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Abstract

Background: Lung cancer is the leading cause of cancer-related death worldwide. Tremendous research efforts
have been devoted to improving treatment procedures, but the average five-year overall survival rates are still less
than 20%. Many biomarkers have been identified for predicting survival; challenges arise, however, in translating the
findings into clinical practice due to their inconsistency and irreproducibility. In this study, we proposed an
approach by identifying predictive genes through pathways.

Results: The microarrays from Shedden et al. were used as the training set, and the log-rank test was performed to
select potential signature genes. We focused on 24 cancer-related pathways from 4 biological databases. A scoring
scheme was developed by the Cox hazard regression model, and patients were divided into two groups based on
the medians. Subsequently, their predictability and generalizability were evaluated by the 2-fold cross-validation
and a resampling test in 4 independent datasets, respectively. A set of 16 genes related to apoptosis execution was
demonstrated to have good predictability as well as generalizability in more than 700 lung adenocarcinoma patients
and was reproducible in 4 independent datasets. This signature set was shown to have superior performances
compared to 6 other published signatures. Furthermore, the corresponding risk scores derived from the set were found
to associate with the efficacy of the anti-cancer drug ZD-6474 targeting EGFR.

Conclusions: In summary, we presented a new approach to identify reproducible survival predictors for lung
adenocarcinoma, and the identified genes may serve as both prognostic and predictive biomarkers in the future.
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Background
Lung cancer is the leading cause of cancer-related death in
the United States and worldwide [1,2], more than 25% of
cancer-related deaths in both men and women resulted
from lung cancer. In the past few decades, considerable re-
search effort has been devoted to elucidating the etiology of
lung cancer and identifying possible biomarkers for predict-
ing survival outcomes [3-6]. However, the overall five-year
survival rate for lung cancer is still less than 20%. Although
several studies have identified expression signatures associ-
ated with survival outcomes in their original discovery data-
sets, these expression signatures were often found to be
irreproducible across studies. A previous report has shown
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reproduction in any medium, provided the or
that the largest number of overlapping predictive genes
between two independent studies was only four, and most
often even zero [7]. The lack of reproducibility in inde-
pendent studies makes it very difficult to justify conduct-
ing prospective clinical validation studies and application
to clinical practice. Therefore, how to effectively identify a
set of predictive and reproducible biomarkers across dif-
ferent lung cancer studies poses a major challenge.
To address this issue, one possible approach for bio-

marker identification is to perform analysis based on
biologically functional relevant gene sets rather than to
examine the associations by traditional gene-by-gene ap-
proaches. Several reports have demonstrated that predictive
genes that were identified by approaches considering bio-
logical pathway or cellular function information are more
often reproduced and validated in independent studies
[8-11]. For example, Kang et al. selected 23 effective genes
to predict patient survival outcomes and chemotherapy re-
sponses in ovarian cancer from a pool of 151 genes
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summarized by DNA repair pathways [8]. An approach
based on functional gene sets not only provides better
understanding of biological meaning of identified gene
markers, but also greatly increases statistical power of iden-
tification by considering only the number of pathways ra-
ther than the number of genes in the multiple comparison
adjustment. The approach to performing gene set enrich-
ment analyses for gene expression profiling has become a
popular methodology even for genome-wide association
studies [12,13].
In a recent study of an analysis of 47 published gene

expression signatures for breast cancer [14], the authors
showed that the predictive performance of several signa-
tures was not superior to that obtained from random
gene expression signatures, and sometimes even worse.
There was a tendency for significant marker sets to de-
pend on the size of the set; and over 90% of random signa-
tures with more than 100 gene members were significant
predictors for survival outcome [14]. This might be attrib-
uted to a lack of independence among the genes in the
array, and a predictive model tending to become sig-
nificant as more gene members were included. In order
to reduce the possibility of identifying false-positive sig-
natures, resample techniques can be performed to demon-
strate significant findings, as compared to a randomly
selected signature set with a same number of genes.
Genomic signatures can be classified into two major

