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Abstract

Background: The rapid growth of short read datasets poses a new challenge to the short read mapping problem
in terms of sensitivity and execution speed. Existing methods often use a restrictive error model for computing the
alignments to improve speed, whereas more flexible error models are generally too slow for large-scale
applications. A number of short read mapping software tools have been proposed. However, designs based on
hardware are relatively rare. Field programmable gate arrays (FPGAs) have been successfully used in a number of
specific application areas, such as the DSP and communications domains due to their outstanding parallel data
processing capabilities, making them a competitive platform to solve problems that are “inherently parallel”.

Results: We present a hybrid system for short read mapping utilizing both FPGA-based hardware and CPU-based
software. The computation intensive alignment and the seed generation operations are mapped onto an FPGA. We
present a computationally efficient, parallel block-wise alignment structure (Align Core) to approximate the
conventional dynamic programming algorithm. The performance is compared to the multi-threaded CPU-based
GASSST and BWA software implementations. For single-end alignment, our hybrid system achieves faster processing
speed than GASSST (with a similar sensitivity) and BWA (with a higher sensitivity); for pair-end alignment, our
design achieves a slightly worse sensitivity than that of BWA but has a higher processing speed.

Conclusions: This paper shows that our hybrid system can effectively accelerate the mapping of short reads to a
reference genome based on the seed-and-extend approach. The performance comparison to the GASSST and BWA
software implementations under different conditions shows that our hybrid design achieves a high degree of
sensitivity and requires less overall execution time with only modest FPGA resource utilization. Our hybrid system
design also shows that the performance bottleneck for the short read mapping problem can be changed from the
alignment stage to the seed generation stage, which provides an additional requirement for the future
development of short read aligners.
Background
High-throughput DNA sequencing technologies (such as
Illumina sequencers [1]) have promoted the production
of short reads with dramatically low unit cost. The ex-
plosive growth of short read datasets poses a challenge
to the mapping quality and the execution speed. The
main task of short read mapping is to align the reads to
a given reference genome. However, mapping this large
volume of data is a challenge for existing sequence align-
ment tools. The Smith-Waterman algorithm [2] is able
to provide an accurate alignment result, but is too slow
for the large volumes of data generated by current
sequencers. Therefore, existing software tools often use
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a restrictive error model for computing the alignments
to improve speed, whereas more flexible error models
are generally too slow for large-scale applications. As the
read length continues to increase and more errors are
permitted in the final alignment, many current aligners
are becoming less efficient. Our goal in this paper is to
design, implement, and evaluate a new short read align-
ment (SRA) method with both high sensitivity and high
throughput. To achieve these goals, our approach is
based on implementing a sensitive alignment method
following the “seed and extend” approach on an FPGA.
Both high sensitivity (defined as the number of
alignments found) and decreased computational pro-
cessing time are significant advances to research in the
area of Next-Generation-Sequencing (NGS).
“Seed and extend” is a frequently used heuristic in

short read mapping implementations. The basic idea is
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simple: since only a limited number of errors are allowed
for a significant alignmenta long exact match regions
exist. Thus, discovering these exact matches (called
common k-mers or seeds) before the alignment process
can largely reduce the search space. Detection of these
seeds is usually performed using two approaches: (i)
indexing of the input read dataset and scanning through
the reference genome, (ii) indexing of the reference gen-
ome and aligning each read independently.
There are several alignment tools based on the first ap-

proach (e.g. MAQ, ZOOM, SHRiMP). MAQ [3] performs
an ungapped alignment that takes into account quality
scores for each base. ZOOM [4] uses “spaced-seeds” in
order to improve sensitivity. SHRiMP [5] combines the
spaced seeds and the Smith-Waterman algorithm to align
reads with even higher sensitivity. SOAP, WHAM, BFAST,
and GASSST apply the second approach to conduct the
alignment computation. SOAP [6] uses seeds (consecutive
bases) and a hash lookup table algorithm to accelerate the
alignment and is efficient to process alignments with a
small number of gaps and mismatches. WHAM [7] uses a
hash-based index method to quickly find potential hits and
then applies bitwise operations to perform string matching.
BFAST [8] uses multiple indices of the reference genome
to increase sensitivity. GASSST [9] applies a series of filters
of increasing complexity to quickly eliminate candidate hits
with too many alignment errors. A drawback of these
indexing methods is that the memory footprint is very
large, particularly when the size of the reference genome or
the reads approaches several billion. A third approach,
based on the Burrows-Wheeler transform (BWT) [10],
addresses this problem by applying an occurrence table and
a suffix array to store the reference genome in a space-
efficient way. Bowtie [11] employs a Burrows-Wheeler
index which greatly reduces the memory consumption.
Bowtie is one of the fastest alignment tools for short read
alignment, but does not allow for indel (insertion and dele-
tion) errors. BWA [12] is slightly slower than Bowtie, but
allows indels in the alignment. SOAP2 [13] uses a bidirec-
tional BWT to build the index of the reference genome and
achieves a comparable alignment speed to that of Bowtie.
The BWT-based methods use a backward search [14] to
quickly locate exact matches. However, its search space
increases dramatically if more errors are allowed. There-
fore, this approach is generally efficient for low error rates.
As discussed above, short read mapping, particularly

for very large datasets, is computationally challenging.
Hybrid computing platforms offer the potential to im-
prove algorithm performance, particularly algorithm
runtime. Already, we have seen the development of hy-
brid short read alignment tools using the parallel com-
puting capabilities of GPUs. SARUMAN [15] uses a
NVIDIA graphics card to accelerate the time-consuming
alignment step. SOAP3 [16] and CUSHAW [17] achieve
performance improvements by parallelizing the BWT-
approach on GPUs. [18] proposed a hybrid system
combining both CPU and GPU to accelerate the
phylogeny-aware alignment kernel.
FPGAs are also suitable candidate platforms for this ap-

