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Abstract

Background: Multicellular organisms consist of cells of many different types that are established during
development. Each type of cell is characterized by the unique combination of expressed gene products as a result of
spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene
expression controls that generate the complex body plans during development. Recent advances in high-throughput
biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism
fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on
computational tools we present in this paper would provide promising ways for addressing key scientific questions.

Results: We develop a set of computational methods and open source tools for identifying co-expressed embryonic
domains and the associated genes simultaneously. To map the expression patterns of many genes into the same
coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform
a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes
and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes
simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key
developmental events during the stages of embryogenesis we study. The open source software tool has been made
available at http://compbio.cs.odu.edu/fly/.

Conclusions: Our mesh generation and machine learning methods and tools improve upon the flexibility,
ease-of-use and accuracy of existing methods.

Background
Advances in sequencing and gene-prediction technolo-
gies have led to the discovery of virtually complete sets of
protein-coding sequences in many model systems. In con-
trast, how these coding sequences are controlled by the
regulatory sequences to transform a single cell, through
cell division and differentiation, into a complex multicel-
lular organism remains largely unknown. In multicellular
organisms, one of the primary purposes of gene control
is execution of the genomic regulatory code to gener-
ate complex body plans during development [1,2]. This
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process critically depends on the right gene being acti-
vated in the right cell (spatially) at the right time (tem-
porally). Thus, analysis of spatiotemporal gene expression
patterns provides a promising way for investigating the
gene regulatory networks governing development.
In developmental biology, the fruit fly Drosophila

melanogaster has long been established as a canon-
ical model organism [3,4]. Recent advances in high-
throughput in situ hybridization (ISH) technologies have
allowed scientists to produce spatiotemporal expression
patterns for thousands of genes in Drosophila [5-8]. This
wealth of data creates opportunities for studying the
developmental regulatory networks. However, the sheer
volume and complexity of these data preclude the tradi-
tional practice of manual analysis and make automated
methods essential [8-16].
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In this work, we develop a set of ISH image comput-
ing and machine learning methods for the automated
analysis of Drosophila gene expression pattern images.
Specifically, we develop a mesh generation pipeline for
mapping the expression patterns of many genes into the
same geometric space [8]. This enables accurate compar-
ative analysis of the spatial expression patterns of multiple
genes and accounts for the differences in embryo mor-
phology. We fit an ellipse to the boundary of each embryo
using the least squares criterion. We then average the
fitted ellipses for all images in the same stage range to
obtain a generic ellipse. We automatically interpolate the
boundary of this generic ellipse and use a Delaunay mesh
method [17-20] to generate a triangulated mesh on this
ellipse.
We accurately capture the morphology of each embryo

by employing a systematic procedure to deform the
generic, meshed ellipse to each individual embryo. We
first establish correspondences between vertices on the
generic ellipse and those on the fitted ellipses. Then the
vertices on the fitted ellipses are deformed to the embryo
boundary using the minimum distance criterion. Finally,
the coordinates of all the other vertices are computed by
solving an elastic finite element problem.
The mesh generation scheme allows us to organize

the expression pattern images of many genes into a
data matrix in which one dimension corresponds to
genes and the other dimension corresponds to mesh ele-
ments as in the Genomewide-Expression-Maps (GEMs)
[12,21]. To identify co-expressed embryonic domains and
the associated genes, we develop a co-clustering for-
mulation to cluster the mesh elements and the genes
simultaneously. We formulate the co-clustering prob-
lem using a maximum likelihood formalism and employ
an expectation-maximization algorithm to perform the
parameter estimation.
We apply the mesh generation and co-clustering meth-

ods to a set of gene expression pattern images in the
FlyExpress database [12]. Our results show that our meth-
ods generate co-expressed domains that overlap with
many embryonic structures. In addition, these results
show that the proposed methods yield gene clusters that
are functionally more enriched than those discovered in
prior studies. More importantly, we show that the mesh
and gene co-clusters correlate strongly with key develop-
mental events during the stages of embryogenesis under
investigation.

