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Abstract

throughout the genome.

power to detect longer DERs.

Background: Genome-wide tiling array experiments are increasingly used for the analysis of DNA methylation.
Because DNA methylation patterns are tissue and cell type specific, the detection of differentially methylated
regions (DMRs) with small effect size is a necessary feature of tiling microarray ‘peak’ finding algorithms, as cellular
heterogeneity within a studied tissue may lead to a dilution of the phenotypically relevant effects. Additionally, the
ability to detect short length DMRs is necessary as biologically relevant signal may occur in focused regions

Results: We present a free open-source Perl application, Binding Intensity Only Tile array analysis or “BioTile",

for the identification of differentially enriched regions (DERs) in tiling array data. The application of BioTile to
non-smoothed data allows for the identification of shorter length and smaller effect-size DERs, while correcting for
probe specific variation by inversely weighting on probe variance through a permutation corrected meta-analysis
procedure employed at identified regions. BioTile exhibits higher power to identify significant DERs of low effect
size and across shorter genomic stretches as compared to other peak finding algorithms, while not sacrificing

Conclusion: BioTile represents an easy to use analysis option applicable to multiple microarray platforms, allowing
for its integration into the analysis workflow of array data analysis.
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Background

Genome-wide DNA methylation studies are becoming in-
creasingly used in search of etiological factors contributing
to complex non-Mendelian disease, as the susceptibility of
DNA methylation to environmental influences and its
potential for metastable drift may account for complex
disease features, such as a discordance of monozygotic
twins, parent of origin effects, an unequal frequency of
affected males and females, complex inheritance, and
a late age at onset, among others [1-3]. DNA methylation
changes in the brain are becoming increasingly recognized
as important mediators of behavioral phenotypes in model
organisms and psychiatric disease in humans [4-7].

* Correspondence: zkamins1@jhmi.edu

'Mood Disorders Center, Department of Psychiatry and Behavioral Sciences,
Johns Hopkins University School of Medicine, Baltimore, USA

Full list of author information is available at the end of the article

( ) BiolVled Central

Despite the likelihood of epigenetic changes as etiological
factors contributing to psychiatric disease risk, the success
of the first round of epigenomic studies has been limited
[8]. In the first epigenomic profiling studies performed in
major psychosis, Mill et al. found moderate fold changes in
prefrontal cortex DNA methylation. In the WDRI8 gluta-
mate receptor subunit gene, an 8% DNA methylation dif-
ference was detected between males with schizophrenia
and controls, while female patients with bipolar disorder
were 6% more methylated than controls at the RPL39 gene
[9]. No significant differences were found in an analysis of
50 loci in temporal cortex of schizophrenia affected individ-
uals [10]. A recent methylome profiling study in major
depressive disorder (MDD) did not identify any significant
loci after correction for multiple testing; however, they did
successfully validated a 60% of the top nominally significant
differences [11]. Of these, the largest depression associated
effect size was 22%.
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A consistent feature of these studies is the low effect size
associations detected in the brain. A probable explanation
for these observations is that true disease differences exist
in a subpopulation of cells that are subject to dilution by
disease non-relevant cell types, a factor particularly relevant
in the brain, which represents one of the most cellularly
heterogeneous organs in the body. This situation calls for
algorithms capable of detecting DMRs of small effect size
in order to direct downstream validation and follow up
functional studies, such as cell type specific analyses. In this
regard, the ability of a DMR detection technique to adjust
for covariates such as cellular heterogeneity, medication
status, or age are of particular interest in psychiatric
phenotypes but to date, few available algorithms for DMR
detection allow for these adjustments.

Another factor that remains at issue is that phenotyp-
ically relevant epigenetic changes may occur over rela-
tively small regions. A number of locus specific studies
highlight the importance of short genomic regions in
regulating phenotypic outcome. Epigenetic changes
spanning short genomic regions have been identified in
imprinting control regions, over exonic regions that may
direct alternative splicing, and at transcription factor
binding sites that have been associated with early life
trauma exposure or major psychosis [9,12-14]. The
power to identify short DMRs is an important facet of
DMR finding algorithms used in studies searching for
small epigenetic aberrations conferring phenotypic
variation.