plication, due to their fine-grained pipelining and massive
parallelism. However, short read mapping tools on FPGA
are less common due to the design efforts required.
Alachiotis et al. [19] proposed a FPGA-based short read
alignment accelerator for the phylogenetic tree search,
which is based on the PaPaRa [20] algorithm. Knodel et al.
[21] developed a massively parallel structure to conduct
the straightforward search for short reads in a reference
database. However, gaps are not allowed in the design and
as such it limits this design’s application scope. Fernandez
et al. [22] designed a short read aligner based on BWT
indexing. However, as it stores the table contents utilizing
on-chip memory resources, the supported reference gen-
ome size is quite limited. Tang et al. [23] presented a het-
erogeneous short read aligner based on the algorithm used
in PerM [24]. For its current version, the maximum
working clock frequency is 175 MHz and gaps are not
allowed. Olson et al. [25] designed another FPGA aligner
based on the BFAST algorithm. The index data structure
and candidate alignment locations (CAL) finder design
improve the search efficiency. The final system achieves
two orders of magnitude speedup against BFAST and an
order of magnitude speedup against Bowtie with the help
of 8 Virtex-6 FPGAs, ×16 PCIe buses, and DDR3 memory
interfaces. Generally, it is very difficult to make a mean-
ingful direct comparison between two different FPGA
designs. The performance of an FPGA design is influenced
by many factors, including the FPGA architecture and the
original algorithm that was implemented. Unlike above
designs, our FPGA aligner design is inspired by the
concept of pre-filtering. In this paper, we present a hybrid
short read aligner built on one Virtex5 FPGA chip with a
similar structure to that of GASSST, but with faster
processing speed.

Methods
Runtime profiling
Our hybrid aligner design follows the “seed and extend”
strategy and indexes the reference genome. The “seed”
stage identifies candidate regions with a high degree of
similarity between the reference genome and each read se-
quence. The hash table lookup is a conventional method
to quickly eliminate irrelevant regions. It can be easily
implemented on the FPGAs due to its simple structure.
The extension stage extends the seed in both directions. If
indels are supported, the DP-based Needleman-Wunsch
(NW) algorithm [26] can be applied. The NW algorithm
provides a high degree of accuracy, but is also computa-
tionally expensive due to its quadratic search space. Based
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on our experience, the number of indels allowed is much
less than that of substitutions for short read alignment. This
provides us the opportunity to use another DP-based algo-
rithm with a much smaller search space, the banded NW
algorithm. To evaluate the performance bottleneck of the
sequential NW-based short read mapping, we record the
runtime of the three different stages, i.e. indexing, seed gen-
eration, and seed extension with the NW algorithm on a
conventional CPU using a single thread. In this test, we use
one million simulated reads of length 76 base-pairs (bps)
each from the E. Coli genome and a 4% error rate. The
results in Table 1 show that the extension stage is the most
time-consuming part. Furthermore, the seed generation
stage also occupies over 13% of the overall runtime. The ex-
tension stage is quite suitable for FPGA implementation, as
it has a regular systolic architecture. The seed generation
stage mainly consists of random memory accesses to a large
lookup table. In our earlier version of the hybrid aligner de-
sign [27], we mapped the seed generation stage into soft-
ware. The general purpose CPU pre-caches part of the data
from the main memory to accelerate consecutive memory
accesses. Unfortunately, the performance deteriorates sig-
nificantly for random memory accesses. Our earlier
experiments showed that this type of partitioning is unable
to generate enough (read, ref) pairs for the extension stage
on the FPGA. Thus, we have decided to construct a seed
engine module to implement the seed generation
operations on the FPGA to achieve better performance.

Parallel banded NW search
For two given letters x and y (bases or bps) over the nu-
cleotide alphabet

P
= {A, C, G, T}, we use the following

scoring scheme: 0 for a match (i.e. if x = y), and 1 for a
mismatch (i.e. if x ≠ y). Furthermore, the penalty for each
indel error is also set to 1. The computation of the DP
alignment matrix between a read sequence (read[1..n]
∈
Pn) and a substring of the reference genome (ref[1..m]

∈
Pm) is given in Equation (1) for 1 ≤ i ≤m and 1 ≤ i ≤ n.

S i; jð Þ ¼ min
S i� 1; jð Þ þ 1

S i� 1; j� 1ð Þ þ δ
S i; j� 1ð Þ þ 1

8<
: ð1Þ

where δ = 0 if ref (1) = read (j); otherwise, δ = 1. The DP
matrix initializations are given by S (i, 0) = i and S (0, j) = j
for 0 ≤ i ≤m and 0 ≤ j ≤ n. The optimal global alignment
Table 1 Runtime performance for short read mapping
with a single thread on an AMD 2.1 GHz CPU

Runtime (s) Percentage of time spent

Indexing 7.03 0.79%

Seed generation 120.14 13.5%

Extension 760.19 85.7%
score with respect to the given scoring scheme is then the
value S(m,n). In fact, short read mapping can be
considered as a semi-global alignment, where only the
query read needs to be globally aligned. Thus, the optimal
score is given by the minimal value in the last column of
S, i.e. min{S(i,n)∣i∈{1,. . .,m}} and the gaps in the first col-
umn are omitted.
The search space for the conventional global align-

ment is of size m × n. The banded NW algorithm limits
the search process around the main diagonal with a
band width of d, which largely reduces the search space.
However, the alignment score is still computed sequen-
tially. Figure 1 shows a typical case for a banded semi-
global alignment with a band width of one.
To further utilize the parallelism inherent in FPGAs,

we have modified the banded NW search to a fine-
grained parallel version. Instead of computing the align-
ment score directly as in Equation (1), we first take only
substitution errors between bases into account. The
highlighted bases in Figure 2 indicate the best alignment
between two sequences. As a good alignment permits
only a limited number of errors, the optimal alignment
score is usually related to the path with fewer 1’s, which
gives an insight as to how to conduct the alignment in
parallel. As the paired match information is independent
of each other, we can divide the search space into mul-
tiple blocks and compute the alignment score for each
block in parallel. As the best alignment in the block is
A A T G C C A T T G C G