Methods
Mesh generation
Requirements
Let I1, . . . , Im be a list of embryo images. The goal of this
module of the pipeline is to overlay each of the embryo
images with a triangular mesh, such that all meshes have

the same number of triangles and connectivity. For a given
image, all triangles we create are of approximately the
same size, in terms of their area. Let a stand for an upper
bound on triangle area. Then all triangles in a single mesh
which we construct have area slightly less than a. Let
Mj(a) be the mesh that we construct for image Ij that
depends on area bound a. For simplicity we will omit the
parameter a below.
More precisely, let Mj = (Vj,Tj), where Vj is the list

of vertices and Tj is the list of triangles. Each vertex is
defined by its two-dimensional coordinate, and each tri-
angle is defined by a triple of vertex indices (p1, p2, p3),
1 ≤ p1, p2, p3 ≤ |Vj|. These meshes are expected to satisfy
the following requirements:

• All of the Tj contain the same number of triangles,
i.e., |Tj| = |Ti| for i, j = 1, . . . ,m.

• All of the Tj contain the same triples of vertex indices
in the corresponding positions. As a result, we can
omit the subscript and use T for all meshesMj,
j = 1, . . . ,m.

• All of the Vj contain the same number of vertices:
|Vj| = |Vi| for i, j = 1, . . . ,m.

• All vertices on the boundary of meshMj lie on the
boundary of the embryo of image Ij.

• Each triangle inMj = Mj(a) has area approximately
equal to a.

• All vertices in Vj are geometrically close to the
vertices in the corresponding positions in Vi for all
i, j = 1, . . . ,m, with respect to their location within
an embryo.

Construction andmeshing of the average ellipse
For each image Ij, j = 1, . . . ,m, we compute the param-
eters of the equation of the ellipse Ej that realizes the
best fit to the boundary of the embryo in this image. We
compute the best fitted ellipse using the least squares
criterion to the set of the embryo’s boundary pixels. Then
we average the parameters of all ellipses to obtain the
average ellipse E′.
Given a value of a, we construct a mesh of E′. First,

we use linear interpolation to approximate the boundary
of E′, and then use a Delaunay mesh generator, Trian-
gle [17], to mesh the interior of E′. Delaunay refinement
is our meshing method of choice since it is backed by
proven theoretical guarantees [18-20] that make it a push-
button technology: its being able to guarantee termination
with angle and area bounds allow for a guaranteed quality
automatic pipeline.
We interpolate the boundary of E′ by performing the

following steps. First, we calculate the side length � of
an equilateral triangle with area a. Then we use an iter-
ative subdivision of the boundary of E′ with a set of
vertices v1, . . . , vs = v0 until all segment lengths |vi−1vi|,
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i = 1, . . . , s are approximately equal to �. In other words,
this is a uniform distribution of vertices with respect to
the lengths of segments. The union of all these segments
is a piecewise linear interpolation of the boundary of E′.
To tessellate the interior of E′, we use Triangle with the

following parameters:

• A planar straight line graph (PSLG) composed of the
segments and the points interpolating the boundary
of E′ plus one point in the center of E′. We instruct
Triangle to preserve this PSLG and not to split the
boundary segments, so that the discretization of the
PSLG appears as a subgraph of the final mesh.

• The area bound a instructing Triangle to produce all
triangles with areas bounded from above by a.
Triangle starts with a coarse mesh and iteratively
splits triangles until their areas fall below a, and
therefore this is an approximate target area.

• An angle bound of 25° which instructs Triangle to
enforce all angles in the final mesh to be 25° or above.
Theoretically, Triangle guarantees only a minimum
angle bound of 20.7° or below, however we found that
in practice it can mesh an ellipse with a 25° angle
bound, since it is a simple shape.

Let themesh of the average ellipse be denoted asM′, and
the list of radial angles corresponding to the subdivision
vertices as θ ′

1, . . . , θ ′
s .