types: prognostic biomarkers and predictive biomarkers.
Prognostic biomarkers aim to help physicians divide pa-
tients into distinct groups based on their risk factors and
disease characteristics, which hints that different drug treat-
ments including standard treatment, or advanced aggressive
therapeutic procedures may be applied to groups of patients
showing poor survival outcomes. Predictive biomarkers for
a specific treatment are able to identify a subgroup of suit-
able patients for receiving the treatment, and those patients
expected to have poor responses would be spared from the
treatment. Compared with prognostic biomarkers, predict-
ive biomarkers provide physicians direct suggestions for
specific therapeutic methods for individual patients. Cur-
rently, most identified (published) signatures in lung cancer
fall into the category of prognostic biomarkers; the lack of
studies for predictive biomarkers is partly due to many con-
siderations required before conducting a treatment-specific
randomized clinical trial. Recently, Barretina et al. [15] used
microarrays to investigate the gene expression profiles of
479 human cancer cell lines along with their responses after
exposure to 24 anticancer drugs. Among the 24 drugs, 3
were designed to directly target EGFR, whose association
with lung cancer has been widely reported [16-18]. This
dataset provides a good template for evaluation of predict-
ive biomarkers in lung cancer.
In the development of a predictive signature, there are

two primary assessment considerations: 1) predictability
(predictive performance) and 2) generalizability (repro-
ducibility). Predictability is the ability of the signature to
predict survival risk scores of patients who were not in-
cluded in the signature development, but who are from
a similar population. To evaluate predictability is to de-
termine whether the signature can provide a relative
ranking of patient risk scores correctly. A predictive sig-
nature that performed well in the development study
might not be reproduced in performance when applied
to other studies. Generalizability is to determine whether
predictability is reproducible when applied to data gener-
ated independently in different circumstances, such as dif-
ferent locations or different times. A predictive signature
needs to establish its predictability and generalizability be-
fore a prospective clinical validation is conducted.
In this study, we propose an approach for identifying

prognostic gene signatures using 442 lung adenocarcin-
oma patients from the study of Shedden et al. [5]. The
approach consists of a two-stage assessment: predictabil-
ity and generalizability. The Shedden dataset was used
for predictability assessment, and 4 additional independ-
ent lung cancer datasets were used for generalizability as-
sessment. The Shedden (training) dataset was tested using
2-fold cross-validation. Generalizability of signature sets
was evaluated and compared with several published lung
cancer prognostic signatures using a randomization test.
A set of 16 genes involved in the function of apoptotic
execution phase was shown to have good predictability as
well as generalizability in more than 700 lung adenocar-
cinoma patients, including the 442 patients from the
Shedden et al. study. This signature set was also found to
associate with the efficacy of the anti-cancer drug ZD-
6474 targeting EGFR.

Results
Identification of significant survival predictors
Among the 12,753 genes investigated in the dataset of
Shedden et al., log-rank tests were performed to exclude
those genes determined to have no association with sur-
vival (p > 0.1, Step 1). A total of 2,852 genes (22.36%)
were selected and their functions were annotated by four
biological databases, including KEGG, BioCarta, PID and
Reactome. We focused on 24 pathways that were closely
related to the development of cancer cells, involving apop-
tosis, cell cycle and cell death regulations (Additional file 1:
Table S1, Step 2).
For each pathway, the risk score of each patient was

computed, and patients were divided into two groups ac-
cording to the procedure described in the Method section.
The log-rank test was performed to determine statistical
significance of the signature set associated with survival
outcomes for the pathway. Table 1 shows the p-values of
16 pathways that were significant using the Bonferroni cor-
rection (α = 0.05/24). A randomization test was performed



Table 1 Predictive performances of 16 pathways

Pathway Database Number of genesa p-valueb Countc Countd

Apoptosis reactome Reactome 43 7.58E-06 36 50

Polo-like kinase signaling events in the cell cycle PID 42 5.86E-05 34 73

Apoptotic execution phase Reactome 16 1.16E-05 27 48

Intrinsic pathway for apoptosis Reactome 9 2.22E-06 26 47

Apoptosis KEGG KEGG 16 6.50E-06 24 31

Biocarta cell cycle pathway BioCarta 7 2.53E-08 23 47

Cell cycle KEGG 46 1.64E-04 21 67

APC C-mediated degradation of cell cycle proteins Reactome 32 3.27E-05 16 57

Regulation of mitotic cell cycle Reactome 32 3.27E-05 16 57

Cell cycle mitotic Reactome 60 3.63E-04 12 72

Caspase cascade in apoptosis PID 9 4.82E-04 12 32

NRAGE signals death through JNK Reactome 7 1.32E-05 7 25

Cell death signalling via NRAGE NRIF and NADE Reactome 8 1.53E-04 4 15

Biocarta death pathway BioCarta 9 5.82E-04 4 19

Apoptotic cleavage of cellular proteins Reactome 12 4.06E-05 3 17

Regulation of apoptosis Reactome 18 2.01E-05 1 9
aOnly genes showing association with survival (P < 0.1) were analyzed.
bEstimated by using log-rank tests.
cThe frequency showing p-values < 0.002083 in the 100 trials of the internal validation assessment.
dThe frequency showing p-values < 0.05 in the 100 trials of the internal validation assessment.
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and all 16 pathways were highly significant (results not
shown).