The application of tiling array technology to the study of
DNA methylation has greatly increased the resolution over
earlier microarray based technologies and added to the
potential to discover novel epigenetic changes. Tiling array
experiments are based on measuring the genomic locations
of enriched DNA fragments that hybridize across adjacently
located probes called tiles. The experiments performed
prior to hybridization involve enriching for the molecular
marker of interest, either through antibody based immuno-
precipitation employed in ChIP-chip [15], MeDIP [16,17],
or through enzymatically selecting a portion of the genome,
such as with methylation sensitive restriction enzymes as is
employed in numerous DNA methylome techniques
[18-21]. The enriched fractions are fragmented to improve
target specificity, generally to lengths of 50-200 base pairs.
After microarray hybridization, the combinatorial effects of
fragment binding to specific genomic locations will result
in peaks of signal intensity after data processing that may
be detected by downstream data analysis applications.

A number of excellent programs that contain peak find-
ing algorithms are available for the analysis of tiling array
data, some of which include Ringo [22], ChiPOTle [23],
CHARM [19], TileMap [24], ACME [25], and MPEAK
[26], among others. There is a large degree of variation in
the statistical methods employed, the ease of use, and the
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versatility across multiple experiment types. For example,
many of these algorithms, such as CHARM and Ringo,
were designed for one type of platform, such as NimbleGen
arrays, but can now be applied to other datasets. Others,
such as ChiPOTIe are limited in the number of probes that
can be analyzed (IE: 60,000), which makes it difficult to
apply to larger tiling array datasets. With the exception of
CHARM, these DMR finding algorithms are confined to
the investigation of group classifiers as opposed to quantita-
tive variables such as multiple treatment doses or age and
do not allow for the correction of covariates prior to peak
identification and statistical evaluation.

Cumulatively, the application of tiling array analyses to
DNA methylation in heterogeneous tissues, such as
brain, require the ability to detect DMRs of small effect
size and of short length. A simple analysis paradigm
applicable to multiple microarray platforms and satisfy-
ing these requirements will add to the successful identi-
fication of phenotypically relevant epigenetic variation
across a diverse range of phenotypes. To address these
issues we present an open source, freely available Perl
application referred to as “Binding Intensity Only Tiling
array analysis” or “BioTile”. The BioTile algorithm is
ideally suited to the identification of small length and
low effect size DMRs, while not sacrificing power to
detect longer DMRs, and is applicable across a range
of tiling microarray platforms.

Implementation

BioTile is a single software application written in the
Perl programming language designed for the identifica-
tion of differentially enriched regions (DERs) in tiling
microarray datasets (Additional file 1, Additional file 2,
Additional file 3, Additional file 4). BioTile identifies
DERs associated with either a group classifier, such as
case vs. control, or continuous variables. To achieve this,
BioTile first calculates the slope of a linear model
between dependent and independent variables for each
probe individually. Subsequently, stretches of adjacent
probes exhibiting slope values above zero or below zero
for greater than three probes are identified as potential
DERs and are subsequently subjected to statistical evalu-
ation. If specified by the user, BioTile will return DERs
associated with the outcome of an additive multiple
linear regression model, enabling control of covariates
that may be present in psychiatric studies such as smoking
status, medication history, age at onset, and cellular
heterogeneity, among others. The default threshold of
three probes was selected to maximize the resolution of
the technique and therefore the ability of the algorithm to
identify small DERs. This probe length corresponds to the
average fragment length generated in most experimental
enrichment steps and the probe spacing per array plat-
form (3 probes: Affymetrix ~ 105 bp, CHARM ~ 100 bp,
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Agilent ~ 100 bp); however, this threshold can be defined
by the user. The distributions of DNA methylation across
each probe in an implicated DER are subsequently
evaluated statistically using a permutation corrected
meta-analysis. The linear regression slope and squared
standard error of the slope per probe in an implicated
DER are used to calculate Cochran’s meta-statistic, Q,
according to the following formula:
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where m represents the slope per probe and SEZ, repre-
sents the squared standard error of the slope calculated
first at each i™ probe then each j™ probe in a DER
consisting of n probes [27]. A permutation step is
implemented to control for correlation among neighbo-
ring array tiles such that diagnostic criteria are shuffled at
random for a number of iterations specified by the user
(default 1000) and a null distribution of meta-statistics is
generated. Significance is determined by calculating the
quantile of the original meta-statistic, Q, relative to the
null distribution for each DER. The output of the
algorithm is a list of genomic regions (DER start and
stop coordinates) differentially enriched between
groups, each with its corresponding mean and max-
imum microarray fold difference and p value that can
subsequently be corrected for multiple testing. The
original meta-analysis Q statistic is also supplied to
enable ranking of DERs that were returned with the
same p-value such that a higher Q is indicative of a
higher significance.