A A T G C C — T C G C G

Alignment score = 2

reference

read

Figure 1 The conventional banded semi-global alignment
between two sequences “AAGCCATTGCG” and “AATGCCTCGCGA”.
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not always part of the final alignment, we compute the
alignment scores for three different diagonals at the same
time with each block, labelled as (Su, Sm, Sl), to prevent
possible sensitivity loss. We also record the start locations
for each score labelled as {u, m, l} representing the upper
diagonal, the main diagonal, and the lower diagonal. After-
wards, we concatenate the block scores to get the complete
alignment score. Since the block scores are independent of
each other, we use a tree structure to concatenate multiple
block scores in parallel to reduce the computation time.
Our parallel block alignment algorithm is similar to the
Four-Russian speedup technique [28] for block alignment,
but we employ a different block construction strategy. In-
stead of partitioning the search space into overlapping
square blocks, we divide the search space into consecutive
“v-shaped” regions, without any overlap. GASSST also
introduces a tiled-NW filter to compute the alignment
score in blocks. A small lookup table for 4 bp long se-
quence pairs is applied for the block score computation.
The lower bound score is computed among three overlap-
ping regions along the main diagonal. As the tiled-NW fil-
ter is the first stage of the cascading filters in GASSST, its
performance for eliminating the candidate hits is quite
limited. In contrast, our parallel block alignment algorithm
can provide a high sensitivity on candidate elimination (see
the experimental results). Figure 2 gives an example of our
parallel banded NW search for two 12 bp sequences. The
bold lines in Figure 2 construct three blocks for alignment
computation. After block reformation, we get a substitu-
tion matrix for each block. The alignment score computa-
tion is determined by its substitution matrix. Assuming the
threshold is three, if the alignment score is higher than the
threshold, the alignment will be ignored and labelled with
the symbol “×”. The block score computation is divided
into two categories: the initial block alignment and the lat-
ter block alignment.
The initial block score computation is the same as the

conventional banded semi-global alignment. The block
b1 score computation in Figure 2 belongs to this cat-
egory. Its alignment score is S1 = (1, 0, 1) and the start
location is (m, m, m). The score computation for block
b2 and block b3 falls into the other category (later block
alignment), and also follows Equation (1), but assumes
that there are three possible start points (u, m, and l, re-
spectively) for the alignment. Figure 3 shows the detailed
computations steps for block b2. The dashed arrows in
Figure 3 indicate the trace-back paths of the alignment.
Based on these paths, we can determine the start loca-
tion for each score in the last column of the score sec-
tion. The final score for block b2 is S2 = (1, 2, 2) with a



Chen et al. BMC Bioinformatics 2013, 14:67 Page 5 of 14
http://www.biomedcentral.com/1471-2105/14/67
start location of (m, m, m). Following the same method,
the alignment score for block b3 is S3 = (1, 2, 3) and the
start location is (u, u, ul) (for the same alignment, there
could be multiple start locations). In Figure 2, we use
the arrows to represent the start locations after block
alignment. For example, the arrow from S3l to S2u
indicates the start location of ‘u’. By concatenating block
b2 and b3, we get the alignment score S23 = (2, 3, ×) and
the updated start location (m, m, m). Following the same
strategy, we can get the score for all three blocks as:
S123 = (2, 3, ×). Then, the final alignment score is 2 (the
same as the result of the conventional banded NW algo-
rithm shown in Figure 1). For the conventional algo-
rithm, it requires at least 12 cycles to get the alignment
score. In contrast, our method only requires 6 cycles
(4 cycles for block alignment and 2 cycles for concaten-
ation). Thus, as the read length increases, we can expect
greater computational efficiency. In practice, we have
designed an FPGA aligner including twelve blocks,
where each block can conduct an 8 bp alignment.

Hybrid system architecture
The overall hybrid system structure is shown in Figure 4.
In our design, we use a constant-length seed model and
index the reference genome. Thus, the reference genome
only needs to be processed once and the results can be
reused for different read datasets. Therefore, indexing is
treated as a pre-processing stage, which is not included
in the overall alignment work flow.
The complete system is running on a DRC coproces-

sor system [29] and the host PC communicates with the
FPGA chip through the HyperTransport interface. The
main tasks for the host PC are simple and are not
compute-intensive, consisting of: read coding (i.e. con-
verting nucleotide bases into a binary format, two bits
for each base) and transferring the coded reads to the
short read aligner; sending operating commands to the
aligner; receiving the alignment results and writing them
to an output file. The short read aligner (available at
PC
Short read

aligner
(FPGA)

Set up cmd

Start cmd

OP end

reads

Aligned
(read, ref)

info
Figure 4 The hybrid system architecture.
http://code.google.com/p/fpga-sra-core/downloads/list)
conducts the seed generation and extension operations
on the FPGA chip.
The hybrid system includes two working states, the

initialization state and the processing state. In the
initialization state, the host PC first configures the aligner’s
parameters through the use of setup commands. The
FPGA aligner design supports different read lengths,
which is controlled by the length_setup command. Al-
though currently the maximum read length is 100 bps, it
is relatively simple to modify the aligner to support larger
lengths. The threshold score is set based on the
thresh_setup command before the alignment start. Unlike
other designs which conduct the alignment read by read,
our hybrid system processes the alignment chunk by
chunk. In our implementation, the host PC processes
1,000 reads per iteration. The coded read chunk is stored
in FPGA BRAM resources. For 1,000 reads of length
100 bps, this consumes 400kbit of memory space (includ-
ing the forward sequence and reverse complement se-
quence). The memory consumption is thus moderate and
will not compete for resources required for subsequent
stages. When the read chunk is ready, the host PC sends a
start command to start the FPGA aligner. When chunk
processing is finished, the FPGA aligner sends back an
operation_done flag to inform the host PC. Based on our
observation, the processing speed of the host PC is slower
than that of FPGA aligner. Thus, to apply multi-threading
on the read coding part can further improve the overall
performance. An experiment related to multi-threading is
given in “Results and Discussion” section.
Our short read aligner is composed of two major

FPGA components: the Seed Engine and the Align Core.
The Seed Engine identifies all (read, ref ) candidates with
high similarity. The Align Core implements our parallel
banded NW algorithm. The overall structure of the
short read aligner is shown in Figure 5. Each of the off-
chip DDR2 SDRAM memories provides 2Gbytes of stor-
age with a bandwidth of 128bits, while the RLDRAM
memory provides 256Mbytes storage with a bandwidth
of 64bits. Two tables are attached to the Seed Engine.
Both of them are generated by the indexing of the
reference genome. The reference genome itself is also
stored in the off-chip memory to generate (read, ref )
pairs. The Local Reads module stores the coded read
chunk data using on-chip memory.