Predictability assessment (analytic validation of the
training set)
Internal analytical validation was performed on the
Shedden study to assess predictability of the signature sets
using 2-fold cross-validation. The 442 samples were ran-
domly divided into two (sub) sets of equal size, a training
and a test set. In the training phase, gene filtering, Cox
model fitting, total risk score calculation, and log-rank test
were performed according to the procedures described in
the Method section. The median of the risk scores was
computed for each pathway.
In the test phase, a score of 0 was initially assigned to

each patient. For each gene, a score of 1 was given to a pa-
tient if the Cox coefficient from the training set was greater
than 0 and the patient’s expression level was higher or
equal to the median, or if the coefficient was less than 0
and the expression level was less than the median. The
total risk score of each patient was computed for each
pathway (Step 3). Next, patients were classified into two
risk groups based on the median of the risk scores from
the training set. The log-rank test was performed to com-
pare the two risk groups at the significance level of 0.05
(Step 4). Here we considered both the unadjusted p-value
(α = 0.05) and the Bonferroni adjusted p-value (α = 0.05/
24). The procedure was repeated, but the model was devel-
oped on the test set and applied to the training set. The
entire procedure was repeated 50 times to generate differ-
ent 2-fold partitions. The frequency of significant results
out of the 100 repetitions was calculated for each pathway.
The last two columns of Table 1 list the frequencies of the
significant results for the 16 pathways. We selected the top
11 pathways which showed at least 10 significant counts at
α = 0.05/24 (and at least 30 significant count at α = 0.05)
for the generalizability assessment. These numbers can be
regarded as the power for the predictability.

Generalizability assessment (analytic validation of the
external datasets)
Generalizability requires that predictive performance of
a model developed from one study is reproducible across
different studies. Five additional microarray studies for a
total of 6 studies (Additional file 1: Table S2) were evalu-
ated. Among the 6 studies considered, 5 studies con-
tained adenocarcinoma samples and 4 studies contained
squamous cell carcinoma samples (i.e., 3 studies contained
both adenocarcinoma and squamous data). Evaluation of
generalizability is similar to the evaluation of predictability
in which all 442 samples from the Shedden study were used
as the training dataset and applied to each of 4 independent
studies as a test dataset. Briefly, four microarray datasets
were retrieved from the Gene Expression Omnibus (GEO)
[19], and the quantile normalization algorithm was utilized
to remove systematic biases. Gene expression levels of mul-
tiple probes annotated with the same gene symbol were
summarized into a single value by using their means. Each



Lu et al. BMC Bioinformatics 2013, 14:371 Page 4 of 10
http://www.biomedcentral.com/1471-2105/14/371
independent dataset was then evaluated using the proce-
dures described in the assessment of predictability.
Table 2 shows the p-values and the number of signifi-

cant results (p ≤ 0.05) for the 11 most significant path-
ways (p ≤ 0.05/24) for the five adenocarcinoma datasets,
including Shedden and four independent datasets. Several
pathways were significant for 3 or more datasets; the path-
way “apoptotic execution phase” was significant for all 5
datasets, an excellent criterion for generalizability.
In addition, a resampling test was performed to simulate

chance significance for the five adenocarcinoma datasets.
For each pathway, a null signature set consisting of ran-
domly selected genes from the Shedden study was gener-
ated, where the numbers of genes were kept the same as
the pathway. The null signature set was applied to the five
datasets; the total number of significant results was com-
pared to the observed number of significant results in
Column 8 to determine if the selected signature set was
superior to the null signature set. The simulation was re-
peated 1,000 times. The last column shows the p-value for
the 11 pathways, where the p-value was defined as the
proportion of the number of significances from the null
signature set was greater or equal to the observed number
in Column 8 out of the 1,000 repetitions.
The 11 pathways were also applied to four squamous

cell carcinoma datasets, GSE3141, GSE4573, GSE8894,
and GSE11969, and no statistical significance was identified
for any of 11 pathways and 4 datasets (Additional file 1:
Table S3). This suggested that these 11 pathways were spe-
cific to the lung adenocarcinoma.

