulated gene lists by nDGE i
S6 represent the data sets Smoker2, Smoker5 and Smoker6. “#” and “*” indi
permutation background with P < 0.00005 and P < 0.00001, respectively. A
the different data sets. D to F show overlaps of top 10, 50 and 100 downre
counted (Figure 5). The top upregulated genes in smoker
samples of Smoker1, Smoker3, Smoker4, Smoker5 and
Smoker6 data sets are consistent, but the top downregu-
lated genes in the data sets are different. Six thousand
three hundred and eighty-two genes are spotted in
Smoker2, Smoker5 and Smoker6 microarray data sets.
Overlaps between top 10 (also 50 and 100) genes priori-
tized by nDGE in non-smoker samples in the data sets
are counted (Figure 6). Similarly, the top upregulated
n non-smoker samples of the different data sets. The S2, S5 and
cate the number of overlap is significantly larger than that in
to C show overlaps of top 10, 50 and 100 up regulated genes between
gulated genes between the different data sets.



A B

C D

Figure 8 Consensus networks of the top upregulated genes in smoker samples. The consensus networks of top 50 genes (A), top 100
genes (B), top 500 genes (C) and top 1,000 genes (D) are shown.

Figure 7 Overlaps between two top deregulated gene lists by the rank sum test. The S1 to S6 represent the data set Smoker1 to Smoker6.
“#” and “*” indicate the number of overlap is significantly larger than that in permutation background with P < 0.00005 and P < 0.00001,
respectively. A to C show overlaps of top 10, 50 and 100 up regulated genes between different data sets. D to F show overlaps of top 10, 50 and
100 downregulated genes between different data sets.
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Table 3 Percentages of modules occupying their networks and the other modules in smoker samples

Gene modules# Genes in the module % of the network* % of the top
50 gene module

% of the top
100 gene module

% of the top
500 gene module

% of the top
1000 gene module

Top 50 49 98% 100% 63.6% 49.5% 48.5%

Top 100 77 77% 100% 100% 77.8% 76.2%

Top 500 99 19.8% 100% 100% 100% 98.2%

Top 1000 101 10.1% 100% 100% 100% 100%

#The “Top 50” etc. is the short name for the gene module in the top 50 gene network.
*This column indicates the percentage that the modules occupy their networks.
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genes between Smoker5 and Smoker6 data sets are con-
sistent while the top downregulated genes in the data
sets are different. Overlaps between top 10 (also 50 and
100) genes prioritized by the rank sum test in the
different data sets are counted (Figure 7). Neither the
top upregulated genes nor the top downregulated genes
are consistent.
Figure 9 Upregulated gene module that enriches for cell cycle related
data set. The modules that enrich for cell cycle related genes and E2F1 ta
(B), Smoker4 dataset (C), Smoker5 dataset (D) and Smoker6 dataset (E) are
Integrative analysis
We further apply integrative analysis on the top
upregulated genes prioritized by nDGE in smoker
samples of Smoker1, Smoker3, Smoker4, Smoker5
and Smoker6 data sets as they are consistent to each
other. Five thousand and thirty-two genes are ordered
by their average ranks in the data sets. Then top 50
genes and E2F1 target genes exists in smoker samples in each
rget genes in smoker samples of Smoker1 dataset (A), Smoker3 dataset
highlighted in the figures.
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(also 100, 500 and 1,000) upregulated genes are ex-
tracted. Gene networks of these top ranked gene sets
are constructed respectively. Interactions that exist in
more than two data sets are used to construct consensus
networks. The consensus networks are visualized in
Cytoscape [24] using yFile organic layout algorithm. We
identify gene modules as connected components in these
sparse networks. There is one module in the net-
works (Figure 8) which suggests that the module
might play a role in smoker samples contributing to
the molecular differences between smoker and non-
smoker samples.
We select the module in the top 100 gene network

(Additional file 2: Table S1) as the representative
module to apply function and regulator analyses be-
cause: 1) most of genes in the network are in the
module; and 2) the module consists of core compo-
nents of modules in the other networks (Table 3).
Cell cycle related genes as well as E2F1 targeted
genes are enriched in the module (Additional file 3:
Table S2 and Additional file 4: Table S3).
Upregulated gene modules are also detected in the five

