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Abstract

Background: Worldwide structural genomics projects continue to release new protein structures at an
unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional
annotation.

Results: We explored a range of features that can be used for the prediction of functional residues given a known
three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting
residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids
to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative
entropy as a measure of sequence conservation. From the selected features, neural networks were trained to
identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good
discriminant function, when combined independently with sequence conservation. Using an independent test set
of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be
involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an
approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63%
and a precision of 17%), a performance competitive with that of other state-of-the-art methods.

Conclusions: We found that several of the graph based measures utilize the same underlying feature of protein
structures, which can be simply and more effectively captured with the distance to GCM definition. This also has
the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far
the most influential feature in identifying functional residues. We also found that due the rapid changes in size and
composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.
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Background
Worldwide structural genomics projects continue to
release new protein structures at an unprecedented pace.
To date nearly 6000 proteins were solved in the NIH-
based Protein Structure Initiative, according to the weekly
updated target tracking system Structural Biology
Knowledgebase [1]. Stunningly, approximately 30% (1681/
5736 as of April 21, 2012) of these new structures lack any
type of functional characterization (http://sbkb.org/kb/
search.do?type=unkstruc) let alone a specific description
of residues critical for function. While sometimes the
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annotation of the fold that emerges from structural studies
of a given target can provide a coarse functional classifica-
tion [2,3], for the most part these structures do not have
follow up functional studies. This presents a strong
demand for computational methods that aim at identify-
ing possible functional sites in these structural models.
The most frequent and basic approach to functionally
characterize proteins in general is to transfer functional
annotation between proteins based on sequence similarity
[4], typically after searching sequence databases with tools
like Blast [5] or other sensitive, profile based search
approaches [6,7]. While these methods can provide useful
information, their applications are limited to proteins
with high sequence similarity to other functionally
characterized proteins and it is prone to, and partly
responsible for, the propagation of errors in functional
ntral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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assignment [8]. The fraction of experimentally validated
annotation represents only about 5% of all proteins
according to benchmarks made on enzymes [9]. Estimates
about the mis-annotation of enzymes (depending of the
genome) varies between 5-40% [8,10]. Previous studies
argued that sequence based approaches are reliable only if
at least 40-50% sequence identity exists between two
proteins. For example, in the case of enzymes, a similar
(but not necessarily identical) function can be assumed
between two proteins if their sequence identity is above
40%, but if the sequence identity drops in between 30-40%
then only the first three Enzyme Commission (EC)
numbers can be predicted reliably, and only at 90% accur-
acy level. Below 30% sequence identity, structural infor-
mation is necessary to essential for functional annotation
[11,12]. Meanwhile it is estimated that 75% of homologous
enzymes share less than 30% identical positions [12].
Other surveys reported that less than 30% of enzymes that
share more than 50% sequence identity will have identical
EC numbers [11]. Given that the average sequence iden-
tity between structurally related proteins is ~8-9%, and
most of these share less than 15% identity [13], we must
expect a high degree of functional diversity in proteins
with similar folds [14]. This indicates an imperative need
for structures and structure based approaches for func-
tional annotations of these proteins.
An alternative approach to functional annotation,