The software tool is designed for processing and
DER peak finding in normalized datasets and is
meant for use following standard quality assessment
and data normalization steps. Resultantly, it is
compatible with all single and dual channel micro-
array platforms. Use of the algorithm requires only a
formatted data matrix containing chromosomal
coordinates as well as an annotation file denoting
the comparison of interest and containing relevant
covariates.

Results and discussion

The goal of any DER peak finding algorithm should be
to maximize the probability that identified DERs repre-
sent regions of true biological variation between groups
and are not the result of random technical variation
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within the experimental system. Generally speaking, bio-
logically relevant regions will have a higher percentage of
individually significant probe signals; as such regions are
more likely to result in enrichment of DNA fragments
likely to hybridize to a given area. However, due to the
combinatorial nature of fragments hybridizing to a series
of adjacent tiles, signals will be stronger at some probes
and not others, resulting in a peak in which not all individ-
ual probes are significant. Conversely, technical variation
in genome-scale experiments will generally appear to be
chance occurrences of single probes appearing statistically
significant between groups.

In order to minimize the identification of false positives
and maximize DER peak identification, BioTile employs the
use of a permutation corrected meta-analysis step capable
of detecting peaks comprised of as few as three adjacent
probes. As BioTile identifies DERs by identifying regions
where the pair wise difference between the two groups is
consistently above or below zero for a stretch longer than 3
probes, if false positive signals are located within regions
where background levels are in the same direction, they will
be included in the list of DERs to evaluate statistically. The
implementation of the meta-analytical step as compared to
more traditional statistics is more robust to these situations
and can lead to the identification of DERs comprised of a
higher percentage of individually significant probe values,
non-biased by random probes of high difference. This is
because the degree to which each probe contributes to the
cumulative meta-statistic of a perspective DER will be
inversely weighted by its variance, and the inclusion of
noisy background probe levels will reduce the meta-statistic
and thus significance of spuriously generated DERs.

To model this scenario, we generated a simulation DNA
methylation dataset across a series of randomly permuted
DMRs of variable probe lengths, ranging from 5 to 30,
(~175 bp to ~1 kb based on Affymetrix probe spacing),
with N=5 cases, N=5 controls, and a~ 10+ 0.1% DNA
methylation difference on average between groups. The
percentage of probes significantly different between cases
and controls varied by 20%, 40%, 60%, 80%, and 100% per
DMR (Figure 1a). For each scenario, 100 permutations of
randomly generated DMRs were created to match the
above criteria. We then compared the performance of a
probe-wise permuted meta-analysis to a student’s ¢-test of
the average DNA methylation value across probes in a sim-
ulated DMR. DMRs found significant below p =0.05 by
the meta-analytical technique showed a higher percentage
of individual probe positions demonstrating significance
(Mean Percent Detected BioTile =0.51 + 0.00016, Mean
Percent Detected T-test=0.45+0.00011, p=>54x10°)
(Figure 1b). The frequency of false positive DMRs (those
with less than 1% of probes being different) detected below
the 5% p-value threshold was significantly lower in the
meta-analytical method as compared to the ¢-test method



Guintivano et al. BMIC Bioinformatics 2013, 14:76
http://www.biomedcentral.com/1471-2105/14/76

Page 4 of 9

Range of simulated DMRs

Probes

Percentage of significantly different probes

Figure 1 Meta-analysis vs. t statistic performance. a) Heat maps of randomly generated DMRs among 5 cases and 5 controls where
20,40,60,80, and 100% of probes are significant. The foreground and background panes depict DMRs spanning 5 and 30 probes, respectively.
b.) Density plots of the percentage of significant probes within DMRs detected by BioTile (blue) and the average t-test method (red).
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(Fisher’s Exact OR=0.18, p=2.67 x 10"?). These results
highlight that the meta-analytical approach is more robust
to the influence of statistical outliers and is better suited to
identifying DMRs with a high probability of independent
validation.