data sets respectively to check whether the module
A B

C D

Figure 10 Consensus networks of the top upregulated genes by nDG
B, consensus network of top 100 genes. C, consensus network of top 500
discovered by integrative analysis exists in each data set
or not. The significant upregulated genes (or probe sets,
probes) (p < 0.000001) in each data set are extracted. Up-
regulated gene modules in the densely connected net-
works are identified using the spectral clustering [19]
followed by the coherence-based module identification
procedure [20]. The gene module enriched for cell cycle
related genes and E2F1 targeted genes is consistently
identified in every data set (Figure 9, Additional file 5:
Table S4 and Additional file 6: Table S5). Two gene
modules enriched for cell cycle related genes and E2F1
target genes are identified in Smoker4 data set. However,
there are dense inter-module interactions suggesting that
the two modules function as one coherent gene module.
The analyses together suggest that E2F1 up-regulates the
cell cycle related gene module in smoker samples.
nDGE’s result is subtype-specific. It is worth to also in-

vestigate deregulated gene modules in non-smoker sam-
ples. Integrative analysis is applied to the upregulated
genes prioritized by nDGE in non-smoker samples of
Smoker5 and Smoker6 data sets. Six thousand three
hundred and eighty-two genes are ordered by their aver-
age ranks in the data sets. Then top 50 (also 100, 500
E in non-smoker samples. A, consensus network of top 50 genes.
genes. D, consensus network of top 1,000 genes.



Table 4 Percentages of modules occupying their networks and the other modules in non-smoker samples

Gene modules# Genes in the module % in the network* % in the top
50 gene module

% in the top
100 gene module

% in the top
500 gene module

% in the top
1000 gene module

Top 50 50 100% 100% 79.4% 66.7% 65.8%

Top 100 63 63% 100% 100% 84% 82.9%

Top 500 75 15% 100% 100% 100% 98.7%

Top 1000 76 7.6% 100% 100% 100% 100

#The “Top 50” etc. is the short name for the gene module in the top genes networks.
*This column indicates the percentages that the genes occupy their networks.
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and 1,000) upregulated genes are extracted. Gene
networks of these top ranked gene sets are constructed
respectively. Interactions that are discovered in both
data sets are used to construct consensus networks. The
consensus networks are visualized in Cytoscape using
yFile organic layout algorithm. There is a module com-
mon in the four networks (the module in Figure 10A
and the largest module in Figure 10B, 10C and 10D)
suggesting that it plays a role contributing to the
molecular differences between smoker and non-smoker
lung adenocarcinoma.
Again, we select the module in the top 100 gene net-

work (Additional file 7: Table S6) as the representative
module because: 1) most of genes in the network are in
the module; and 2) the module consists of the major
component of modules in the other networks (Table 4).
It is revealed that cell cycle related genes and E2F1
targeted genes are enriched in the module (Additional
file 8: Table S7 and Additional file 9: Table S8). The ana-
lysis on each data set confirms the results of integrative
analysis (Figure 11, Additional file 10: Table S9 and
Additional file 11: Table S10).
The analyses suggest that E2F1 might regulate cell

cycle related genes in smoker and non-smoker samples
and play a role contributing to the molecular differences
between smoker and non-smoker lung adenocarcinoma.
Forty-seven genes are in the overlap between the
Figure 11 Upregulated gene module that enriches for cell cycle relate
Smoker5 and Smoker6 data sets. The modules that enrich for cell cycle
Smoker5 dataset (A) and Smoker6 dataset (B) are highlighted in the figure
77-gene module identified in the top 100 gene network
in smoker samples and the 63-gene module identified in
the top 100 gene network in non-smoker samples. E2F1
might partially explain the molecular differences be-
tween smoker and non-smoker samples by up-regulating
the genes in smoker samples and down-regulating them
in non-smoker samples.

A potential molecular mechanism
E2F1 plays a crucial role in controlling cell cycle and inter-
acts with tumor suppressor proteins; it binds preferentially
to retinoblastoma protein pRB in a cell-cycle dependent
manner; and it mediates both cell proliferation and p53-
dependent/independent apoptosis. However, the role it
plays in cancer is paradox: it can be an oncogene or a
tumor suppressor [25]. Recent studies reveal that E2F1
undergoes posttranslational modifications in response to
DNA damage, resulting in E2F1 stabilization [26]. The
accumulated E2F1 protein promotes cell cycle pro-
gression, particularly G1/S transition and contributes to
tumorigenesis [27]. DNA adducts and DNA damage
caused by carcinogen in cigarette is regarded as one of
main mechanisms that lead to cancer caused by smoking
[28]. These literatures suggest that smoking leads to DNA
damage, and then DNA damage causes the accumulation
of E2F1, which in turn activates cell cycle progression and
contributes to tumorigenesis in smokers. This process is
d genes and E2F1 targeted genes in non-smoker samples of
related genes and E2F1 targeted genes in non-smoker samples of
s.