Seed engine
The hash table construction is the main task for the Seed
Engine design. Software tools (e.g. GASSST) usually apply
a flexible seed model, i.e. for different read lengths using
different seed sizes. The advantage of the flexible seed
model is that it can avoid generating too many candidate
regions and moderate the work burden for the extension

http://code.google.com/p/fpga-sra-core/downloads/list
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stage. However, the flexible seed model also requires re-
petitive indexing of the reference genome.
In our Seed Engine design, the constraint on the num-

ber of candidate regions is less stringent, since the Align
Core can provide very fast alignment computation.
Thus, a much simpler constant seed model is used. To
evaluate the influence of different seed models, we rec-
ord the number of duplicate seeds and alignments with
different seed length settings in Table 2 (using the
GASSST software implementations with one million
simulated 76 bp reads against the E. Coli genome).
Table 2 shows that a longer seed length can effectively

reduce the number of duplications, but the alignment
sensitivity drops correspondingly. As duplicate seeds re-
quire extra computation time for hash table access, we
arbitrarily choose 15 bp as the seed length to avoid a
large number of duplications while slightly sacrificing
the alignment sensitivity. To quickly identify candidate
regions, two requirements exist for the hash function
selection: (i) a simple hash function representation,
and (ii) a reduced number of collisions. A complex
hash function would compete with the hardware
resources needed for the later extension stage imple-
mentation. Furthermore, if there are too many collisions,
the additional off-chip memory accesses will reduce the
overall performance.
We apply the bucket hash strategy with hash functions

chosen from the H3 family [30]. The bucket hash first
Table 2 The number of duplications and the identified
alignments for different seed lengths using GASSST

Seed length # of duplications # of alignments

12 bp 1,260,817 1,076,671

13 bp 504,104 1,049,721

14 bp 217,461 1,029,516

15 bp 124,197 1,028,288
divides the seeds into multiple buckets. A separate hash
function is applied for individual buckets to guarantee
that there are only a limited number of hash collisions.
A seed is divided into two parts: the prefix and the
suffix. Figure 6 gives an example of the hash query data
path for a 15 bp seed. As the DNA alphabet size is only
four characters, 30bits is enough to represent a 15 bp
seed. The first 16bits are used as the prefix to construct
the buckets; the remaining 14bits (suffix) are used for
hash computation. The hash table address is computed
by combining both the prefix and the hash value. As
collisions only appear among seeds in the same bucket,
the bucket hash strategy can effectively reduce the num-
ber of collisions.
To avoid sensitivity loss for seeds which collide, an

additional table, called the collision table, is also
constructed. The definitions of the primary table and the
collision table fields are:

C 1bit, the collision flag
Count 7bits, the total number of seeds that were

hashed to this slot

Ptr 24bits, if the collision flag is ‘0’, it indicates

the position in the reference genome otherwise, it
indicates the start location in the collision table

Pos 24bits, the match position in the reference

genome
For the E. Coli reference genome, the primary table
consumes 64 K × 4 K × 32bits of memory and the colli-
sion table consumes 421623 × 32bits of memory. As
both the primary hash table and the collision table are
too large for the on-chip memory, the primary hash
table is stored in DDR2 SDRAM1 and the collision table
is stored in RLDRAM. Storing them in separate memor-
ies allows us to pipeline the hash query rather than
waiting for a complete query operation. Once a match



ACTGAC…... …...Read

seed

C Count Ptr

Primary table

Pos1

Pos2

Collision table

16bit 14bit

prefix Suffix

H3()

seed

Prim
addr

Figure 6 The hash query data path.

Chen et al. BMC Bioinformatics 2013, 14:67 Page 7 of 14
http://www.biomedcentral.com/1471-2105/14/67
position in the reference genome is found, the Seed
Engine will extract the related base information from
SDRAM2 (the reference genome) to generate the valid
(read, ref ) pair for the extension stage.
As the Seed Engine computation refers to data transfer

between the FPGA and off-chip memories, its perform-
ance is largely influenced by these I/O operations. The
estimated highest clock frequency for the Seed Engine is
around 250 MHz (reported by the Xilinx synthesis tool).

Align core
The inner structure of the Align Core module is shown
in Figure 7. It consists of two alignment engines, a com-
mand interface, a best alignments module, and an out-
put FIFO. The command interface sets the operation
parameters of the align engine and monitors the
operation_end flag. The output FIFO temporarily stores
Cmd
Interface

(read, ref)

out FIFO

Align Engine1

Align Engine2

Best
Alignments

set

set

op_done

Figure 7 The Align Core inner structure.
the match (read, ref ) information. The Alignment
Engine performs the alignment computation.
Normally, a single alignment engine is enough for

the banded NW alignment, but in some occasional
situations (e.g. characters outside the reference candi-
date region), the alignment score will be incorrect.
Figure 8 gives an example of such special cases.
In Figure 8, case (a) is missing the extra character to the

left of the candidate region. In case (a), the final score will
be S + 1 (S indicates the candidate region alignment score,
1 is the initial insertion) for the normal search. However, if
the character to the left of the candidate region happens
to be ‘A’, the correct alignment score will change to S. This
will introduce a false negative answer in the final results.
To prevent possible sensitivity loss, we expand the search
space by applying two alignment engines. One is for the
normal search; the other searches the reference region
shifted one base to the left. The “best alignments” module
chooses the best alignment score between these two align-
ment engines and at the same time removes the duplicate
results. In contrast, case (b) is missing extra characters to
the right of the candidate region. As fewer nucleotides are
computed, the alignment score could be less than its ac-
tual value, which adds false positive answers to the final
results. To solve this problem, we also load one extra base
to the right of the candidate region and compare it with
the last character of the read. The alignment score from
the lower diagonal will be updated with the extra base
compare result.
The alignment engine design (shown in Figure 9)