Deformation of themesh of the average ellipse
For each ellipse Ej, we use the angles θ ′

1, . . . , θ ′
s to find

the vertices that discretize the boundary of Ej. Then we
project these vertices onto the closest points from the
boundary of the embryo in image Ij. We define closeness
in terms of the Euclidean distance, and use the Matlab’s
Euclidean distance transform function to find the near-
est boundary pixels simultaneously for all pixels in the
image. Using the result of this function, we determine the
required projections.
For each image Ij, we deform the mesh M′, such that

the boundary vertices of M′ assume the coordinates of
the corresponding vertices (with respect to their radial
ordering) on the boundary of the embryo in Ij. The target
coordinates of all the other vertices in V ′ are computed by
solving an elastic finite element problem [22]. As a result,
the triangles of the generic mesh are deformed minimally
and proportionally to their distance to the projected ver-
tices on the boundary of the embryo in Ij and to the
amount of the displacement at these boundary vertices.

Simultaneous clustering of mesh elements and genes
For a mesh with n elements (triangles), we assume that
the elements are numbered from 1 to n in an arbitrary
but fixed order. Following [8], we extract the median

of gray-level intensities from each mesh element and
represent each image using an n-dimensional vector in
which the ith component contains the median of inten-
sities from the ith mesh element. Then the expression
patterns of m genes can be encoded into a data matrix
A ∈ R

m×n, in which each row corresponds to a gene,
and each column corresponds to a mesh element. Note
that, to simplify the notation, we assume that the number
of images and the number of genes are the same. When
the expression pattern of a gene is captured by multiple
images, we treat them separately.
In [8], two clustering methods are applied indepen-

dently to identify clusters in the rows or the columns of
the matrix A. In their case the row-wise (column-wise)
clustering requires the rows (columns) in the same cluster
to be similar with respect to all columns (rows). How-
ever, a set of genes might be co-expressed only at certain
local domain of the embryo corresponding to a subset
of mesh elements. To identify the co-expressed embry-
onic domains and the associated genes, we employ a co-
clustering method to cluster the rows and columns of the
data matrix A simultaneously. This generates co-clusters
consisting of a subset of genes that are co-expressed at a
subset of mesh elements. Note that entries of matrix A
encode the expression intensities of genes and thus are
nonnegative. An appealing property of our co-clustering
method is that it is based on a probabilisticmodel and thus
preserves the nonnegativity in the estimated parameters.
It has been shown in [23] that a variant of this model con-
sistently outperforms other methods that do not preserve
nonnegativity.

A co-clustering formulation
In our co-clustering model, the matrix A is represented as
a bipartite graph in which the two set of vertices corre-
spond to the rows (genes) and columns (mesh elements),
respectively, of the matrix A. The edge connecting the ith
vertex in the first set to the jth vertex in the second set car-
ries a weight of Aij. It follows that the adjacency matrix of
the bipartite graphW can be expressed as

W =
[

0 A
AT 0

]
, (1)

where the vertices in one set is ordered before vertices in
the other set.
We assume that the adjacency matrixW of the bipartite

graph can be approximated by

W ≈ HH̃ , (2)

where

H =
[
P 0
0 Q

]
∈ R

(m+n)×(2c), (3)
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H̃ =
[

0 QT

PT 0

]
∈ R

(2c)×(m+n), (4)

c is the number of co-clusters, P ∈ R
m×c denotes the

row cluster indicator matrix, and Q ∈ R
n×c denotes the

column cluster indicator matrix. It follows that

HH̃ =
[

0 PQT(
PQT)T 0

]
, (5)

which matches the structure ofW in Eq. (1).
Following [24], we assume that the data in A are gen-

erated via a multinomial distribution. This gives rise to
the following log likelihood function of observing the
adjacency matrixW :

L = logP(W |HH̃) (6)

= 2
m∑
i=1

n∑
j=1

Aij log
(
PQT

)
ij
.