The 16-gene signature
The 16 genes involved in the apoptotic execution phase
pathway and statistical p-values of the log-rank test from
Step 1 are listed in Table 3. Among them, the most sig-
nificant gene was DNM1L, which concurred with high
Table 2 Predictive performances estimated by the log-rank tests

Pathway (Gene Number) Database Shedden GSE314

Apoptotic execution phase (16) Reactome 1.16E-05 0.0038

Biocarta cell cycle pathway (7) Biocarta 2.53E-08 0.0596

Cell cycle (46) KEGG 1.64E-04 0.0214

Apoptosis (16) KEGG 6.50E-06 0.673

Caspase cascade in apoptosis (9) PID 4.82E-04 0.2174

APC C-mediated degradation of cell
cycle proteins (32)

Reactome 3.27E-05 0.2322

Regulation of mitotic cell cycle (32) Reactome 3.27E-05 0.2322

Polo-like kinase signaling events in the
cell cycle (42)

PID 5.86E-05 0.4168

Intrinsic pathway for apoptosis (9) Reactome 2.22E-06 0.1404

Apoptosis (43) Reactome 7.58E-06 0.0136

Cell cycle mitotic (60) Reactome 1.16E-05 0.2992
aOnly adenocarcinoma patients were analyzed here.
expression of PKP3 and DNM1L associated with poor
survival in lung adenocarcinoma patients [20]. Figure 1
shows the Kaplan–Meier survival curves with the p-values
from the log-rank test for the datasets. The proposed cal-
culation of risk scores scheme and classification of pa-
tients into “High” and “Low” groups appeared to perform
well in both training and test data. For example, in the
study of Shedden et al., the median survival of the patients
belonging to the “High” group is obviously shorter than
that from the “Low” group (44.52 month versus 94.35
month). Similarly, the median survival also showed dra-
matic differences between the “High” and “Low” groups
in GSE8894 (17.55 month versus 117.41 month). The
p-values from fitting the Cox hazard regression model
using the risk scores as an independent variable are shown
in Figure 1. The p-values were consistent with the p-values
from the log-rank test; a minor discrepancy is that the
dataset GSE3141 has 6 ties at the median score resulting in
lower discriminating ability. We also performed an analysis
dividing the patients into three groups (Additional file 1:
Figure S1), and an analysis of the squamous cell carcinoma
patients across 4 independent datasets. The results are
consistent with the results present above.
The risk scores and four clinical variables were analyzed

simultaneously using the multivariate Cox regression. The
four clinical variables were age, gender, smoking, and
grade (Additional file 1: Table S4). Additional file 1: Table S5
shows the coefficients of the fitted Cox regression. The
proposed risk score was the most significant predictor as
compared with the other four clinical variables.

Comparisons of the 16-gene signature with published
lung cancer prognostic signatures
The predictive performances of the 16 gene signature
were also compared with the published lung cancer prog-
nostic signatures. Six signature sets from five studies were
of the 11 pathways for five lung adenocarcinoma datasets

1a GSE8894a GSE11969a Beer Significance Resampling

0.0002 0.0008 0.0332 5 0.000

0.0012 0.025 0.1527 3 0.006

0.0050 0.0057 0.2008 4 0.053

0.0191 0.0838 0.0468 3 0.059

0.2737 0.3716 0.0055 2 0.077

0.0120 0.0075 0.5752 3 0.159

0.0120 0.0075 0.5752 3 0.159

0.0298 0.0389 0.229 3 0.192

0.3642 0.9689 0.4496 1 0.198

0.0598 0.0112 0.3525 3 0.211

0.0008 0.0007 0.085 3 0.281



Table 3 List of the 16 genes identified and their p-values
from the log-rank test

Gene Associationa p-value Gene Associationa p-value

ADD1 - 2.26E-02 OCLN - 1.72E-02

DNM1L + 4.70E-04 PAK2 + 4.56E-02

DSG2 + 1.63E-03 PKP1 + 5.65E-02

DSP + 1.24E-02 PRKCD - 4.95E-03

HMGB2 + 3.97E-03 PRKCQ - 3.18E-02

KPNB1 + 4.25E-02 SATB1 - 7.72E-02

LMNB1 + 4.85E-02 STK24 + 1.87E-02

MAPT - 9.91E-03 TJP1 + 7.72E-02
a“+” denotes the fitted Cox efficient > 0 whereas “-“denotes the fitted
Cox coefficient < 0.