follows the parallel banded NW algorithm mentioned in
Section II. It consists of three components: a head
processing module, twelve smaller alignment modules
(Align8bp), and a concatenate module.
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The head-processing module conducts the semi-global
alignment for the first four bases. Twelve Align8bp
modules can support up to 96 bp alignment computa-
tion. The Align8bp module conducts the alignment com-
putation using a substitution matrix of size 3 × 8 for
each block. Its inner structure is shown in Figure 10.
Each cell in Figure 10 is initialized with the value in the
substitution matrix. The alignment score is updated
along the path labeled in the inner structure. Meanwhile,
each cell also records the updated start location based
on the score computation result. When all computations
are done, the last column will report the block alignment
scores and corresponding start locations.
The most time consuming path for the Align8bp mod-

ule is updating the main diagonal score. We have la-
belled the critical path with red arrows in Figure 10. To
further improve the Align8bp module’s performance, we
insert extra registers to shorten the critical path. The
alignment concatenation module design follows the
method shown in Figure 2 and it also uses a tree struc-
ture to reduce the computation latency.
To support reads longer than 100 bp, we can simply

duplicate the Align8bp module to extend our FPGA
aligner’s processing capability. For alignments allowing
more gaps, the parallel block algorithm still works ex-
cept that the search space needs to be expanded. Our
current FPGA aligner only supports alignments with a
band width of one. To cope with more gaps, we need to
Head

Align8bp_1

Align8bp_2

Align8bp_12

Align
Concatenation

score

Figure 9 The alignment engine architecture.
expand our search space by adding more cells into the
Align8bp module (e.g. if two gaps are allowed, the
Align8bp module will require 5 × 8 cells in total; the con-
nection between each cell is still similar to the one
shown in Figure 10).

Paired-end alignment
Unlike single-end short read alignment, the paired-end
alignment problem involves a pair of short read datasets
and two parameters, an outer distance D and a standard
variation d. Similar to the single-end alignment, each
read in the pair (s1, s2) will firstly be aligned individually,
which can be accomplished utilizing our FPGA-based
short read aligner. Define that p1 is the start location in
the reference genome that read s1 is aligned; p2 is the
start location in the reference genome that read s2 is
aligned. Then, an additional pairing scheme is applied to
complete the paired-end search on the host PC. The
pairing scheme includes three cases: (1) both s1 and s2
have matches in the reference genome; (2) only s1 has
matches in the reference genome; (3) only s2 has
matches in the reference genome. The pseudo code
0 1 2 7
Figure 10 The Align8bp module inner structure.



Table 3 Hybrid system runtime profile

Runtime Percentage of time spent

Host PC 22.22 s 69%

FPGA aligner 9.78 s 31%

Assuming that p1 is smaller than p2

if both s1 and s2 can be aligned in the reference genome
for each match position p1 of s1

for each match position p2 of s2

if the 
output the pair and break

else if no match is found
if s1 has matches

for each match position p1 of s1

conduct SW(s2, ref) using reference segment of position p1+D-d
if the alignment score ≤ threshold

output the pair and break
else if no match is found

if s2 has matches
for each match position p2 of s2

conduct SW(s2, ref) using ref segment of position p2 -D-d
if the alignment score ≤ threshold

output the pair and break
Figure 11 Pseudo code for the pair-end alignment.
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for the pairing scheme is shown in Figure 11. For each
SW(·) operation in the pseudo-code, we conduct the
forward search and the reverse complement Smith-
Waterman alignment of the short read to increase
sensitivity.

Results and discussion
We have implemented the FPGA aligner using Verilog
HDL and have targeted it to a Xilinx Virtex5 LX330 de-
vice. The design consumes 71,744 slice registers (34% of
the available register resources), 79,552 slice LUTs (38%
of the available LUT resources), and 133 36 kb BRAM
blocks (46% of the available on-chip memory space).
The FPGA aligner works at 200 MHz, which maximizes
the I/O data transfer. Several experiments are conducted
to evaluate the FPGA aligner’s performance at this clock
frequency setting. The performance of our FPGA aligner
is compared with GASSST (version 1.26) and BWA (ver-
sion 0.5.9). The fundamental work flow of our FPGA
aligner design is similar to that of GASSST, except that
GASSST uses multiple pre-filters to eliminate irrelevant
data before the computation intensive global alignment.
BWA uses a totally different strategy (a BWT-based
backward search) to conduct the short read alignment
computation. It is probably one of the fastest aligners to
date for alignments with a low error rate and is also a
popular choice in the bioinformatics community. Thus,
we also include BWA in the performance evaluation.
Gaps are allowed in all three aligners. All tests are
performed on a quad-core (each core running at
2.1 GHz) AMD Opteron processor with 8Gbyte RAM
running the Linux OS. The reference genome is the E.
Coli NC_008253 dataset with 4.9 million residues. We
have generated several simulated short read datasets
using the wgsim utility program in the SAMtools package
[31] (version 0.1.17) with different error rate settings. In
all experiments, the identification percentage is set to
90% and the number of gaps allowed is one. For ex-
ample, for a 36 bp read alignment, at most three errors
are allowed (at most one indel error and the rest are
substitutions). The other parameters for GASSST and
BWA are set to the default values.
To analyze the performance bottleneck for our hybrid

system, we first measure the cumulative execution time
of different parts of our system running with a single
CPU thread. The results are shown in Table 3 using a
76 bp single-end read dataset with 4% error rate. The
results show that the host PC computation occupies
69% of the overall execution time, which is related to
read coding and match output. This indicates that the
read coding and the match output is now the bottleneck
for our hybrid system design. Further improvements on
the FPGA aligner cannot improve the hybrid system’s
performance significantly using just a single thread.
However, the system performance can be improved
using multi-threading.
Additional experiments are also prepared to give a

more thorough analysis of the FPGA aligner design.
The second experiment is to evaluate the Align
Core’s processing capability. We compare the runtime