It can be shown [24] that maximizing the log likelihood in
Eq. (6) is equivalent to minimizing the divergence loss of
the approximation in Eq. (2).

An EM algorithm
We use an EM algorithm to maximize the log likelihood
in Eq. (6). In the following, variables with hat are used to
denote the values obtained from the previous iteration. In
the E-step, we compute the expectation as

φijk = P̂ikQ̂jk

(P̂Q̂T )ij
. (7)

In the M-step, we maximize the expectation of log likeli-
hood with respect to (�)ijk = φijk

E�[L] = 2 ×
∑
ijk

φijkAij log
(
PikQjk

)
. (8)

We impose the following normalization constraints to
facilitate a probabilistic interpretation of the co-clustering
results:

m∑
i=1

Pik = 1,
n∑

j=1
Qjk = 1.

By using Lagrange multipliers for these constraints, it
can be shown that the following update rules will mono-
tonically increase the expected log likelihood defined in
Eq. (8), thereby converging to a locally optimal solution
[24]:

Pik ← 2 ×
∑
j

P̂ikQ̂jkAij

(P̂Q̂T )ij
,

Qjk ← 2 ×
∑
i

P̂ikQ̂jkAij

(P̂Q̂T )ij
.

The results are then normalized such that
∑

i Pik = 1 and∑
j Qjk = 1. The E-step and M-step are repeated until

a locally optimal solution is obtained. Then the matrices
P and Q can be used as row and column co-cluster indi-
cator matrices, respectively, to obtain soft co-clustering
results. A variant of this method has been shown to com-
pare favorably with other approaches on a variety of data
sets [23].

Related work
Our work on mesh generation is motivated by the prior
work in [8]. However, there are some substantial dif-
ferences between our approach and the prior method.
Besides the expanded analysis based on meshes with a
range of triangle sizes, for a given triangle size a our
methodology also offers a number of significant improve-
ments in the accuracy of capturing embryo shapes. Frise
et al. [8] define E′ as a predetermined ellipse of axial ratio
4 : 2, while we compute E′ from the actual embryo shapes.
As a result, we make sure that E′ is close to the particular
set of shapes, since different sets of shapes can have differ-
ent average ellipses. Frise et al. [8] discretize the boundary
of E′ based on approximately equal radial angles, while
our discretization is based on approximately equal edge
lengths. See Figure 1 (left and center) for an illustration.
Frise et al. [8] project the discretization vertices from Ej
onto the actual boundary of the embryo along the radial
lines emanating from the center of Ej, while we choose the
closest points based on Euclidean distance. See Figure 1
(right) for an illustration.
Our work is related to the seminal work in [25], where

the Gaussianmixturemodels (GMM)were applied to gen-
erate co-expression domains for the purpose of image
comparison. Our work is different from [25] in both its
objectives and approaches. In [25], image pixels were
considered directly as the basic elements of modeling
while we use triangulated mesh to warp and discretize
the embryos in order to account for the shape and mor-
phological variations. It has been shown in prior work
[8] that the use of mesh leads to biologically significant
results. In addition, GMM was used to cluster the pixels
in [25], while we use a co-clustering method to co-cluster
the mesh elements and the genes simultaneously. Since
each domain is expected to be defined by only a subset
of genes in the genome, co-clustering aims at identifying
the domains and the associated genes simultaneously. As
shown by our experimental results, co-clustering leads to
more significant results.

