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Abstract

Background: In recent years genetic data analysis has seen a rapid increase in the scale of data to be analyzed.
Schadt et al (NRG 11:647–657, 2010) offered that with data sets approaching the petabyte scale, data related
challenges such as formatting, management, and transfer are increasingly important topics which need to be
addressed. The use of succinct data structures is one method of reducing physical size of a data set without the use of
expensive compression techniques. In this work, we consider the use of 2- and 3-bit encoding schemes for genotype
data. We compare the computational performance of allele or genotype counting algorithms utilizing genotype data
encoded in both schemes.

Results: We perform a comparison of 2- and 3-bit genotype encoding schemes for use in genotype counting
algorithms. We find that there is a 20% overhead when building simple frequency tables from 2-bit encoded
genotypes. However, building pairwise count tables for genome-wide epistasis is 1.0% more efficient.

Conclusions: In this work, we were concerned with comparing the performance benefits and disadvantages of using
more densely packed genotype data representations in Genome Wide Associations Studies (GWAS). We implemented
a 2-bit encoding for genotype data, and compared it against a more commonly used 3-bit encoding scheme. We also
developed a C++ library, libgwaspp, which offers these data structures, and implementations of several common
GWAS algorithms. In general, the 2-bit encoding consumes less memory, and is slightly more efficient in some
algorithms than the 3-bit encoding.

Background
In recent years genetic data analysis has seen a rapid
increase in the scale of data to be analyzed. Schadt et al [1]
offered that with data sets approaching the petabyte scale,
data related challenges such as formatting, management,
and transfer are increasingly important topics which need
to be addressed.
The majority of tools used in GWA data analysis typ-

ically assume that a data set will easily fit into the main
memory of a desktop computer. Most desktop comput-
ers have around 4–16 GB of main memory, which is
more than enough to fit a data set of 1 million vari-
ants by tens of thousands of individuals. However, data
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set sizes continue to grow with advancements in anal-
ysis techniques and technologies. For example, tech-
niques like genotype imputation [2] attempt expand data
sets by deriving missing genotype from reference pan-
els. Genotyping technologies such as Illumina’s Omni
SNP HumanOmni5-Quad chips allow for genotyping of
upwards of 5 million markers [3]. Furthermore, genome
sequencing technologies are advancing to the point where
determining genotypes via whole genome sequencingmay
be a viable option. Having an individual’s entire DNA
sequence opens the door for even more genetic mark-
ers to be analyzed. The 1000 Genomes project [4] now
includes roughly 36.7 million variants in the human
genome.
The size of a data file used to represent the genotypes

of 1000 individuals would be roughly 37 GB (assuming 1
byte is used to store each genotype). There are a several
options to handling data sets of this size. First, the cost of
upgrading a standard PC’s memory to handle this amount
of data is not unreasonable. Second, the algorithm can
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be extended to utilize memory mapping techniques [5],
which effectively pages chunks of the data file into main
memory as they are needed. A third option is to mod-
ify the format for representing genotypes such that the
genotypes are expressed in their most succinct form [6,7].
This manuscript explores the latter option more deeply.
The interest is motivated in part by the desire to work in
the General-Purpose Graphic Processing Units (GPGPU)
space which has somewhat limited space especially when
considered on a processor-by-processor basis.
The compression of genotype encoding data is most

effectively performed using succinct data structures [8].
Succinct data structures allow compression rates close to
the information-theoretic limits and yet preserve the abil-
ity to access individual data elements. In the genotype
analysis tools that use succinct data types (e.g., BOOST
[6] and BiForce [9]), a 3-bit genotype representation for
biallelic markers has been adopted. While a 3-bit rep-
resentation does provide a succinct data structure, it is
not the most succinct. More precisely, from an informa-
tion theoretic perspective, 3-bits is able to represent up
to 8 unique values. However, there are only 4 commonly
used unphased genotypes, namely {NN, AA, Aa, aa} where
NN is used to represent missing data. This means that
a 2-bit representation is the information theoretic lower
bound and its use would provide an even more compact
representation.
An important consideration when designing succinct

data structures is data element orientation in memory.
BOOST [6] and BiForce [9] adopted a vectored orienta-
tion for representing data elements. The vectored orienta-
tion spreads each data element over multiple bit vectors.
In other words, they utilize 3 bit vectors per marker to
represent the set of genotypes. The advantages of this
orientation are discussed later.
This manuscript makes two important contributions in

the use of succinct data structures for genomic encod-
ing. In particular, (i) we implement a technique to reduce
genotype encoding to a 2 bit vector form, and (ii) we com-
pare the performance of the new 2-bit encoding to the
conventional 3 bit vector encoding. From these studies,
we have observed that the 2-bit encoding encoding con-
sumes less memory, and is slightly more efficient in some
algorithms than the 3-bit encoding.