Figure 1 Kaplan-Meier survival curves of lung adenocarcinoma patients
were classified into “High” or “Low” groups based on their median score. (a) S
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considered [3-5,21-23]. We collected the gene symbols
from their original literatures and followed the same evalu-
ation procedures described previously to test their predict-
ability. The results are summarized in Table 4; it appeared
that the 16-gene signature identified in this study was su-
perior to those identified in other studies. Specifically,
among the published signatures, the best performance was
observed in the 10 genes reported in the study of Kratz
et al. [24]. These 10 genes were able to predict four datasets
with one on the border line (P = 0.12). The other signatures
were effective predictors for 2 or 3 datasets. Therefore, the
results suggested that our analysis approach not only was
able to reproduce published gene signatures from other
studies but also identified a set of predictive genes for lung
adenocarcinoma.
divided by their summarized scores. For each dataset, the patients
hedden et al. (b) GSE3141 (c) GSE8894 (d) GSE11969 (e) Beer et al.



Table 4 Comparisons of the predictive performances of the 16-gene signature with 6 published lung cancer signatures

Signature Number Ref Shedden GSE3141a GSE8894a GSE11969a Beer

This Study 16 – 1.16E-05 0.0038 0.0002 0.0008 0.0332

Chen et al. 5 [25] 0.0244 0.7504 0.0050 0.0954 0.9578

Chen et al. 15b [25] 3.24E-05 0.0401 0.0021 0.4452 0.3526

Chu et al. 15 [26] 0.0349 0.0094 0.2735 0.3624 0.3357

Kratz et al. 10c [24] 9.18E-04 0.0201 0.0049 0.1277 0.0294

Chen et al. 94d [27] 3.15E-04 0.7403 0.0008 0.0268 0.3455

Wan et al. 9e [28] 0.0348 0.0643 0.0540 0.0411 0.0643
aOnly adenocarcinoma patients were analyzed here.
bCPEB4 was missing in the probeset of Affymetrix U133A platform.
cWNT3A was missing in the probeset of Affymetrix U133A platform.
dOnly 94 genes remained after removing redundant probes.
eMTX1 was missing in the probeset of Affymetrix U133A platform.
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Exploration of association between the 16-gene signature
and drug response
Finally, we explored the ability of the 16-gene signature
to serve as a predictive biomarker for drug response. To
address this issue, we considered the microarrays of
GSE36133 [15], which contained gene expression profiles
and efficacy data of 23 drugs for 89 human lung cancer
cell lines. The drug Irinotecan was not included in the
analysis because the data were missing in more than 50%
of the 89 cell lines. The expression data were retrieved
from the GEO website and normalized by the quantile al-
gorithm. Summarized pathway scores of identified genes
were obtained by following the same procedures described
previously. The efficacies of drugs on each cell line were
represented by the variable activity area, with a higher
value of the activity area representing higher inhibition
ability of the corresponding drug in the cell line. The au-
thors determined the activity area of a drug by measuring
its proportion of relative growth inhibition compared to
the untreated samples at different drug concentrations
[15]. For each drug, a linear regression model was utilized
to evaluate the association between the value of the activ-
ity area and the derived risk score. The results, summa-
rized in Additional file 1: Table S6, indicated that the risk
score was associated with three drugs, Nutlin-3, RAF215
and ZD-6474. Subsequently, the 89 cell lines were divided
into three groups based on their scores and two non-
parameter tests, Kruskal-Wallis test and Wilcoxon rank
sum test, were performed. Only the drug, ZD-6474, tar-
geting EGFR, showed significant differences in both statis-
tical tests (Additional file 1: Figure S2), and better drug
response was observed in the patients classified in the
“High” group. This suggested that high-risk lung adeno-
carcinoma patients with poor survival may benefit from
receiving ZD-6474 treatment. In summary, these results
implied that our proposed pathway score is not only a
prognostic biomarker for survival outcomes but also a
predictive biomarker for selecting potentially useful drugs
to treat lung adenocarcinoma patients.
Discussion
In the development of the 16-gene signature, the gene
filtering procedure used the log-rank test to exclude genes
showing no associations with survival outcomes (Step 1 in
Figure 2). The p-value cut off was set at 0.1 in order to
prevent excessive removal of genes. A similar strategy was
utilized in a published report on ovarian cancer [8], in
which the authors used a slightly looser threshold (P < 0.15)
to retain the top quartile of associated genes. In our data,
about 22% of the genes (2,852 out of 12,753) passed the
threshold (P < 0.1). In other words, approximately 80% of
the genes were removed by this step, which excluded the
majority of genes examined by microarray. A more strin-
gent cut off of p-values may help decrease the false-positive
rates. However, two important questions may arise by using
this approach. First, the proposed pathway-based analyses
required a sufficient number of input genes in order to pre-
serve the biological meaning of functional-relevant gene
sets. Next, it is well-known that a huge discrepancy
was observed across independent datasets, which may
be attributed to different experimental protocols, distinct
ethnicity, and dissimilar clinical parameters of investigated
patients. Although a stringent threshold may provide
better results for a single dataset, it often simultaneously
increases the chance of overfitting the training model.
Since the goal of this study is to identify predictive and
reproducible genes across different studies, we prefer a
slightly looser p-value cut off to retain information and
the generality of results.
Four biological databases were utilized to provide func-