Figure 12 A possible mechanism of smoker lung adenocarcinoma.
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one of the factors that cause lung adenocarcinoma in
smoker and partially explain the molecular differences
between smoker and non-smoker lung adenocarcinoma
(Figure 12).
It is shown that lung cancer patients who have never

smoked respond better to chemotherapy than smoker
lung cancer patients [29]. Down regulation of E2F1 en-
hances the sensitivity of chemotherapy of cancer cell
[30-32]. Our nDGE result demonstrates that the gene
module regulated by E2F1 is up-regulated in smoker
samples and down-regulated in non-smoker samples.
E2F1 might have higher activity in smoker samples than
in non-smoker samples. Altogether, these results suggest
that the gene module regulated by E2F1 might explain
the different response to chemotherapies between
smoker and non-smoker lung cancers.

Discussion
Lung cancer is the most common cause of cancer-
related death in men and women worldwide [14].
Although it has been suggested that lung cancer arising
in non-smokers and smokers have distinct natural
history, profile of oncogenic mutations, and response to
targeted therapy [17], lung cancer in smokers and non-
smokers is treated similarly to date. In our work, the
integrative analysis of a series of smoker and non-
smoker lung adenocarcinoma data sets shows that E2F1
might regulate a gene module enriched for cell cycle
related genes, in turn, partially explain the molecular
differences between smoker and non-smoker lung adeno-
carcinoma and different response to chemotherapies be-
tween smoker and non-smoker lung adenocarcinoma.
The result leads to a better understanding of smoking and
non-smoking related lung cancer and may provide bene-
fits for risk evaluation for early lung cancer detection and
personalized treatment of different lung cancers.
In this work, we develop a gene module based dif-

ferential gene expression analysis, named network-
based differential gene expression (nDGE) to prioritize
differentially regulated genes and group them into
gene modules. The key improvement of nDGE com-
paring to currently available methods is that nDGE
uses a one-step integrative process to simultaneously
identify gene-gene relationships and gene expression
level changes associated with diseases while most
existing methods involve two separated steps to de-
fine them. The resulted advantage is that no hard
cutoff parameters are required in nDGE to determine
gene-gene relationships and gene expression level changes
associated with disease.
DGE analysis has been widely used in transcriptomic

analysis of complex diseases. However, the traditional
DGE analysis such as the rank sum test or the t test
doesn’t always perform well in discovering differentially
regulated genes and deregulated molecular mechanisms
because the most significantly differentially expressed
genes may not directly associate with the deregulated
regulatory programs of the studied disease. The rank
sum test analysis on the smoker and non-smoker lung
adenocarcinoma data sets explicates it. The coherently
deregulated genes together might better reflect the
deregulated regulatory programs of complex disease.
nDGE is developed aiming to identify these coherently
deregulated genes.
Conclusions
In this work, we develop nDGE to prioritize deregulated
genes and group them into gene modules. When applied
to both simulated and empirical data, nDGE outper-
forms currently available methods in term of detecting
coherently deregulated genes. More specifically, when
applied to smoker and non-smoker lung cancer sets,
nDGE results elucidate the molecular differences be-
tween smoker and non-smoker lung cancers that lead to
different response to chemotherapies. We hope the
result will lead to a better understanding of smoking and
non-smoking related lung cancer and provide benefits
for risk evaluation for early lung cancer detection and
personalized treatment of different lung cancers.
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Additional file 1: The supplemental materials that describe the
simulated data sets, the development of nDGE and the advantages
of nDGE comparing to NGP.

Additional file 2: Table S1. Genes in the module of the top 100 gene
network in smoker samples.

Additional file 3: Table S2. Functional annotation of the module in
the top 100 gene network in smoker samples.

Additional file 4: Table S3. Motif analysis of the module in the top 100
gene network in smoker samples.

Additional file 5: Table S4. Function annotation of the module
enriched for cell cycle related genes in smoker samples of each data set.

Additional file 6: Table S5. Motif analysis of the modules that is
enriched for cell cycle related genes in smoker samples of each data set.

Additional file 7: Table S6. Genes in the module of the top 100 genes
network in non-smoker samples.

Additional file 8: Table S7. Function annotation of the module in the
top 100 gene network in nonsmoker samples.

Additional file 9: Table S8. Motif analysis of the module in the top 100
gene network in nonsmoker samples.

Additional file 10: Table S9. Function annotation of the module
enriched for cell cycle related genes in non-smoker samples of each data set.

Additional file 11: Table S10. Motif analysis of the modules that are
enriched for cell cycle related genes in non-smoker samples of Smoker5
and Smoker6 data sets.
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