which also provides a more detailed insight, is the iden-
tification of residues that are critical for protein func-
tion. The expected benefit is that the knowledge of
residues important for protein function can serve as a
guide to experimental approaches, such as mutational
studies, to test, confirm, or manipulate function.
Methods for identifying functional residues can be
broadly divided into those based solely on sequence in-
formation, those that rely on structural information, and
those that combine the two in their predictions. For se-
quence based methods, analysis of Multiple Sequence
Alignments (MSA) is the most informative procedure.
Typically, a MSA is constructed after searching a se-
quence database, and then each column of the MSA is
evaluated and a conservation or an entropy score is
assigned to the column. Scoring the MSA can be
complemented with prediction of secondary structures,
relative solvent accessibility, or catalytic propensity of
amino acid types. For instance, CRpred [15] uses the
Position Specific Substitution Matrix and entropy values
extracted from the MSA, hydrophobicity values
calculated in a variable-sized window, and the separation
between catalytic residue pairs in the protein sequence
for training a Support Vector Machine. Another se-
quence-based method, FRcons [16], calculates a score
related to the relative entropy, and uses the predicted
solvent accessibility and secondary structure to estimate
the background distribution of each residue. A class of
sequence based methods use a MSA and a phylogenetic
tree for a protein family [17-19]. The tree is analyzed
from the root to the leaves searching for patterns of con-
servation at each node, looking to define residues im-
portant for function of the entire family or residues that
are specific for each subfamily. If a structure is known,
the residues identified can be further mapped onto the
surface of the protein. Structure based methods are very
diverse in their approaches. A variety of methods were
developed that perform an unbiased search (i.e. not
using any template library of functional motifs) for re-
curring structural motifs [20-22]. These methods are
powerful when similar functionalities exist in different
folds, or when function is explored in a structurally di-
vergent Superfamily. One unbiased structure based tech-
nique that has been repeatedly used in various
applications relies on graph theory. Using the atomic
coordinates of the amino acid residues, pairs of
interacting residues are identified and the information of
a protein structure is converted into a network of
interacting residues. The residue pairs are used to build
the edges of a graph, where the nodes are the residues
and the edges represent interactions. Once a graph is
made, one can score the relative importance of each
residue (node) in the protein (graph) by calculating a
variety of possible centrality measures, which are often
assumed to be good predictors of functional residues.
The underlying assumption in these approaches is that
functional residues display a pattern of connectivity to
the rest of the protein that ranks higher than the pattern
of non-functional residues. While most of the methods
that use a graph approach complement the centrality
measures with sequence based scores (see below),
SARIG [23] finds pairs of interacting residues with the
CSU program [24], and predicts catalytic residues based
on closeness centrality values combined with relative
solvent accessibility. Other features used for structure
based prediction include the analysis of mechanical
properties of each residue [25] because catalytic residues
are assumed to be more difficult to move with respect to
other residues in the protein. Other structure based
approaches take into account the shape of the protein sur-
face, looking for the largest clefts in the structure, where
catalytic residues tend to reside [26,27] or the “deepest”
yet still exposed residues [28]. In THEMATICS [29], a
graph of proton occupation against pH is prepared for
each ionizable residue; functional residues display dis-
tortions in these graphs, and are identified by having at
least one other such residue in the vicinity.
Methods that rely exclusively on sequence information

are valuable when no structural information is available.
However, when the structure of a protein is known, the
best performing methods make use of both sequence
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and structural information. Sequence conservation is
probably the most powerful attribute for identification of
functional residues, and some flavor of sequence conser-
vation analysis is present in virtually all these hybrid
methods. Thiebert et al. [30] build a graph of interacting
residues and calculate the degree, degree-2, clustering co-
efficient and closeness for each node, and conclude that
the best predictor relies on closeness centrality and
phylogenetic analysis. Here, the degree of a node is the
number of nodes directly connected to it, that is, nodes
that are exactly one edge apart. The degree-n of a node
is the number of nodes that are exactly n edges apart. A
related approach uses degree, degree-3 and residue type
combined with the propensity of each residue type to be
catalytic, which is calculated as a percentage over their
database of catalytic residues [31]. Petrova et al. uses se-
quence conservation, catalytic propensity of amino acids,
solvent accessibility and relative position to the clefts of
the structure [32], while Cilia and Passerini combines
these sequence based measures with other physico-
chemical traits of structural neighborhoods, defined as
those residues contained in a spherical region of 8 ang-
strom centered on each amino acid in the structure [33].
The Partial Order Optimum Likelihood (POOL) method
[34], improves on the analysis of the structure-based
THEMATICS method, by extending it to non-ionizable
residues and combining it with sequence conservation
and cleft size information using a SVM.
In this paper, for the purpose of feature selection, we

explore the pairwise correlation between some of the
attributes most frequently used for the prediction of
functional residues, namely, the centrality measures of
closeness, betweenness and page-rank, in addition to
distance to the general center of mass (GCM) [35], rela-
tive solvent accessibility (RSA) and sequence conserva-
tion. We found that several of the graph based features
strongly correlate with one another and with the dis-
tance to GCM but capture only partially the signal of
functional residues. We explore possible combinations
of these inputs for training neural networks, and identify
a simple set of factors for efficient selection of catalytic
residues based on sequence and structural information.
We also explored the effect of the rapidly changing
reference databases on the accuracy of residue conserva-
tion calculations and observed a strong dependence,
which suggest that approaches that include this feature
must be either regularly recalibrated or a specific
reference database must be designated.