Comparison to available peak finding algorithms

Data simulation

To test the BioTile algorithm’s capability of identifying
DMRs located within an actual tiling array dataset, we gen-
erated a simulated Affymetrix tiling array experiment
according to the following strategy. Five female C57BL/6 |
mice underwent ovariectomy at eight weeks of age followed
by sacrifice 28 days later. Hippocampal tissue was isolated
through cryostat sectioning and micro punch followed by
genomic DNA isolation. Hippocampal DNA methylation
profiles were generated using Hpall and HinPI1I methyla-
tion sensitive restriction enzyme based enrichment strategy
according to previously established protocols on Affymetrix
Mouse Promoter 1.0R Tiling arrays [18]. CEL files were
processed using the AffyTiling package in R and returned
quantile normalized M values (Figure 2a). A simulated
dataset of 40 arrays was then generated using the ‘rnorm’
function from the stats package in R to create probe-wise
distributions with the same mean and variance as the
experimentally measured dataset (Figure 2a). This simula-
tion dataset allowed us to evaluate DMR finding algorithms
in the context of the probe-wise variation that would be
detected in an actual experiment. We limited the simula-
tion dataset to 100,000 probes. We subsequently generated
DMRs with effect sizes ranging from 0.1 to 2 fold DNA

methylation difference and inserted them randomly into
the matrix, retaining the positions of the “hidden DMRs”
for follow up analysis. DMRs were generated over variable
probe lengths using the ‘rnorm’ function separately for the
case and control groups. For the case group, the mean of
the distribution per probe was increased by the effect size
such that the middle probe in the specified DMR repre-
sented the maximum value and the mean effect across
probes approximated the simulated effect size. The probe
specific variation was retained throughout this process. In
total, 1,456 hidden DMRs were generated (Additional file 5:
Figure S1). Mouse hippocampal DNA methylation data and
simulated data are available on the Gene Expression Omni-
bus under accession numbers GSE43460 and GSE43462.

Algorithm performance

We tested the performance of BioTile against TileMap
[24] and CHARM [19] to find the randomly inserted
DMRs. Due to various features of other peak finding algo-
rithms mentioned above such as limits on dataset size,
data input type, or the appropriateness of statistical out-
puts to the comparison of interest, only TileMap and
CHARM could be properly applied to this analysis. For
TileMap, we evaluated the performance of hidden Markov
model based data smoothing followed by Unbalanced
Mixture Subtraction (UMS) based statistical evaluation.
Default values were used for genomic smoothing steps
employed by CHARM. A comparison of probe specific
weights derived by genomic smoothing in CHARM and
through meta-analytical weighting in BioTile is depicted
at a representative DMR in Figure 2b. Both CHARM and
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Figure 2 Data simulation and smoothing performance. a.) Heat maps of 100,000 probes derived from DNA methylation profiling of 5 control
hippocampal samples from OVX C57BL/6 J mice and a simulated data matrix where probe mean and probe variance were modeled on the empirical
dataset. An example of a simulated DMR inserted data matrix is depicted. b.) A plot of an example DMR 5 probes long exhibiting an average log, fold
change of 1. Mean group-wise differences are plotted in black (y-axis, top) as a function of the relative probe position (x-axis, top). The smoothed
t-statistics (left y-axis, middle, red) generated by the CHARM algorithm and the relative meta-analysis weights generated by BioTile (right y-axis,
middle, blue), are plotted. A heat map of the location is depicted (bottom). Vertical green lines denote the location of the inserted DMR.
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BioTile were run with 1000 permutations for internal stat-
istical evaluation. As the data matrix represents output
from preprocessed microarray data, only peak finding algo-
rithms available for the above platforms were implemented
without additional data processing or normalization. The
ability of the algorithms to identify the DMRs at various
effect sizes, probe lengths, and sample sizes of 5, 10,15,
and 20 per group was evaluated. A ‘hidden” DMR was
considered found if it overlapped with the genomic coordi-
nates identified as enriched by each algorithm. For all
algorithms, DMRs below an FDR significance threshold of
5% were evaluated.

Area under the receiver operator characteristic curves
(AUC) were generated to evaluate the sensitivity as a func-
tion of specificity of each algorithm. For BioTile and
CHARM, FDR significant DMRs overlapping with hidden
DMRSs represented true positives (TP), non-significant non-
overlapping DMRs were true negatives (TN), significant
non-overlapping DMRs were false positives (FP) and non-
identified hidden DMRs were false negatives (FN). BioTile
generated the highest AUC of 0.92 (95% CI = 0.90-0.93, TP
=844, TN=9,896, FP=36, FN=167) while CHARM
generated an AUC of 0.74 (95% CI: 0.72-0.75, TP = 625,
TN =12, FP=0, FN =692). Because TileMap does not
return a list of non-significant DMRs, we could not evalu-
ate the AUC in the same manner. To overcome this, we
evaluated each of the 100,000 probes in the simulated
dataset for overlap with the significant DMRs per