tional annotations for the selected genes, and our results
revealed that many cancer-related pathways were possible
predictors for survival outcomes in lung adenocarcinoma
(Table 1). Among them, an internal validation test ex-
cluded 5 pathways that showed low predictability. Further-
more, in the external validation, the pathway that was
shown to be reproducible across 5 datasets does not have
the smallest p-value from the log-rank test results. This
implied that filtering survival predictors based purely on



Figure 2 Flowchart for identifying predictive genes associated with survival outcomes in lung adenocarcinoma.
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the p-value may not be the best strategy because such ap-
proach may cause overfitting of the model to the training
dataset. In addition, lung cancer is such a heterogeneous
disease and independent datasets had different ethnic char-
acteristics, various experimental platforms, and distinct
clinical features of patients. A pathway having the highest
reproducibility across independent studies may be more
applicable to clinic use than a pathway with the most sig-
nificant p-value in a single dataset. Furthermore, for the 11
pathways shown in Table 2, we collected the most signifi-
cant gene from each pathway into a gene set. The same
scoring and evaluation procedures described previously
were performed in 5 lung adenocarcinoma datasets by
using this gene set. The result showed that its prediction
performance and consistency were inferior to that obtained
from the 16 genes, suggesting that using the union of the
most significant gene across different pathways may be not
the best choice.
Several previous studies have reported that the 16 genes

identified in this study were highly related to the develop-
ment, progression and treatment of cancer cells [20,29-38].
DNM1L was associated with poor survival in lung adeno-
carcinoma patients when co-expressing with PKP3 [20],
and nuclear expression of DNM1L was correlated with not
only poor prognosis for lung adenocarcinoma but also
drug resistance during hypoxia [29]. Cleavage of DSG2 was
mediated by junction opener 1 (JO-1), and downstream
signaling combined with a monoclonal antibody targeting
EGFR, Erbitux, provide better therapeutic outcomes in
EGFR-positive lung cancer [30]. DSP has been reported as
an overexpressing gene in high-risk patients with stage one
non-small cell lung cancer (NSCLC), and is included in the
64-gene signature to predict survival outcomes [31]. The
high mobility group 2 protein (HMG2) was able to increase
the drug sensitivity of cisplatin in lung cancer cells by
inhibiting repair of the DNA damage resulting from cis-
platin [32]. A previous study demonstrated that KPNB1
was overexpressed in cervical cancer cells, and decreased
expression of KPNB1 greatly reduced cell proliferation and
triggered cell death procedures [33]. The expression of
LMNB1 was significantly up-regulated in the plasma and
tissue of hepatocellular carcinoma patients, and it was as-
sociated with tumor stages, tumor sizes, and number of
nodules [34]. Low mRNA and protein expression ofMAPT
was correlated with high expression of TUBB3, which
showed prognostic significance with disease-free survival
and overall survival in patients with early breast cancer
[35]. CLDN1 was a transcriptional activator of OCLN, and
was also reported as not only a metastasis suppressor but
also a possible prognostic predictor for lung adenocar-
cinoma [36]. PAK2 was a necessary interaction partner
of ARHGDIB, and knockdown of PAK2 greatly reduced
ARHGDIB-induced cell invasion and ARHGDIB-mediated
chemoresistance in gastric cancer [37], and loss of SATB1
in lung cancer has been shown as a possible marker for
poor survival [38].
Identification of possible prognostic biomarkers for vari-