Results and Discussion
Feature selection to predict functional residues
Methods for the identification of functional residues rely
on a wide variety of attributes that differentiate func-
tional and non-functional amino acids. These features
include sequence conservation, closeness, betweenness,
RSA, distance to the GCM, and many others. Some of
these measures are related to one another, which means
that some seemingly different methods are in fact ana-
lyzing the same underlying property. Therefore, we first
analyzed the 439 structures in the training dataset (see
Materials and Methods) and scored every residue for
each of the attributes included in this study. Then, we
calculated the cross correlations between variables used,
to shed light on the relatedness among existing methods
for predicting functional residues (Table 1.) In the re-
mainder of this paper, when we discuss functional
residues, we will be referring to those annotated as cata-
lytic in the CSA database [36], unless otherwise noted in
the context.
From the results (Table 1), it is immediately clear that

sequence conservation shows the highest correlation
with function, as has been suggested in several previous
studies [15,32,37]. Interestingly, function also shows a
relatively high absolute correlation with distance to
GCM and closeness, followed by betweenness. Perhaps
not surprisingly, distance of an amino acid residue to
the GCM has a high negative correlation with closeness,
a reflection of the fact that residues near the center of
the protein are relatively close to all other residues in
the protein, and this is captured in the graph of
interacting residues. Likewise, other node centrality
measures vary negatively with the distance of the residue
to the GCM. All the node centrality measures are highly
correlated to one another, indicating that in these
graphs, a residue with a high centrality value according
to one measure is likely to have high centrality according
to another measure. We used these insights in our ex-
ploration of the optimal set of features used as inputs to
neural networks prediction for the identification of func-
tional residues.

Correlation of functional and non-functional residues with
all the features studied
The coarse analysis with the Pearson’s correlation coeffi-
cient between function and each of the features studied
(Table 1) suggests that it is possible to separate func-
tional and non-functional residues based on each of the
attributes analyzed, perhaps with the exception of RSA,
which shows almost no correlation. To visualize this seg-
regation, we plotted the cumulative distributions of
functional and non-functional residues as a function of
each variable. There is a clear separation between the
two curves characterizing functional and non-functional
residues for all the attributes studied (Figure 1). The
greatest discrimination between functional and non-
functional residues is achieved with conservation ana-
lysis (Figure 1A), followed by distance to the GCM
(Figure 1B). Closeness also gives good separation but



Table 1 Correlations between all pairs of variables considered in this study

Distance −0.2949

Closeness 0.4026 −0.7765

Between 0.3504 −0.4898 0.7452

PageRank 0.3163 −0.2732 0.4977 0.8068

RSA −0.3577 0.4067 −0.5901 −0.6053 −0.7136

Function 0.1546 −0.1340 0.1363 0.1086 0.0594 −0.0458

Conserv Distance Closeness Between PageRank RSA

Conserv: sequence conservation; Distance: distance to general center of mass; Closeness: closeness; Between: betweenness; PageRank: PageRank, RSA: relative
surface accessibility.
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then the curves are closer to each other for the
remaining variables. Separation of the curves, therefore,
is in agreement with the global correlation values, except
for RSA, where the curves are well separated starting at
approximately 10% RSA but they cross each other for
lower RSA values. In this training set, approximately
30% of the functional residues have RSA of 5% or less,
and approximately 10% are completely buried. This is
consistent with previous reports on the overall accessi-
bility of functional residues, and explains the low global
correlation of RSA and function [38].