algorithm. The results for BioTile (AUC=0.95, 95%
CL: 0.93-0.95, TP=16,424, TN =80,460, FP =1,686,
EN =1,430) and CHARM (AUC=0.75, 95% CI:0.73-
0.75. TP=9,015, TN =81,678, FP =468, EN =8,839)
were consistent with the previous analysis, while
TileMap (AUC =0.76, 95% CI: 0.73-0.77, TP = 9,462, TN
=82,139, FP=7, FN=8,392) performed similarly to
CHARM (Additional file 5: Figure S2). The cumulative re-
sults suggest that BioTile out performs TileMap and
CHARM at the identification of hidden DMRs.

BioTile exhibited a higher power to detect DMRs when
evaluating sample sizes of ten cases and controls per group
and above; however, at five cases and controls, BioTile did
exhibit 82% power when using a nominal as opposed to
FDR significance threshold of 5%. At five cases and
controls, TileMap significantly out performed both BioTile
and CHARM; however, the observed power did not
increase significantly with additional sample numbers for
this algorithm (Table 1, Figure 3a). At ten samples per
group and above, BioTile exhibited significantly higher
power to detect DMRs than TileMap and CHARM. For
the subsequent evaluation of DMR length and effect size,
we held the sample size constant at 20 samples per group.

BioTile was the only algorithm to exhibit greater
than 80% power to identify small DMRs (five probes).
At all probe lengths evaluated, BioTile exhibited
significantly higher power relative to the other algo-
rithms (Table 1). All three algorithms demonstrated a
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Table 1 Algorithm power
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Sample size BioTile TileMap CHARM BioTile vs. TileMap BioTile vs. CHARM
5 0.06 0.56 0.09 OR=005p=46x10"% OR=060,p=12x10%
10 083 048 027 OR=545p=51x10"% OR=14.66, p=1.1x10""°
15 0.89 048 044 OR=834,p=17x10"" OR=983,p=59x10"*
20 0.93 0.67 049 OR=517,p=77%10" OR=11.70,p=42x10"*
DMR length (# probes)
5 082 0.25 0.15 OR=11.39, p=89x10%° OR=20.14, p=72%x10"
10 091 0.60 024 OR=364,p=11x10" OR=19.92, p=26x10"
15 093 0.72 039 OR=486,p=10x10" OR=1782, p=26x10
20 097 0.78 062 OR=925p=24%10% OR=2221,p=24x10%
25 0.95 083 0.69 OR=365p=12x10" OR=712,p=35%10"
30 0.99 084 0.77 OR=1865 p=22x10"8 OR=29.94,p=29%x10"
Log, fold change
0.1 0.74 036 035 OR=493,p=77x10" OR=5.18p=70x10%
05 0.90 058 036 OR=726,p=11x10" OR=1817,p=18x10"
075 0.97 057 037 OR=2017,p=11x10"° OR=4103,p=24x10"®
1 097 083 0.50 OR=790,p=50x10 OR=4353,p=35%x10"
15 1.00 085 063 OR=5596,p=29x10"" OR=19439, p=19x 10"
2 1.00 0.88 075 OR=Inf, p=14x10% OR=Inf, p=4.0x 10"

A table depicting the power of each algorithm to identify ‘hidden’ DMRs inserted into the simulated data matrix. Fisher’s odds ratios over 1 denote a higher
proportion of DMRs identified by BioTile relative to TileMap and CHARM, respectively.

consistent increase in power with increasing DMR
length (Figure 3b).

Small effect size DMRs may be expected in heteroge-
neous tissues such as brain and blood, where the epige-
netic contribution of phenotype irrelevant cell types may
dilute the observable effect size. At the lowest fold
change of 0.1, BioTile identified 74% of DMRs, signifi-
cantly more than that identified by the other algorithms
(CHARM = 35%, Fisher’s Exact OR=5.2, p=7x 107,
TileMap = 36%, Fisher’s Exact OR=4.9, p =7.7 x10"%)
(Table 1, Figure 3c).