Table 4 Alignment runtime comparison for one million reads

4% error rate 6% error rate 8% error rate

GASSST 55 s 46 s 37 s

Align Core 1.6 s 1.47 s 1.31 s

Speedup 34 31.3 28
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performance between the filtration part in GASSST and
our Align Core, assuming that the input data for each of
them is available. As this experiment only compares the
“alignment” section runtime, the runtime performance
of BWA is not included. Three small short read datasets
(36 bp) of varying error rates are used. Each dataset
contains one million reads. Table 4 reports the runtime
comparison under different conditions. The GASSST fil-
ter runtime includes all filtration stages from the tiled-
NW filter to the real NW filter computation using a sin-
gle thread. The Align Core runtime also includes data
transfer from off-chip memory to FPGA.
Table 4 shows that the FPGA Align Core provides a

much better runtime performance for the alignment com-
putation (around 30 times faster). As the filtration (exten-
sion) stage is accelerated by the Align Core, it is no longer
the performance bottleneck for the “seed-and-extend”
strategy. However, the performance of the Align Core
alone does not represent the complete performance of our
hybrid system. To make a fair evaluation on the hybrid
system’s performance, we have compared the complete
execution time of GASSST, BWA, and our hybrid aligner
using one million reads with 4% error rate with different
read lengths (36 bp, 76 bp and 100 bp). We also record
the performance under multi-threaded conditions. The
results are shown in Table 5.
The performance of our hybrid aligner reported in

Table 5 is partially multi-threaded, i.e. different threads
share the same FPGA aligner which only processes data
from one thread at a time. Once a thread offloads the
operations to the FPGA aligner, this thread needs to wait
for the FPGA’s “computation done” flag. At the same
time, other threads can keep encoding the short reads.
As the FPGA aligner’s computation time is much shorter
Table 5 Execution time comparison among different thread c

36 bp read data set 7

Threads 1 2 4 1

Hybrid aligner 16 s 11 s 11 s 30s

GASSST 110 s 58 s 42 s 216 s

BWA 64 s 34 s 22 s 150 s

Speedup1 6.8 5.3 3.8 7.2

Speedup2 4 3.1 2.0 5.0

(Note: speedup1 indicates the runtime comparison between the hybrid system and
hybrid system and BWA).
than that of read encoding, the waiting time for the
thread is acceptable. As the BWT index can be reused
for the same reference genome, the execution time of
BWA in all our tests only includes aln and samse
(sampe for paired-end alignment). BWA provides a
faster processing speed than GASSST by taking advan-
tage of the BWT-based search. Our hybrid aligner
achieves a speedup of 7 over GASSST and of 5 over
BWA with a single thread. The execution time speedup
is less than that reported by the Align Core alone. This
indicates that the Align Core is not fully utilized. When
alignment computation is no longer the performance
bottleneck, two other factors are responsible for the
system’s overall performance: the read coding and the
Seed Engine processing. The read coding computation is
simple, but the total number of bases is large. Therefore,
we utilize Streaming SIMD Extensions 2 (SSE2) ins-
tructions to minimize its computation time. Notice
that there is no performance improvement for our
FPGA aligner, when the number of threads changes
from two to four. To find out the performance bottle-
neck for the current design, we further record the
runtime consumed by the FPGA aligner under different
thread conditions. Table 6 shows the runtime performance
for the 100 bp case.
Table 6 results show that when two threads are ap-

plied, the FPGA aligner’s runtime is almost doubled and
its proportion jumps from 35.2% directly to 77%. This
indicates that if more threads are applied, the FPGA
aligner will be the performance bottleneck, which is
proven by the zero performance improvement of the 4
thread case. As the Align Core is no longer the perform-
ance bottleneck for the FPGA aligner, the Seed Engine is
the only explanation for such a performance limitation.
The seed engine computation requires frequent off-chip
memory accesses (multiple cycles are required for a
complete off-chip memory access), which intrinsically
limits its runtime performance. Since the processing
speed is limited by the off-chip hash table access, several
methods exist to further improve the design’s perform-
ance: (i) using FPGA platforms with multiple off-chip
onditions

6 bp read data set 100 bp read data set

2 4 1 2 4

21 s 21 s 38 s 28 s 28 s

116 s 78 s 268 s 145 s 96 s

88 s 54 s 214 s 104 s 71 s

5.5 3.7 7.1 5.2 3.4

4.2 2.6 5.7 3.7 2.5

GASSST; speedup2 indicates the execution time comparison between the



Table 6 The runtime composition for 1 million 100 bp reads

1 thread 2 threads 4 threads

Total execution time 38 sec 28 sec 28 sec

FPGA aligner runtime 13.4 sec 21.65 sec 21.57 sec

Proportion 35.2% 77% 77%
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memory interfaces (thus allowing more hash lookups at
the same clock cycle), or (ii) using FPGA chips with lar-
ger on-chip memories (the collision table can then be
stored using BRAM; thus a single off-chip access will be
enough for a hash query). As the resource consumption
of our FPGA aligner design is less than 50% of the total
FPGA resources, it is possible to duplicate the Align
Core module or even the full FPGA aligner module on
the same FPGA chip. However, the limited number of
off-chip memory interfaces in the current experimental
platform cannot generate any more (read, ref ) pairs in
the Seed Engine module. An FPGA board with more
interfaces would eliminate this bottleneck, bringing add-
itional performance improvements.
Runtime testing with a single error rate might not

be enough to explore the performance of the three
programs. Thus, we also test the runtime performance
under different error rate conditions using simulated
read datasets with a single thread. The performance is
shown in Table 7.
From Table 7, we can find that more execution time is

consumed for all three alignment tools, as a longer read
length is applied. This is because a longer read length
leads to a larger search space, which naturally requires
more computation time. Another interesting observation
is that, under different error rate conditions, our hybrid
aligner provides a relatively stable performance. In con-
trast, GASSST shows performance improvements and
BWA shows performance deterioration, as the error rate
increases. The search strategy used within the tools can
explain such a difference. BWA applies the BWT-based
search algorithm, which consumes additional computa-
tion time when an error occurs. Therefore, its computa-
tion time will increase, if more errors exist in the read
Table 7 Runtime performance under different error rate
conditions