Neural networks
Based on the observations described in the previous sec-
tion, we set out to define a function for identification of
functional residues, one that combines some or all of the
features selected and returns a fraction of the input
residues that is highly enriched in functional residues.
According to the cross-correlation table, the use of some
of the inputs is redundant and adds little to the overall
result. Since it is likely that the features have to be
combined non-linearly for functional residue identifica-
tion, we trained neural networks to integrate the
different inputs into a single function. We used the
information on the cross-correlation table as a guide to
our exploration of the set of attributes presented to the
neural networks. A set of 89 structures was randomly
selected from the initial training set of 439 structures,
and used as a validation set to make comparisons
between the different training runs. The training of the
neural network was done on the remaining 350
structures of the original training set (see Methods).
Based on our results (Figure 1A and Table 1) and on
previous reports that conservation is the most useful fea-
ture for identifying functional residues, we initially
trained networks either with the entire set of residues
or only with conserved residues, those with a relative
entropy measure of 3.5 or larger. Residues were
presented to the networks and analyzed with different
combinations of measures for the attributes in Table 1.
The best performing networks were those that used dis-
tance to the GCM and amino acid type as inputs
(Table 2). Adding any other input always resulted in a
reduced performance, as monitored with the Matthew's
Correlation Coefficient (MCC) on the validation set (see
Methods). Table 2 shows that preselection of conserved
residues always resulted in performance improvements
with any combinations of inputs. Consequently, we
decided to optimize the step of preselecting residues
based on sequence conservation, and used distance to
the GCM and residue type as inputs to the neural
networks. We retained the weights for the neural
connections of the best performing network for further
evaluation. Figure 1A shows how selection of an appro-
priate sequence conservation level can increase the pro-
portion of functional residues in the input set, by
eliminating large numbers of non-catalytic residues,
while retaining most of the catalytic ones. For example,
elimination of residues with relative entropy of 3.5 or
less removes 79.8% of non-functional residues but only
12.7% of functional residues. After this trade-off step we
retain 1,519 out of 1,740 functional residues and 30,699
of 158,458 non-functional residues of the entire training
set, resulting in a set that contains approximately 5%
functional residues, a nearly 5-fold enrichment over the
original input. Also, at a relative entropy value of 3.5, the
slope of the functional residue curve shows a dramatic
increase, with a bigger increase at 4.0 (Figure 1A). A
comparison with the slope of the non-functional residue
curve indicates that beyond some point near 3.5 we start
discarding functional residues at a greater rate than non-
functional residues, and this is reflected in the downward
trend of the plain solid line in Figure 1A. To confirm this
visual observation, we preselected residues from the valid-
ation set using relative entropy values between 2.5 and 4.0
in increments of 0.1, and used each enriched set as input
to the best performing network trained with residues that
show entropy values of 3.5 or better and with distance to
GCM and residue type as the only attributes. The
calculated MCC after feeding the various enriched sets to
the neural network peaked when we discarded residues
with a relative entropy value of less than 3.8; at this level,
we retain 1378 functional and 20266 non-functional
residues, producing a set that contains 6.8% functional
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Figure 1 Cumulative distribution of functional (filled circles) and non-functional (open circles) residues for each of the attributes
analyzed. The plain solid line shows the relative difference between the two other lines. A, sequence conservation using relative entropy; dotted
line indicates the threshold value used for selection of residues before presenting to neural networks; B, distance to the GCM; C, closeness; D,
PageRank; E, betweenness; and F, Relative Surface Accessibility.
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residues. We selected this value of 3.8 for use in the final
protocol, and to measure performance with the indepen-
dent testing set of 29 structures.

Comparison with existing methods
There is a paucity of publicly available methods for the
prediction of functional residues based on protein
structures. As a result, it is difficult to do a fair compari-
son of a newly developed method with other existing
methods; therefore, we relied on the performance reports
in the original publications. However, one should note
that these performances were tested on different datasets
and therefore cannot be compared with one another dir-
ectly. The reportedly better performing methods [33,34]
appear to be demanding in terms of computational
power, which also could be a possible explanation for
their limited availability to the public. For instance,
POOL [34], which supplements the proton occupation



Table 2 A representative list of performances of neural
networks with different combinations of features used as
inputs

Feature Matthew’s correlation (%)

C D A K All residues Conserved > 3.5

X 16.28 22.05

X 15.51 26.68

X 10.12 27.56

X X 18.71 28.16

X X 19.78 32.48

X X 20.56 27.67

X X X 20.68 28.95

X X 10.95 25.48

C, sequence conservation; D, distance to the GCM; A, residue type; K,
closeness. A check symbol on a column indicates that the feature was
included in training. The Matthew’s correlation coefficient, expressed as a
percentage, was calculated on the validation set after convergence of the
training procedure. Networks were trained either with “All residues” or only
with residues that showed a conservation value of 3.5 or more. The calculation
of the MCC was performed over the entire original set of residues, regardless
of the effect of preselection on the overall counts.