Implementation
We analyzed a commonly used 3-bit binary representation
of genotypes from performance and scalability perspec-
tives. With this information we developed a C++ object
library that we have named libgwaspp. The library pro-
vides data structures for managing genotype data tables in
a 2- or 3-bit representation. Finally, we benchmarked the
two representations on randomly generated data sets of
various scales.

Genome-wide association studies
DNA from individuals are collected, sequenced or geno-
typed, and the genotypes for genetic variants are used in
Genome-Wide Association Studies (GWAS). These stud-
ies aim to determine whether genetic variants are associ-
ated with certain traits, or phenotypes. Themost common
studies are case-control studies which group individuals
together into two sets based on the presence (case) or
absence (control) of a specific trait. These studies typically
rely upon various statistical tests based upon the geno-
typic or allelic distribution of the variants in each set. An
average data set aims to compare thousands of individuals
by hundreds of thousands to millions of variants.
GWA studies can be computationally intensive to per-

form. Common algorithms consider either each variant
individually, or variants in combination with one another.
For example, measuring the odds ratio for each variant in a
case-control study is one way of identifying variants which
may be associated with the trait in question. An epista-
sis analysis algorithm, such as BOOST [6], compares the
genotype distribution of two variants in each step.
In both of these algorithms, the basic task is counting

the occurrences of each genotype in each of the case-
control sets. In other words, the first step in determining
the odds ratio is to build a frequency table (Table 1) for
both the case and control sets at a specific variant. Simi-
larly, the BOOST [6] algorithm first builds a contingency
table (Table 2), or pairwise genotype count table, for a pair
of variants.

Binary genotype encoding schemes
A common way to minimize the impact of the table build-
ing bottleneck is to fully utilize processor throughput by
counting genotypes from multiple individuals in one step.
The binary encoding of genotypes adopted by BOOST
[6] improves the computational efficiency of the epista-
sis algorithm. The algorithm used 3 bit vectors to encode
for genotype data. In this scheme each genotype is its
own bit-vector, or stream, of data. Each bit corresponds
to an indexed individual, and the indexing is assumed to
be constant across all markers. A set bit indicates that the
individual has the corresponding genotype for the speci-
fied marker. Therefore, every variant requires 3 vectors to
fully represent the genotypes.
There are two key benefits of using this binary encoding

scheme. The first is that the task of building a frequency

Table 1 Frequency table for raw input from Tables 3, 4
and 5

AA Aa aa NN

CA 2 1 1 1

CB 2 1 2 0
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Table 2 Pairwise genotype count table for twomarkers

MB

AA Aa aa NN CA

MA

AA 1 0 1 0 2

Aa 1 0 0 0 1

aa 0 0 1 0 1

NN 0 1 0 0 1

CB 2 1 2 0

Note that the marginal sums of this table are the individual markers frequencies
from Table 1.

table for a givenmarker is reduced to calculating the Ham-
ming distance of each of a bit-vectors and a bit-vector of
all zeros. This distance is also referred to as a Hamming
weight. The technique used for calculating the Hamming
weight of a bit vector is to divide the bit-vector into man-
ageable blocks, and sum the Hamming weight of each
block. The block size is typically linked to the proces-
sor word size, typically 32- or 64- bits (4 or 8 bytes).
The algorithm for computing the Hamming weight of an
individual block is commonly referred to as Population
Counting (popcount). We chose to follow the BOOST
implementation of popcount which looks-up the Ham-
ming weight of 16-bit blocks in a pre-populated weight
table. The second benefit is that it reduces genotype com-
parison logic to simple Boolean logic operations. More
specifically, the task of counting individuals which have a
specific combination of genotypes for two markers is sim-
plified to finding the Hamming weight of the logical AND
of the genotype bit vectors. This is useful when building
contingency tables.
Of interest to this paper is the fact that when using the

3-bit encoding scheme at least two thirds of the bits used
will be unset. An information theoretic analysis of the
genotype alphabet indicates that 2-bits are sufficient to
uniquely represent each of the four unphased genotypes.
The immediate benefit is a one third reduction in memory
consumption (Tables 3, 4 and 5). The caveat to this encod-
ing scheme is that determining a genotype requires both
bits.
The algorithm in Figure 1 is a pseudo-code represen-

tation of how to build a genotype count table from 2-bit
encoded data. The Hamming weight of each vector is the
number of individuals with (AA or aa), and (Aa or aa)
genotypes, respectively. To disambiguate the values it is

Table 3 Example genotype input

I1 I2 I3 I4 I5

MA AA Aa AA aa NN

MB AA AA aa aa Aa

I1-5 represent individuals, andMA andMB are markers.