ous cancers has been widely investigated in the past two
decades, and several successful studies have been reported
[8,24,39,40]. For instance, the MammaPrint® Test divided
breast cancer patients into high and low risk groups for
distant metastases within 10 years by examining the ex-
pression signature of 70 genes [39,40], and it has been the
only signature approved by the FDA for clinical use. Re-
garding lung cancer, in addition to the irreproducibility of
identified biomarkers across independent datasets [7], gene
expression profiles obtained from different microarray plat-
forms pose another challenge. A predicting model devel-
oped using one microarray platform usually cannot be
directly utilized in another microarray platform due to dif-
ferences in their dynamic ranges of intensity values and
lack of a normalization algorithm to adjust them to the
same baseline. Therefore, a predictive model will become
more useful when it is not necessary to rebuild the model
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using different parameters in independent datasets. In this
study, the medians of proposed scores in the 5 lung adeno-
carcinoma datasets were 8, except for the Beer dataset.
The median score in the Beer dataset was 7 based on only
14 genes studied, since two genes, DSP and STK24, were
not examined in the corresponding microarray platform.
In summary, our approach provides a consistent cutting
threshold across different microarray platforms, and thus
may enable application to independent studies.
To further investigate the proposed analysis procedures

in this study, Cox hazard regression models were used to
evaluate the top 5 pathways shown in Table 2. Generally,
the risk scores obtained from the other 4 pathways were
significantly associated with survival outcomes in at least 2
datasets (P < 0.05), suggesting that our approach is effect-
ive in selection of predictive genes from the whole gene
pool. In addition, we followed the same procedures de-
scribed previously and performed the three statistical tests
to evaluate the drugs associated with the scores obtained
from the second pathway, the Biocarta cell cycle pathway.
The scores were significantly correlated with three drugs
using a linear regression model (P < 0.05), and two of
them, Erlotinib and Lapatinib, also passed the Kruskal-
Wallis and Wilcoxon rank sum tests. Unexpectedly, these
two drugs both target EGFR, concurring that treating lung
cancer patients using EGFR inhibitors is a feasible ap-
proach. Therefore, our proposed methodology may facili-
tate classification of patients into different groups based
on their drug responses.
Identification of prognostic biomarkers for lung cancer

is useful but it may become more valuable if the predict-
ing signature can simultaneously reveal the drug response.
Although ZD-6474, also known as Vandetanib, targeting
EGFR, has not been approved for treatment of NSCLC,
it has been used in medullary thyroid cancer [41]. One
randomized phase 2 clinical trial demonstrated the effi-
cacy of Vandetanib in locally advanced or metastatic dif-
ferentiated thyroid cancer [42]; another meta-analysis
study including 14 trials indicated that NSCLC patients
treated by Vandetanib showed better progression-free sur-
vival, especially the adenocarcinoma subtype [43]. This sug-
gests that Vandetanib has high potential for approval and
use in treatment of patients with lung cancer [41]. There-
fore, since the efficacy of Vandetanib was associated with
the score proposed to summarize the 16 genes (Additional
file 1: Figure S2), this signature may serve as both prognos-
tic and predictive biomarkers for lung adenocarcinoma pa-
tients in the future.
To further explore the potential of the 16-gene sig-

nature used as a predictive biomarker, we evaluated its
performance by analyzing another NSCLC dataset with
treatment information, GSE14814 [26]. The series matrix
file of GSE14814 was retrieved from the GEO database.
There were 90 lung cancer patients in the series matrix
file but only 28 adenocarcinoma patients. We applied the
same procedure to derive the risk scores of each lung
adenocarcinoma patient. Unfortunately, no significant dif-
ference between “High” and “Low” groups was observed
in the 28 lung adenocarcinoma patients using the 16-gene
signature (P > 0.05). Among the 28 lung adenocarcinoma
patients, there are 17 treated patients and 11 controls.
Again, no significant differences were observed in these
two sub-groups. These insignificant results might be at-
tributed to the small sample size (N = 28). The 17 treated
patients were insufficient for subgroup analysis of differ-
ence between high and low risk groups. In addition, we
evaluated the performance of the 16-genes on the 52 lung
squamous cell carcinoma patients. The result was similar
to the previous analysis that the 16-gene signature can’t
significantly predict the squamous cell carcinoma patients.
The 16-gene signature cannot serve as a predictive signa-
ture in GSE14814.