Results and discussion
We evaluate the proposed computational methods on a
set of gene expression pattern images retrieved from the
FlyExpress database [12]. This database contains genome-
wide, two-dimensional, standardized images obtained
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Figure 1 Left: Subdivision of an ellipse (pink) based on equal radial angles (dashed black lines) leads to inaccurate boundary
interpolation (blue). Center: A more accurate subdivision (solid black lines) based on equal lengths of interpolating segments. Right: Euclidean
projection (q) from a point (p) on the ellipse (green) onto the boundary of the embryo (red) is more accurate than a projection along a radial line (r).

from multiple sources, including the Berkeley Drosophila
Genome Project [5]. Other databases provide three-
dimensional images with higher resolution, but the data
are not on the genome-scale [26]. Following [8], we focus
on stages 4-6 and generate two data sets. The larger data
set contains 2693 images capturing the expression pat-
terns of 1881 genes, and the smaller one is a subset of 553
images corresponding to 365 genes with clearly defined
expression boundaries. The images are preprocessed by
a set of tools developed in [8] before they are tesselated
with our mesh generation tools. We apply the proposed
mesh generation method to convert a set of images into
a data matrix in which the rows correspond to genes
and the columns correspond to mesh elements. We apply
the co-clustering method to compute co-clusters of genes
and mesh elements. We first study the mesh clusters and
gene clusters separately in Sections “Clustering of mesh
elements” and “Clustering of genes”, respectively. We then
correlate mesh and gene co-clusters with developmental
events in Section “Co-clustering of mesh elements and
genes.

Clustering of mesh elements
The mesh elements represent localized spatial areas of
the embryo, and can be used to discover distinct domains
of developmental gene expression. We apply our mesh
method to the data set of 553 stage 4-6 lateral embryos
to gain insight into major developmental co-expression

domains during this time. Co-clustering with different
numbers of co-clusters is applied to the data matrix.
Results are then mapped to the average ellipse and color-
coded (Figures 2 and 3). To ensure that cluster boundaries
are not the result of data processing artifacts, data is
randomized at multiple points of the pipeline.
Figures 2 and 3 reveal the resulting clusters resem-

ble the fate map of the developing embryo [27]. The
clusters represent domains of high co-expression. They
invariably form spatially contiguous regions, and are com-
posed of rectangular shapes. Further, the cluster bound-
aries are largely parallel to the anterior/posterior (A/P)
and dorsal/ventral (D/V) axes of the embryo. As the
number of co-clusters is increased (Figure 2), the rect-
angular cluster shape is often retained, with larger clus-
ters subdivided into smaller ones. In our data set, this
subdivision of clusters often occurred at the far A/P and
D/V regions of the embryo. These increased subdivi-
sions correlate with major developmental events during
stages 4-6 of Drosophila embryogenesis [4,27]. Signals
along the A/P and D/V axes drive this pattern formation
[3]. During Stage 6 gastrulation begins, and the ventral
and cephalic furrows form. Looking back at the clus-
ters, we see a greater proportion of subdivisions along
where these furrows form in the developing embryo. The
general clustering patterns remain the same while the
cluster boundaries become smoother as the number of
mesh elements increases (Figure 3).

Figure 2 Clusters of mesh elements when the number of clusters is varied from 10 to 30 with a step size of 5 (left to right, top to bottom)
on stage 4-6 expression patterns. The first figure in the first row shows the fate map of the blastoderm [27].
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Figure 3 Clusters of mesh elements when the number of co-clusters is set to 39 as in [8], and when the number of mesh elements are set
to 300, 600, and 1000 (left to right). In these figures, colors are used to visualize clusters so that mesh elements in the same cluster are in the
same color, and those in different clusters are in different colors.

Table 1 The numbers of enriched gene ontology terms generated by the original (Original) and the proposed (New)mesh
generationmethods