76 bp 100 bp

Error 2% 4% 6% 2% 4% 6%

Hybrid aligner 30s 30s 29 s 37 s 38 s 37 s

GASSST 227 s 216 s 199 s 292 s 268 s 253 s

BWA 109 s 150 s 162 s 153 s 214 s 221 s

Speedup1 7.6 7.2 6.8 7.9 7.1 6.8

Speedup2 3.6 5.0 5.6 4.1 5.7 5.9
dataset. The GASSST computation is based on the “seed
and extension” strategy. As the error rate increases, the
number of seeds in the read decreases, which reduces
the computation time required in the extension stage.
Our hybrid system also uses the “seed and extension”
strategy, but the FPGA aligner computation only occu-
pies a small portion of the total runtime (see Table 3).
Thus, the error rate change only has limited influence
on the execution time.
Besides investigating the speed of the FPGA aligner,

we also examine the alignment quality among the differ-
ent tools based on two factors: (i) the total number of
alignments found (sensitivity) and, (ii) the number of
true alignments found (accuracy). Since we know the
exact positions for each read in the simulated datasets,
the correctness of the reported alignments can be easily
evaluated by comparing the position information. In
practice, if an alignment position is within a maximal
distance d (d = 5 in our evaluation) to the correct pos-
ition, this alignment will be treated as a correct align-
ment. Table 8 shows the quality comparison using one
million reads with different error rate settings.
The alignment results show that BWA’s sensitivity

drops dramatically compared to GASSST and our hybrid
aligner, when the bases error rate increases. In contrast,
both GASSST and our hybrid aligner maintain a relative
stable performance: over 96% sensitivity for a 4% error
rate and over 85% sensitivity for a 6% error rate. All
three tools provide over 98% alignment accuracy. The
alignment quality of our hybrid aligner is better than
that of GASSST under the above test conditions, par-
ticularly at the higher error rate. The reason for the im-
provement is related to the seed model. GASSST uses a
flexible seed model to ease the alignment computation.
For longer read lengths, GASSST will use longer seed
lengths (e.g. a 16 bp seed for the 76 bp read dataset; and
a 19 bp seed for the100 bp read dataset). In contrast,
our FPGA aligner uses the constant seed model (a 15 bp
seed length), which can provide extra sensitivity for
longer read datasets.
We have also conducted a further performance com-

parison of GASSST, BWA, and our hybrid system using
larger read datasets. The simulated read datasets are 20
million sequences of length 76 bp and 100 bp, with a 4%
error rate. The alignment performance is shown in
Table 9 for a single thread implementation.
The experimental results show that BWA only

achieves around 83% sensitivity, while GASSST and our
hybrid system achieve around 97% sensitivity. This
indicates that both GASSST and our hybrid system are
more effective in finding good alignments under this
error setting. On the runtime performance side, BWA
provides a faster processing speed than GASSST by tak-
ing advantage of the BWT-based search. Our hybrid



Table 8 Alignments results for different read lengths and error rate conditions

BWA GASSST FPGA

2% err 4% err 6% err 2% err 4% err 6% err 2% err 4% err 6% err

76 bp # of aln 964,053 831,634 643,670 990,842 966,001 863,848 993,057 971,367 873,804

true aln 950,293 819,522 634,386 976,482 951,587 851,162 977,722 956,785 861,025

100 bp # of aln 964,005 835,099 655,336 990,970 976,574 905,030 993,701 988,114 944,693

true aln 951,425 823,850 646,444 977,781 963,265 892,342 979,536 974,243 931,325
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system achieves the fastest processing speed, while
maintaining the sensitivity at a high level. In addition to
the simulated short read datasets, we have also evaluated
the alignment performance using a real dataset (the
short read sample from SRR519953, where the N’s are
replaced with a random character, giving a total of
1,884,895 paired reads). In this case, a separate program
is used to perform the substitution. The original read
length within SRR519953 is 101 bp. As our design only
supports a maximum 100 bp short reads, we chop one
character from the 30 end. For the single-end alignment,
we use the first 1,884,895 short reads to conduct the
test. Table 10 records the alignment quality and the
runtime performance with a single thread for the three
aligners. It is clear that our hybrid aligner reports more
alignments than the other two aligners with a faster
processing speed (over 6 times speedup).
As GASSST does not support paired-end alignment,

the performance comparison is made only between
BWA and our hybrid aligner using one million simulated
short reads. Before the performance analysis, we further
introduce several parameters to evaluate the alignment
quality: precision (defined as the number of true
alignments/ total alignments), recall (the number of true
alignments/ the number of reads), and F-score

( F� score ¼ 2 � precision � recall
precision þ recall ). The F-score com-

bines the influence of precision and recall together to
evaluate the alignment quality. The comparison results
are shown in Table 11. The paired-end read dataset is
generated using the wgsim utilities with an outer dis-
tance of 200, a standard variation of 20, and a 4% error
rate. The performance is tested with a single thread.
Table 12 records the performance achieved using the
real SRR519953 dataset.
Table 9 Alignment performance for 20 million read datasets

76 bp

# of aln true aln exe

Hybrid aligner 19,424,609 19,137,326 9 min 5

GASSST 19,318,463 19,034,347 67 min 1

BWA 16,627,675 16,387,736 50 min 4
Table 11 results show that our hybrid aligner finds more
paired-end alignments than BWA, but with a slightly
worse precision performance for one million simulated
100 bp reads. We notice that the speedup achieved by
pair-end alignment is smaller than that of single-end
alignment. This is related to the pairing strategy applied
by BWA which further utilizes the advantage of the BWT
index to accelerate the pairing process. In Table 11, our
hybrid aligner reports more alignments, but BWA reports
more alignments in Table 12. We believe such difference
also routes on the pairing strategy. The reported
alignments can be increased simply by increasing the
search space (O(l1l2), l1 is the read length; l2 is the
candidate region) in the pairing process, but the exe-
cution time will also increase correspondingly.
The above experiments show that our hybrid system

achieves a significant performance improvement when
testing with a small reference genome (the E. Coli reference
genome). While our hybrid system design is independent of
the reference genome, the restricted memory size of the ex-
periment platform (and not the implementation) limits the
possibility to test with a larger reference genome, such as
the human genome (with over three billion bases). If no
partitioning is applied for the human genome and we use
the minimal perfect hash function to construct the hash
table, the system requires at least 12GByte memory for the
hash table (three billion entries for the table with each entry
pointing to a 32bit table content). In contrast, our experi-
mental platform only has 2GByte of off-chip memory for
the hash table, which is not large enough to support the
human genome. In practice, the memory footprint is likely
to even larger than 12GByte, as it is difficult to get a
minimal perfect hash function for the human genome.
A different FPGA platform with more off-chip memory
could support the short read mapping against the
with 4% error rate