Table 3 Performance of selected catalytic-residue
prediction methods

A

Sensitivity Precision F-Measure

Conservation-distance-aa 63.06 17.06 26.82

Sarig-server (2004) 54.05 7.85 13.71

CRpred (2008) 51.35 21.75 30.56

B

Conservation-distance-aa 55.7 14.1 22.49

CRpred (2008) 48.2 17.0 25.13

Youn et al. (2007) 51.1 17.13 25.66

A. Comparison of three methods using our independent testing set of 29
proteins. B. Comparison of three methods based on a 10-fold cross-validation
procedure on a common dataset.
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prediction of THEMATHICS with surface cleft and se-
quence conservation analysis, is one of the methods that
report higher performance, with 64.7% sensitivity and
19.07% precision, for a 29.46 F1-measure value. Using a
10-fold cross-validation protocol, Cilia and Passerini [33]
present a high 28% precision value at the expense of a
relatively low 46% sensitivity, resulting in a 34.81 value
for the F1-measure. The method of Cilia and Passerini
makes use of sequence information and the composition
of structural neighborhoods. On the other hand, Petrova
and Wu [32], using sequence conservation, solvent ac-
cessibility and position relative to surface clefts, achieve
high sensitivity (89.8%) but low precision (6.98), produ-
cing a 12.95 F1-measure score. Our testing set consisted
of 29 structures that were not used during the develop-
ment process, containing 111 residues that were
annotated as catalytic in Catalytic Site Atlas out of 9262
total, or 1.2% functional residues. After applying the en-
tire procedure, we selected 411 (4.4%) of the input,
which contained 70 of the catalytic residues (63.06%).
Therefore, annotated catalytic residues make up 17.03%
of our output, representing an enrichment of over 14-
fold when compared to the input set. To obtain a more
robust measure of performance, we carried out a 10-fold
cross-validation procedure on the entire dataset, after
clustering at 30% sequence identity. The average sensi-
tivity after cross-validation was 60.14%, with an average
precision of 18.26% and an F1-measure score of 28.01
(see Methods).
Table 3 shows how our figures compare to those from

other methods of functional residue prediction. The only
working server for structure based functional residue pre-
diction that we found was that of SARIG [23], and we
submitted our 29 structures for analysis. SARIG uses
closeness centrality and RSA to predict catalytic residues.
Our method clearly outperforms the structure-only
SARIG (Table 3A). It was also of interest to make a com-
parison with a sequence based prediction method, so we
contacted the authors of CRpred [15], perhaps the best
sequence-only method available, who graciously agreed to
analyze our testing set. Compared to CRpred, our method
has better sensitivity (63.06% vs 51.35%) but lower preci-
sion (17.06% vs 21.75%), resulting in a lower F1-measure
(26.82 vs 30.56). This was confirmed with a different
dataset, the EF-fold set, originally used by Youn et al. [39]
and later evaluated by CRpred. Table 3B shows the results
of a 10-fold cross-validation analysis of the EF-fold
dataset. Our method achieved higher sensitivity than both
CRpred and the method of Youn et al. but lower precision
and F1-measure. Youn et al. use the structural conserva-
tion score of S-BLEST [40] together with sequence
conservation and residue hydrophobicity as inputs to a
Support Vector Machine [39]. In the 10-fold cross-
validation procedure, our method achieved higher sensi-
tivity than CRpred (55.7% vs 48.2%) and lower precision
(14.09% vs 17.0%), with F1-measures of 22.49 and 25.13,
respectively. Thus, our method is better at identifying
functional residues (resulting in higher sensitivity) but
CRpred recognizes, and discards, non-functional residues
at a higher rate (achieving higher precision), as does the
method of Youn et al. (51.1% sensitivity, 17.13% preci-
sion). This difference might be explained, at least in part,
by the makeup of the training sets: for the balanced
training of the neural network we used a 1:1 ratio of func-
tional:non-functional residues, while CRpred and Youn
et al. used at 1:6 ratio in their Support Vector Machine
based method. In any case, the performance of CRpred is
especially remarkable since it uses no structural informa-
tion. In the next section we briefly explore one major as-
pect that can influence the results of sequence profile
based analysis: the rapidly changing sequence databases.