Number of clusters

Biological Cellular Molecular

process component function

New Original New Original New Original

30 168 169 36 36 43 43

31 168 169 36 36 43 43

32 155 156 35 35 38 38

33 174 175 30 30 40 40

34 174 175 30 30 40 40

35 169 170 30 30 38 38

36 189 176 30 29 38 38

37 189 176 30 29 38 38

38 189 176 30 29 38 38

39 192 177 32 31 38 38

40 192 177 32 31 38 38

41 222 209 19 18 24 22

42 227 209 20 19 29 22

43 232 209 21 19 28 22

44 231 209 27 19 28 22

45 234 209 28 19 33 22

46 234 209 28 19 33 22

47 234 209 28 19 33 22

48 234 209 28 19 33 22

49 234 209 28 19 33 22

50 228 209 28 19 27 23

51 228 210 28 20 27 23

52 228 221 29 20 27 25

53 228 217 29 20 27 25

54 228 196 29 19 27 25

55 228 196 29 19 27 25

56 228 195 29 22 27 25

57 228 203 29 22 27 21

58 228 204 29 22 28 25

59 228 204 29 23 28 25

60 229 208 29 21 28 26

The number of co-clusters is varied from 30 to 60. In each case, the total number of enriched terms from all clusters are reported.
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Clustering of genes
Co-clustering of the data matrix leads to clusters of genes.
We use gene ontology (GO) [28] to evaluate the gene clus-
ters and compare the results with those reported in [8].
Our gene clusters are the combined results of the mesh
generation and co-clusteringmethods. Hence, we evaluate
the effects of these two methods separately.
First, we compare our mesh generation method with

the approach described in [8]. We apply both methods
to the set of 553 images, yielding two data matrices. We
then apply the co-clustering method with different num-
bers of co-clusters to these two data matrices. Since the
same co-clustering method is used for both data matri-
ces, the differences in the results should be contributed
by differences in the mesh generation methods. We use
the hypergeometric distribution to compute enriched GO
terms [29] in order to evaluate the gene clusters gener-
ated from these two data matrices. The numbers of terms
with p-values less than 0.001 are reported in Table 1. We
can see that these two methods give similar numbers of
biological process terms when the number of clusters is
relatively small (30-35). However, as the number of clus-
ter increases, our new mesh generation method yields
larger numbers of enriched terms. This result shows that
the new mesh generation approach and pipeline tools
we developed are more accurate and can produce sta-
tistically more significant results when the number of
clusters is large. We also observe that these two meth-
ods give similar numbers of cellular component and
molecular function terms in all cases. Since the numbers
of enriched terms in these two categories are relatively
small, the differences in mesh generation methods might
not be significant enough to be reflected in these two
categories.
We also compare our co-clustering approach with the

affinity propagation method used in [8]. Namely, we com-
pare our EM-based co-clustering method with the affinity
propagation clustering by applying these two methods
to the data matrix generated by our mesh using 553
images. The affinity propagation method automatically
determines the number of clusters and yields 39 clus-
ters on this data set [8]. We also apply our co-clustering
method on this data set to generate 39 clusters. We then
compute the number of enriched GO terms for each clus-
ter, and the results are depicted in Figure 4. We can see
that our co-clustering method is able to generate gene
clusters that are functionally more enriched than those by
the affinity propagation approach.
The significantly different results might be due to

the fundamentally different approaches taken by the
two studies. Specifically, Frise et al. [8] used clustering
method to group the genes into clusters based on all the
mesh elements. In another word, clustering method mea-
sures the expression patterns of genes across the whole
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Figure 4 Comparison of the total numbers of enriched gene
ontology terms obtained from our co-clusteringmethod and the
affinity propagation method used in [8]. The reported numbers
here are the total number of terms in each cluster.

embryo. That is, for two genes to be in the same clus-
ter, they need to have similar expression patterns over
the entire embryo. In comparison, we propose to use a
co-clustering method, which identifies gene and mesh co-
clusters simultaneously. In our approach, two genes can
be grouped into the same cluster if they share similar local
expression patterns. Note that co-clustering was mainly
motivated from gene expression studies [30], and our
results show that co-clustering method yields statistically
more significant results.