Conclusions
In this study, we identified 16 predictive genes for lung
adenocarcinoma patients via pathways. Four widely used
biological databases were utilized to provide the functional
annotations of genes. The risk scores derived from these 16
genes were reproduced in 4 independent studies, which ac-
count for a total of more than 700 lung adenocarcinoma
patients. However, the risk scores showed no predictive
ability for lung squamous cell carcinoma, suggesting that
these 16 genes were subtype-specific for lung cancer. Lastly,
statistical tests showed that the 16-gene signature was asso-
ciated with the efficacy of an anti-cancer drug, ZD-6474,
directly targeting EGFR. Therefore, these 16 genes may
serve as not only prognostic biomarkers but also predictive
biomarkers for lung adenocarcinoma, and have potential
for clinical use in the future.

Methods
Processing of the training set
The microarray dataset from the study of Shedden et al.
[5] was utilized as the training set to develop a prognos-
tic signature for survival risk prediction. This dataset
provided not only the largest number of lung adenocarcin-
oma patients currently in the world, but also comprehen-
sive clinical information for further comparisons. The raw
cel files of Affymetrix microarray retrieved from the web-
site were imported into the Partek Genomics Suite version
6.4 to perform the pre-processing steps, including robust
multiarray average and the quantile normalization method.
After pre-processing, the gene symbol of each probe was
obtained by searching the official annotation file version
32 provided by Affymetrix, Inc. Only probes annotated
with one single gene remained for further analyses and the
expression values of multiple probes showing the same
gene symbol were summarized by a single value by using
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their mean. Consequently, a total of 12,753 genes were in-
vestigated in this study.

Identification of potential gene signatures by
biological pathways
The procedure to identify significant survival predictors is
illustrated in Figure 2. Specifically, for each gene, patients
were divided into two groups based on the median of ex-
pression values. A patient was classified into the “High”
group if his/her expression level was greater than or equal
to the median and into the “Low” group if his/her expres-
sion level was less than the median. Next, the log-rank test
was performed to compare the “High” versus “Low” groups
for each gene. The significant genes were selected based on
a pre-determined statistical criterion at p < 0.10 (Step 1).
Four biological databases, including KEGG [44], BioCarta,

Pathway Interaction Database (PID) [45] and Reactome
[46], were utilized to provide functional annotations
of selected genes. Because it is well-known that apoptosis,
cell cycle and cell death regulations are dominant players
in regulating cancer cells [47,48], we selected 24 pathways
that were related to these three functions for further
investigations (Step 2).
The associations between gene expression and survival

were evaluated using the Cox hazard regression model for
each gene selected from Step 2 (24 pathways). Initially, a
score of 0 was assigned to each patient. For each gene, a
score of 1 was given to a patient 1) if the fitted Cox coeffi-
cient was greater than 0 and the patient’s expression level
was greater or equal to the median, or 2) the Cox coeffi-
cient was less than 0 and the expression level was less
than the median. The total risk score of each patient was
computed by summing all genes within the same pathway
(Step 3).
For each pathway, patients were classified into two

groups based on the median of the risk scores. The log-
rank test for difference between the two groups was per-
formed; the pathway-specific significant signature sets were
identified at α = 0.05/24 (Step 4). The significant signature
sets were analytically evaluated to assess their predictability
and generalizability.

Availability of supporting data
Shedden’s dataset: https://array.nci.nih.gov/caarray/project/
details.action?project.id=182.

Additional file

Additional file 1: Table S1. Identified significant gene members (P < 0.1)
showing associations to the survival outcomes in the 24 pathways
investigated. Table S2: Characteristics of the six microarray datasets. Table S3:
Prediction performances of the 11 pathways in lung squamous cell carcinoma.
Table S4: Characteristics of the 442 lung adenocarcinoma patients analyzed in
the study of Shedden et al. Table S5: Cox hazard regression model of scores
and clinical variables in the study of Shedden et ala. Table S6: Linear
regression analysis of the activity area of 23 drugs on the risk scores derived
from the 16-gene signature. Figure S1: Kaplan-Meier survival curves of lung
adenocarcinoma patients classified into three groups. For each dataset, the
patients were classified into “High”, “Intermediate” and “Low” groups according
to their summarized scores. (a) Shedden et al. (b) GSE3141 (c) GSE8894 (d)
GSE11969 (e) Beer et al. Figure S2: Lung cancer cell lines with higher scores
associated with higher activity area of ZD-6474. The 89 lung cancer cell lines
from GSE36133 were divided into “High”, “Intermediate” and “Low” groups
based on their scores. Box plot was utilized to illustrate their activity areas
among three groups. Kruskal-Wallis test and Wilcoxon rank sum test were
performed to assess their statistical differences.
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