100 bp

time # of aln true aln exe time

4 sec 19,760,231 19,484,102 12 min 32 sec

4 sec 19,524,380 19,255,520 86 min 16 sec

8 sec 16,687,423 16,464,717 70 min 57 sec



Table 12 Paired-end alignment with real dataset

# of alignments Aligned rate Execution time

BWA 3,002,675 79.6% 1037 sec

Hybrid aligner 2,841,262 75.3% 300 sec

Table 13 Performance comparison between a GPU-based
aligner and our hybrid aligner

Table 10 Single-end short read alignments using real
dataset SRR519953

# of alignments Aligned rate Execution time

Hybrid aligner 1,522,697 80.7% 65 sec

GASSST 1,477,911 78.4% 467 sec

BWA 1,472,773 78.1% 444 sec
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human genome using our proposed architecture. Another
possible solution to support human genome is to apply
BWT-based methods in the seed generation stage design
to reduce the memory consumption.
A number of short read aligners built on other hybrid

platforms, such as GPUs, have appeared in the research
literature. We have further compared our FPGA-based
aligner to the GPU-based aligner CUSHAW [17] (version
1.0.40) (using default parameters) on an NVIDIA Tesla
C2075 GPU attached to an Intel Xeon quad-core CPU
3.33 GHz with 8 GB RAM running the 64bit Ubuntu
12.10 OS. Similar to the previous experiments, the short
read dataset consists of one million 76 bp short reads with
4% base error rate. The reference genome is the E. Coli
genome. Table 13 shows the runtime performance for the
two aligners running with a single CPU thread as well as
some key features of the two experiment platforms.
In this experiment, CUSHAW is twice as fast as our

hybrid aligner. This runtime speedup is achieved by a
combination of both the mapping algorithm within
CUSHAW and the GPU platform. These advantages in-
clude: (1) BWT-based indexing, which largely reduces the
memory footprint; (2) disallowing gaps, which reduces the
search space; (3) a wider memory I/O, as short read map-
ping requires intensive memory accesses, this will defin-
itely be an advantage; (4) the much higher clock frequency
of the GPU provides a better runtime performance. Add-
itionally, the NVIDIA Tesla C2075 board was released in
2011. In contrast, the LX330 FPGA was released in 2006,
which means it is at least two generations older than the
C2075. For example, when mapping our FPGA aligner to
the up-to-date Xilinx Virtex-7 XC7VX1140T chip, the
Xilinx tool chain estimated a working frequency of
264 MHz (1.3 times higher than our current working fre-
quency). In addition, this chip contains 68Mbit of BRAM
(it is large enough to store the collision table and the
E. Coli genome using on-chip memory). Therefore, we can
use SDRAM2 (as shown in Figure 5) to store another copy
of the primary hash table to further double the (read, ref )
Table 11 Paired-end alignment performance
100 bp simulated reads

Aligned Precision Recall F-score Execution time

BWA 1,940,132 99% 96.03% 97.49% 548 sec

Hybrid aligner 1,962,404 97.9% 96.05% 96.97% 108 sec
pair generation rate. Furthermore, when we replace the
DDR2 memory with the DDR3 memory on the Virtex-7,
the memory I/O bus clock increases from 200 MHz to
400 MHz resulting in an additional 2 times speedup. Thus,
we can expect approximately 5.2 times performance im-
provement in total (1.3× from FPGA working frequency,
2× from duplicated primary hash table, 2× from faster
DDR3 memory interface).
Both FPGAs and GPUs are powerful platforms for

high performance computing, but they have advantages
for different types of applications. The advantage of
GPUs lies in the many hundreds of cores, the different
types of memories and the fast data transfer interfaces;
whereas the advantage of FPGAs lies in their fine-
grained pipelining and massive parallelism. FPGAs can
provide the freedom to fully customize the circuit to fit
a specific application. Integer and bit operations are
more suitable for a FPGA implementation. However, like
any implementation, to achieve the best possible per-
formance, the original algorithm needs to be carefully
tailored to fit the specific architecture(s).

Conclusions
In this paper, we have presented a novel hybrid system to
accelerate the mapping of short reads to a reference gen-
ome based on the seed-and-extend approach. We propose
a parallel banded semi-global alignment architecture to ac-
celerate the computation-intensive extension stage on an
FPGA. Meanwhile, we also apply a bucket hash structure
to improve the seed generation stage computation. The
performance comparison to the GASSST and BWA soft-
ware implementations under different test conditions
shows that our FPGA aligner achieves a high degree of
sensitivity and requires less overall execution time with
only modest resource utilization. As a result, the perform-
ance bottleneck on the FPGA aligner changes from the ex-
tension stage to the seed generation stage.
CUSHAW hybrid aligner

Runtime performance 15 sec 30 sec

Clock frequency* 1.15 GHz 200 MHz

Attached memory 6 GB 4 GB

Memory I/O 384-bit GDDR5 128-bit DDR2

* The clock frequency is the clock for the Tesla C2075 board and the FPGA
chip, respectively. The GPU specifications are from [32].
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As part of our future work, we are planning to expand
the functionality of our FPGA aligner to cope with
longer read datasets. Meanwhile, we will also investigate
the possibility to integrate the BWT-based search algo-
rithm into our seed generation stage design to reduce
the memory consumption.

Endnote
aNormally, there are three types of alignment errors:
insertion, deletion, and substitution.
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