Fajardo and Fiser BMC Bioinformatics 2013, 14:63 Page 7 of 11
http://www.biomedcentral.com/1471-2105/14/63
Effect of rapidly growing databases
Sequence conservation is the most influential trait in
many functional residue prediction protocols, including
the one presented here. A necessary step in finding a
conservation value of an amino acid residue is the com-
parison of a query sequence with all the sequences in an
all-inclusive reference database. One obvious conse-
quence of such comparison is that conservation values
are sensitive to the size and redundancy of the selected
reference database. This is of particular relevance given
the exponential growth of sequence databases, and leads
to the question of whether their overall information
content is approaching some sort of saturation point.
This would imply the unlikely condition that all types of
sequence information entering the database provide only
more redundancy. From a practical standpoint, a per-
ceived saturation is necessarily tied to a query sequence,
with some query sequences having hundreds or thou-
sand of relatives, while others display few or none, de-
pending on the parameters used in the search. Thus, the
overall performance measure of a method that relies on
sequence conservation is affected by changes in both the
specialized test database and in the reference sequence
database, which are, for the method presented in this
paper, the CSA and the non-redundant protein database
of NCBI (nr), respectively.
An examination of the growth of CSA, from its initial

release in 2004 [36] through the latest release in 2010,
indicates that the number of non-redundant protein
chains with annotated catalytic residues extracted from
the literature (as opposed to those inferred by sequence
similarity) has increased from 714 to 913 or 28% over 6
years. The number of annotated catalytic residues in
those releases has grown proportionally, from 2235 to
2948, for a 32% increase, indicating that there has been
no dramatic change in the annotations. During the same
period, nr has grown from about 2 million to 12 million
sequences, which is more than a 600% increase. Based
on those raw numbers, any database-dependent change
in the performance of a method over these years is likely
due to the changes in nr, with the growth of CSA having
a modest effect. The relative growth of nr is magnified be-
cause CSA is a relatively diverse database: for instance,
clustering at 50% sequence identity decreases the effective
size of CSA by only approximately 5%. In contrast, the in-
ternal redundancy of nr is much greater. While measuring
the size reduction of nr at different levels of sequence
identity is computationally intensive, clustering at 50% se-
quence identity produces a 70% reduction in size in Uniref
[41], and we expect a similar behavior for nr. This implies
that the growth of nr comes largely at the expense of
adding redundant information, in comparison to CSA.
The analysis presented throughout this paper was

done using a release of nr of March 2010 as our
reference database, when the size of the database was
approximately 12 million sequences. The current release
of nr, in September of 2012, already has approximately
17 million sequences, an additional growth of about 40%
over the 2010 release. To determine how the use of this
new release affects our numbers, we recalculated our se-
quence conservation values with the current nr release,
and found that using the test dataset of 29 proteins, the
sensitivity value stayed the same at 63.03% but the preci-
sion dropped from 17.03% (Table 3) to 14.40%, resulting
in an F1-measure score of 23.45. The drop in precision
was due to more residues meeting the minimum conser-
vation value requirement of 3.8, probably, as observed
above, because more homologous sequences entered the
database. Therefore, we proceeded to identify a new op-
timal threshold value of 4.0 for this increased and more
redundant version of nr using the original testing
dataset. With this new threshold, we obtained a sensitiv-
ity of 60.36% and precision of 15.95%, for an F1-measure
value of 25.23. Thus, with the new database and the new
threshold, we almost recapitulated some of the original
performance figures of the 2010 analysis. This exercise
sheds light on the dynamic interplay between rapidly
evolving and changing sequence databases and reveals
the need for recalibration of parameters as the public
databases change. This also highlights a complication in
comparing performances of different methods over the
years. Sequence conservation based approaches either
have to use a frozen reference database or need to be
regularly updated and recalibrated.

Illustration of predictions of functional residues
The results presented in the previous section are the ag-
gregate figures over the entire testing set. Although use-
ful for the evaluation of the method as a whole, those
figures provide little information on the specifics of each
structure analyzed. In particular, the method failed to
find any of the catalytic residues in six of the 50
structures of an expanded version of the testing set.
Meanwhile, it found all the annotated catalytic residues
in 11 of the structures. As a comparison, SARIG found
no functional residues in 3 structures and all residues in
6. Both methods failed for one structure, 1BD3, which
corresponds to a Toxoplasma gondii uracil phospho-
ribosyltransferase (Figure 2A). Five of the six structures
for which our method failed, including 1BD3, illustrate
those cases where high sequence conservation is not
seen in catalytic residues; however, there are conserved
residues in those structures that are not annotated as
catalytic. As shown in Figure 1A, approximately 18% of
the functional residues are eliminated at our required
level of conservation. Also, Table 1 shows that residue
conservation correlates with the distance to the center
of mass. This is in accordance with previous reports,