Table 4 3-bit encoding scheme

I1 I2 I3 I4 I5

AA 1 0 1 0 0

MA Aa 0 1 0 0 0

aa 0 0 0 1 0

AA 1 1 0 0 0

MB Aa 0 0 0 0 1

aa 0 0 1 1 0

necessary to compute the Hamming weight of the logical
AND of the bit-vectors. This value represents the number
of (aa) genotypes, and subtracting it from the previous two
weights will result in the appropriate counts.
The algorithm in Figure 2 illustrates the construction

of a pairwise genotype count table, or contingency table.
A contingency table represents the number of individuals
who possess a genotype combination for a pair of markers.
When using the 3-bit encoding scheme, each cell of the
table is simply the Hamming weight of the logical AND
of the genotype bit-vectors for the two markers. The 2-bit
encoding requires an inline transformation step to con-
vert the 2-bit encoded data into 3-bit data. This step is
necessary to be able to take advantage of the popcount bit
counting method.
Both of the above algorithms can be further improved

by incorporating additional information. For example, the
algorithm for building a contingency table can be simpli-
fied if marginal information for both variants is available.
The contingency table algorithm can make use of the
variants’ frequency table and reduce having to compute
9 Hamming weight values to only 4. The remaining val-
ues can be easily computed by subtracting the row and
column sums from their respective marginal information
values. This reduction offers significant computational
savings, especially when performing exhaustive epistasis
analysis.

Benchmarking
We compared the performance of the 2-bit encoded data
to the 3-bit encoded data. In particular, we measured the
runtime for building frequency tables and contingency
tables using both encoding schemes. The runtime of these
algorithms are dependent upon the number of columns,
or individuals, in each row. Therefore, we decided to hold

Table 5 2-bit encoding scheme

I1 I2 I3 I4 I5

MA
AA OR aa 1 0 1 1 0

Aa OR aa 0 1 0 1 0

MB
AA OR aa 1 1 1 1 0

Aa OR aa 0 0 1 1 1
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Constructing a frequency table from 2-bit encoded genotypes

AA 0
Aa 0
aa 0
for i = 0 N do is the number of blocks per bit vector

x A [i] is the (AA or aa) genotype bit vector
y B [i] is the (Aa or aa) genotype bit vector
aa aa + popcount (x y)
Aa Aa + popcount (y)
AA AA + popcount (x )

end for
AA AA − aa
Aa Aa − aa

Figure 1 Constructing a frequency table from 2-bit encoded
genotypes.

the number of rows constant at 10,000 variants. We var-
ied the number of columns between 1 and 50 thousand
individuals. We also tested a set with 150,000 individuals
as an extreme scale experiment. The genotypes were sim-
ulated following empirical allele frequency spectrum of
Affymetrix array 6.0 SNPs of the CEU HapMap samples.
Similarly, individuals were randomly classified as either a
case or control.
Three experiments were conducted. First, for each data

set the runtime for building frequency tables for each of
the variants were measured. Second, for each data set the
runtime for building all contingency tables for an exhaus-
tive pairwise epistasis test was measured. Third, each data
set was run through our implementation of the BOOST
[6] algorithm and the total runtime was recorded. The
runtime of BOOST [6] algorithm does not include the
time to load the compressed data set into main memory.
In each of these tests, the average runtime is calculated
and presented.
All tests were conducted upon a desktop computer

with an 3.2 GHz Intel Core i7-3930K, 32 GB of 1600

MHz DDR3 memory, with 64-bit Fedora 17. Time
was measured down to the nanosecond using the
clock_gettime() glibc function. We used GNU G++
compiler 4.7, and compiled using standard “-O3” compiler
optimization flag. The tests were performed using 64-bit
block size.

Results
The first experiment measured the runtime for build-
ing frequency tables. Initially, the 3-bit encoding scheme
appeared to offer a consistent performance advantage
over the 2-bit encoding. As the number of individuals
increased, it took less time to construct the count table
(Figure 3). The average time to build a genotype count
table for less than 10,000 individuals is less than 1 μs.
For data sets greater than 10,000 individuals, there is
some performance overhead that results from decoding
the 2-bit vectors. Building frequency tables from the 3-
bit encoded data proved to be 12–25% faster than when
built from 2-bit encoded data. In the extreme scale data
set there was a 5.00 μs difference in favor of the 3-bit
scheme. However, the second experiment offered different
results.
The second experimentmeasured the runtime for build-

ing contingency tables for all pairs of variants in the
data sets. In this experiment, the 2-bit encoding scheme
offered better performance. Similar to the first experi-
ment, 10,000 individuals seemed to be the diverging point
(Figure 4). At sizes greater than 10,000 individuals, the 2-
bit encoding scheme offered a 1% performance improve-
ment over the 3-bit scheme. With 150,000 individuals,
this equates to about a 0.32 μs difference in average per-
formance. The third experiment further confirms this
performance gain (Table 6).