Co-clustering of mesh elements and genes
We next evaluate the gene co-clusters, and correlate the
results with major developmental events occurring dur-
ing stages 4-6. To accomplish this, we first apply our
mesh generation and co-clustering methods to the data
set of 2693 images depicting gene expression in stage
4-6 laterally oriented embryos [8]. We set the number
of co-clusters to 39 as in [8]. Then, enriched GO terms
(biological process) are computed (p-value <0.001). A
one-sided significance test is applied, and enriched terms
with ≥90% significance were retained. Of the 39 clusters,
21 are enriched in at least one term.
The majority of enriched GO biological process terms

are related to gene regulation, embryo development, pat-
tern formation, and cell fate specification (Figure 5). This
makes biological sense, as during stages 4-6 cellulariza-
tion and the start of gastrulation occur. At the beginning
of gastrulation, major morphogenetic movements start
and the ventral furrow begins to invaginate, ultimately
forming the mesoderm as development progresses [4,27].
Of 39 clusters, five (15, 18, 19, 26, and 30) are enriched
with terms related to mesodermal cell fate determination
and specification, mesoderm development, mesoderm
cell migration, and gastrulation.
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Figure 5 Significance levels of enriched GO biological process terms on the data set of 2693 images. Scales indicate significance levels, and
only terms with ≥90 significance are shown. A total of 39 co-clusters have been generated, and only co-clusters with enriched terms are shown. The
corresponding mesh clusters are shown in Figure 6.
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Mapping the enriched GO terms back onto the clusters
reveals clusters enriched in similar terms are often located
in close proximity to each other (Figure 6). For example,
looking back at Figure 5, the majority of clusters enriched
with terms related to mesoderm development are located
in the ventral section of the developing embryo. This loca-
tion corresponds to the ventral furrow, and many genes
verified to be involved in mesoderm specification are
expressed in these embryonic regions during stages 4-6
[31,32]. This suggests uncharacterized genes expressed in
these domains may be involved in similar developmental
processes, and are candidates for experimental testing.
Among the many genes showing expression in clusters

located in the forming cephalic furrow, we find a subset
of genes known to be involved in the mesodermal devel-
opmental network [31,32] among the images in our data
set. These include the transcription factors twist, snail,
Mes2, brinker, and tinman. These genes exhibit high co-
expression, and are expressed in the ventral region of
the embryo during stages 4-6 [31,32]. We obtain simi-
lar results when examining other clusters located in close
proximity to each other, overall suggesting that the discov-
ered gene and mesh co-clusters correlate well with major
developmental events associated with the stage range.
Lastly, we examine the 18 clusters showing no GO bio-

logical process enrichment in our stage 4-6 co-clustering.
These include clusters 3, 6, 14, 34, and 37. Looking back at
the images, we find a lack of localized gene expression at
these embryonic domains during stages 4-6. These clus-
ters initially form a single cluster in the interior region of
embryo when the number of clusters is small (Figure 2).
These regions are involved in later developmental pro-
cesses and are not involved in the major developmen-
tal events occurring during stages 4-6 of Drosophila
embryogenesis.

Conclusion
In this study, we aim at identifying co-expressed embry-
onic domains and the associated genes simultaneously.
We develop a mesh generation pipeline that maps the

24

23

5

4

35
16

28
20

9

19

36
8

12 29

21
15

22

1
38

34

6

14

11
27

37 2

3 39 17
25

7 30 13
183310 26

31

32

Figure 6Mesh clusters corresponding to the gene clusters in
Figure 5. To establish a correspondence between this figure and
Figure 5, each mesh element is labeled with its cluster membership,
and the corresponding gene clusters are shown as columns in
Figure 5.

expression patterns of many genes into the same coordi-
nate space. We then employ a co-clustering formulation
to cluster the mesh elements and the genes. This identifies
co-expressed genes and spatial embryonic domains simul-
taneously. Experimental results show that the embryonic
domains identified in this purely data-driven manner cor-
respond to many embryonic structures. Results also show
that the gene and mesh co-clusters correlate with major
developmental events during the stages we study.
In the current mesh generation method, we only con-

sider the shapes of embryos when deforming the generic
ellipse to each embryo. A more accurate deformation
method would take the intensity and texture information
of images into account. We will develop more advanced
mesh generation method in the future. In this work, we
focus on a particular time period of development. We
will extend our analysis to multiple stages and employ
time-varying analysis in the future [23].
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