Figure 2 Predicted (green) and experimentally characterized (red and blue) functional residues. Experimentally characterized functional
residues that were correctly predicted are marked in red while those that were missed are in blue. (A) one case where several methods failed
(1bd3) (B) a successful case (all six functional residues captured) 1lcb.
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which observed that in addition to catalytic residues,
those that are buried at the “core” of a structure show a
rate of mutation lower than other residues in the struc-
ture [10]. Residues that make the core are often respon-
sible for the structural integrity of the protein so it is
not surprising that they tend to be conserved; from this
perspective, core residues could be regarded as essential
for protein function since catalytic residues depend on a
specific spatial distribution to act efficiently on a sub-
strate [42]. Because of the specifications of its design,
our method is likely to return residues of the core.
In a successful case examined, the structure 1LCB of

thymidylate synthase from Lactobacillus casei thymidilate
synthase, our method selected 20 of the original 315
residues or 6.3% of the structure (Figure 2B). The output
contained all the 6 annotated catalytic residues for a 30%
precision.

Conclusions
Annotation of catalytic residues is an arduous task that
is prone to errors. We limited our dataset to annotations
for which there is experimental evidence reported in the
literature, leaving aside annotations based on sequence
similarity. Still, those annotations are probably not per-
fect as illustrated by the case of 1B3R, for which slightly
different sets of catalytic residues are reported in CSA,
which served as our source of data, and in the related
Catalytic Residue Set (CATRES) [43], with histidine 54
found in CSA but not CATRES. Thus, some of the
residues classified as false positives might in fact be
involved in catalysis but not identified as such in CSA.
Prediction of functional residues is inherently difficult

due to the often poor understanding of which residues
play a critical role in protein function, in addition to
those involved in a direct chemical reaction. It is
assumed that residues responsible for catalysis evolve
very slowly as catalytic capability imposes the strongest
constraint on the fitness of an enzyme [10]. Meanwhile,
residues that are involved in substrate selectivity (bind-
ing) have more flexibility, partly due to the variety of
compensatory mutations that can establish a similar en-
vironment [44]. Yet, other structurally remote residues,
while not directly involved in the reaction or selectivity,
might be critical for function by playing role in “promo-
tional” vibrations for efficient catalytic reaction [45] or
fulfilling structural roles essential for activity [10,46].
Methods that identify functional residues in fact may
contribute to uncovering the network of residues re-
sponsible for function and to a better understanding of
the role of the entire structure [47].

Methods
Testing and training sets
Version 2.2.11 of the Catalytic Site Atlas database [36] was
downloaded (http://www.ebi.ac.uk/thornton-srv/databases/
CSA_NEW/). PDB chains were collected for entries where
the evidence for functional residues comes from the litera-
ture. Further, only those chains with a single Site iden-
tifier and between three and twelve catalytic residues
were retained, and proteins with multiple annotated
active sites were not considered. We also eliminated
12 proteins that were 120 residues or shorter. Finally,
we clustered with CD-hit [48] at 60% sequence iden-
tity, and obtained a non-redundant set of 525 protein
chains. After removing entries where some annotated
residue positions are not amino acids, we were left
with 489 chains. A random sample of 50 proteins was
selected for testing; the remaining 439 chains were

http://www.ebi.ac.uk/thornton-srv/databases/CSA_NEW/
http://www.ebi.ac.uk/thornton-srv/databases/CSA_NEW/
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used for analysis and training purposes. The training
set contains 158,458 residues of which 1740 (1.1%)
were annotated as functional, and the rest assigned as
non-functional. We also explored performance on an
even less redundant testing set at 30% sequence iden-
tity. This reduced the size of the testing set to 41. For
direct performance comparison with CRpred [15], we
downloaded the EF-fold dataset used for training of the
CRpred model (http://biomine.ece.ualberta.ca/CRpred/
CRpred.htm) and removed any proteins that are within
30% sequence identity to any protein in the EF-fold
dataset. We were left with 29 proteins that make up our
independent testing set.
For the cross-validation procedure, the entire 489-