Figure 2 Constructing a contingency table from 2-bit encoded genotypes.
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Figure 3 Average Case/Control frequency table construction using simulated data following Affy6 SNPs of HapMap CEU individuals.

Discussion
This work focuses on ways to address frequency table
building processes found in GWAS for two primary rea-
sons. First, upstream steps, like the loading of data, in
a general GWAS pipeline are performed relatively infre-
quently, and can be performed offline. For example, a data
set can be transformed into an optimized format once, and
in every repeat analysis the data set the loading becomes
a constant time step within the pipeline. Conversely, the
building of these tables amounts to a frequently reoccur-
ring step which is typically performed inline under varying
conditions.

Secondly, we viewed the table building process as a
bottleneck for downstream analytical steps. Offering an
approach which positively impacts the cost associated
with this bottleneck is beneficial.
The results suggest that the use of 2-bit encoding

scheme for genotype data does offer several benefits over
a 3-bit encoding scheme. The compact encoding scheme
requires 33% less memory for representing the same data.
Aside from freeing up system memory for other tasks, the
memory savings can be beneficial for other reasons. For
example, epistasis algorithms like BOOST [6] can be run
on Graphic Processing Units. GPUs are separate devices
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Table 6 Epistasis runtime comparison

Individuals 2-bit 3-bit Speedup(%)

1000 28.56 s 28.45 s 0.37

5000 92.07 s 93.32 s -1.33

10000 173.12 s 177.46 s -2.45

25000 418.31 s 420.71 s -0.57

50000 810.71 s 820.26 s -1.16

150000 2408.05 s 24.27.84 s -0.81

Speedup is measured relative to the 3-bit runtime.

on a computer which have their own physical memory,
typically less than 6 GB, and require data to be copied to
and from the device. The limited memory and data trans-
fer issues both benefit from using a more compact data
format.
The 2-bit encoded genotypes have also been used by

other software packages. PLINK [7], for example, uses a
2-bit encoding in the BED file format. BED files use a
contiguous pairing of bits to express the genotype of an
individual. Using bit pairs allows for more efficient indi-
vidual genotype decoding as a result of the bits existing in
the same bit-block. However, additional bit masking steps
need to be applied to each block to effectively utilize pop-
count based methods for counting genotype occurrences
within a block. As mentioned earlier, our implementation
adopts a bit-vectored approach, whereby an individual’s
genotype is divided over two separate vectors. This is
primarily done to reduce the number of masking steps.
In either case, some form of genotype disambiguation

is necessary. There is an overhead associated with this
decoding step, and it can be felt in certain algorithms. We

measured approximately a 20% overhead when building
frequency tables. While this is a significant overhead, the
number of frequency tables are linear in the number of
markers. Therefore, it is conceivable to build these tables
once, and reuse them in downstream analytical steps as
needed. As a result, this overhead is generally acceptable.
Furthermore, the overhead is effectively hidden when
building pairwise frequency tables.
The improvement in performance present when con-

structing pairwise frequency tables from 2-bit encoded
genotypes stems from the reduced number of memory
access steps. As shown in Algorithm 3 six genotypes
blocks are used in each step of the iteration. When 3-bit
encoding is used, each of these blocks must be read from
memory. Conversely, the 2-bit encoding only needs to
read four blocks and computes the remaining two blocks.
A further general performance increase may be pos-

sible through the use of hardware implementations of
popcount algorithms. As part of the Streaming SIMD
Extensions (SSE) of the x86 microarchitecture there is a
popcnt [10] instruction. Recent processor lines from both
Intel and AMD offer this instruction in some form or
another.
As we mentioned earlier, these succinct data structures

are intended to impact the increasing scale of sample sets.
The building of the frequency tables are linear algorithms
which are dependent upon the sample sets. By fixing the
number of variants and varying the number of samples
in a data set we show the linear increase of the epistasis
algorithm runtime, as is indicated by Figure 5.
Unfortunately, the runtime of brute force algorithms like

BOOST [6] are dominated more by the number of vari-
ants being analyzed than the number of individuals being
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studied. A data set of 10,000 variants means that 5 × 107
unique contingency tables need to be built for a typical
case-control study. Expanding that size to a million vari-
ants increases the contingency table count to 5 × 1011.
Other works have demonstrated parallel implementations
that effectively address the variant scaling [9,11,12]. This
work demonstrates a general way to further improve the
performance of these algorithms.

Conclusions
In this work, we were concerned with comparing the
performance benefits and disadvantages of using more
densely packed data representations in Genome Wide
Associations Studies. We implemented a 2-bit encoding
for genotype data, and compared it against a more com-
monly used 3-bit encoding scheme. We also developed a
C++ library, libgwaspp, which offers these data struc-
tures, and implementations of several common GWAS
algorithms. In general, the 2-bit encoding consumes less
memory, and is slightly more efficient in some algorithms
than the 3-bit encoding.
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