Importantly, these power calculations reflect the total
proportion of hidden DMRs detected; however, the power
of each algorithm to identify a range of DMRSs is a function
of both DMR length and effect size (Figure 4). The higher
power of BioTile to identify DMRs across a range of
smaller effect sizes and DMR lengths suggests it represents
an ideal tool to employ prior to performing pathway
analyses, as all implicated DMRs are likely to represent the
true epigenomic landscape of changes in response to an
independent variable of interest as opposed to representing
only the largest and longest of changes.
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Figure 3 Algorithm performance. Plots of the proportion of hidden DMRs identified (power) by BioTile (blue triangles), TileMap (purple
squares), and CHARM (red circles) as a function of sample size (a), DMR length (b), and log, fold change (c).
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Comparison of algorithms in biological datasets

We evaluated the performance of BioTile, TileMap, and
CHARM at identifying genomic regions exhibiting
differential epigenetic changes in response to early life
environment in three datasets. The first two datasets
derive from a study by McGowan et al., and use custom
Agilent tiling microarrays to measure both chromatin
immunoprecipitation enriched histone3 lysine9 tri-
methylation (H3K9me3) marks and Methylated DNA
Immunoprecipitation (MeDIP) enriched DNA methy-
lation from rats born to high or low licking and
grooming mothers [28]. The third dataset was generated
by Suderman et al, using custom human Agilent
microarrays to investigate MeDIP enriched DNA methy-
lation associations to early life trauma [29]. We selected
these studies as they are performed both on tiling
microarrays and in the hippocampus, a brain region

Table 2 Algorithm performance in biological datasets

heavily implicated in psychiatric phenotype and consistent
with that from which the simulated dataset was modeled.
Seven regions were validated in the H3K9me3 study while
both MeDIP datasets validated eleven DNA methylation
regions. The performance of each algorithm to find these
‘true differences’ and classify them as significant is
depicted in Table 2 and appears relatively consistent with
the projected power as a function of the sample size for
each dataset (Figure 3a). These findings corroborate the
simulated results above and demonstrate that BioTile has
the highest power to detect true DERs.

Conclusion

The BioTile Perl application represents a simple and
effective means to identify DERs in genome-scale data.
BioTile out performs a number of comparable algo-
rithms designed for the analysis of ChIP-chip data and is

Dataset Interrogated mark # group 1 # group 2 BioTile TileMap CHARM
# DERs returned
1 H3K9me3 12 9 5315 62 83
2 DNA methylation 6 9 5,767 27 105
3 DNA methylation 10 9 5,558 821 100
Proportion of validated DERs found
1 H3K9me3 12 9 100% 28% 0%
2 DNA methylation 6 9 100% 9% 0%
3 DNA methylation 10 9 100% 9% 0%
Proportion of validated DERs significant
1 H3K9me3 12 9 71% 28% 0%
2 DNA methylation 6 9 45% 9% 0%
3 DNA methylation 10 9 55% 9% 0%

A table depicting algorithm performance when applied to datasets derived from the McGowan et al.,, and Suderman et al,, studies investigating the effects of

early life environmental influence on epigenetic marks in the hippocampus.
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not confined to the analysis of a single tiling array
platform. Future iterations of the algorithm may focus
on the analysis of next-generation sequencing data.

Running the BioTile Perl script is simple and requires
only a properly formatted data matrix file and an anno-
tation file containing the comparison and any covariates
of interest. The simplicity of BioTile is designed to in-
crease the utility of this bioinformatics resource to the
general scientific community.

Availability and requirements

Project name: BioTile

Project home page: http://psychiatry.igm.jhmi.edu/
kaminsky/software.htm

Operating systems: Platform independent
Programming language: Perl

License: None

Additional files

Additional file 1: A perl script containing the BioTile algorithm.

Additional file 2: An example dataset containing the first 5000 data
points from 5 randomly selected case and control mice from the
simulated data matrix.

Additional file 3: An example annotation file required to run
BioTile on the example dataset available in Additional File 2.

Additional file 4: A readme file outlining basic instructions for
running BioTile. A more detailed web based vignette is available on
the project homepage.

Additional file 5: Figure S1. Simulated data distributions. The
distributions of mean DNA methylation log2 fold change of 20 case vs.
20 control microarrays are depicted for the distribution devoid of
inserted DMRS (Null distribution) and for the hidden DMRs. Figure S2.
Receiver operator characteristic curves. Receiver operator characteristic
curves are plotted depicting the sensitivity (y-axis) as a function of the
specificity (x-axis) to identify hidden DMRs for BioTile (a), TileMap (b), and
CHARM ().
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