protein set described above was clustered at 30% sequence
identity with CD-hit. The resulting 437 sequences were
divided randomly into 10 similarly sized sets.
Features
A table of interacting residues was prepared for each
PDB chain using the Contacts of Structural Units (CSU)
program [24]. Each residue pair in a predicted binary
interaction was then used to build the edges of a graph,
using the Graph::Undirected module of Perl. The dis-
tance between each node of an interacting pair, i.e., the
length of an edge, was set at 1. To determine the relative
importance of each amino acid in the protein, we
calculated the closeness centrality, betweenness central-
ity and page-rank centrality of each node. Closeness of a
node is defined as the inverse of the average geodesic
distance (or length of the shortest path) to all other
nodes; betweenness indicates how many of the shortest
paths between any two nodes in the graph include the
subject node; and page-rank centrality is a measure
developed for searching web pages in the internet,
related to eigenvalue centrality, where an important
node is one whose neighbors have many connections to
other nodes [49]. For the prediction of functional
residues, rather than working with raw centrality values,
we calculated the rank percentile of each node for each
centrality measure and expressed it as a fraction, so that
each node is assigned a value in the interval (0,1]. Close-
ness and betweenness centrality values were calculated
with the Algorithm::SocialNetwork Perl module; page-
rank centrality was calculated using the Graph::Central-
ity module.
The coordinates of the General Center of Mass

(GCM) of a protein were determined using the
coordinates of the heavy atoms of each residue. For each
x, y and z coordinate, the position of the GCM was

calculated as R ¼
X

i

Mi � Rið Þ=
X

i

Mi , where Mi and Ri

are the mass and the corresponding coordinate of atom i.
The distance of an amino acid to the GCM was defined as
the distance between its Cα and the GCM.
Relative solvent accessibility (RSA) values were calcu-

lated using the naccess program [50]. Pearson’s cross
correlations were determined with the R statistical pack-
age (http://www.r-project.org/).
For the residue conservation value calculation, the se-

quence of the protein was extracted from the ATOM
records of the PDB file and compared with all the
proteins in the non-redundant database of NCBI (NR)
using three rounds of PsiBlast with an e-value of 0.001
[51]. A multiple sequence alignment was generated by
consolidating the pairwise alignments of the PsiBlast
output, using BlastProfiler [52]. To reduce redundancy
among hits and to ensure high quality alignments, we
required that each hit cover at least 75% of the query se-
quence (this is the BlastProfiler default) and that the
maximum sequence identity between any two hits be at
most 95%. We did not apply any additional weighting
for each sequence, following the results of Johansson
and Toh [53]. To assign a conservation value to each
residue in the query sequence, we calculated the relative
entropy as described in Wang and Samudrala [54].
Performance measures
The primary measure that we used to monitor perform-
ance was the Matthew's Correlation Coefficient, defined

as MCC ¼ TP�TNð Þ� FP�FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ

p , where TP, TN,

FP and FN are the numbers of true positives, true
negatives, false positives and false negatives, respectively.
Other, more informative measures are used to present the
data, including sensitivity (number of functional residues
identified divided by the total number of annotated func-
tional residues) and precision (number of functional
residues identified divided by the number of residues
returned). To facilitate comparisons with other existing
methods, we also calculated the F1-measure, which incor-
porates the concepts of sensitivity and precision in a single

number, and is defined as F1 ¼ 2� Sensitivity�Precision
SensitivityþPrecision
Neural networks
Supervised, feed forward neural networks with one
hidden layer of ten units were trained using the back
propagation algorithm [55]. For training, a random sam-
ple of 89 structures from the training set was put aside
as a verification set, and was used to select the best
performing network. The remaining 350 structures were
used for the actual training. Since the input is highly
unbalanced, with about 100 times fewer functional
residues, a random sample of non-functional residues
was selected to present the network with the same
number of functional and non-functional residues. The

http://biomine.ece.ualberta.ca/CRpred/CRpred.htm
http://biomine.ece.ualberta.ca/CRpred/CRpred.htm
http://www.r-project.org/
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residue type was encoded as 20 separate inputs, one for
each type. The input corresponding to the relevant resi-
due was assigned a value of 1 and all other inputs were
set to zero.
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