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Abstract

Background: Public databases such as the NCBI Gene Expression Omnibus contain extensive and exponentially
increasing amounts of high-throughput data that can be applied to molecular phenotype characterization.
Collectively, these data can be analyzed for such purposes as disease diagnosis or phenotype classification. One
family of algorithms that has proven useful for disease classification is based on relative expression analysis and
includes the Top-Scoring Pair (TSP), k-Top-Scoring Pairs (k-TSP), Top-Scoring Triplet (TST) and Differential Rank
Conservation (DIRAC) algorithms. These relative expression analysis algorithms hold significant advantages for
identifying interpretable molecular signatures for disease classification, and have been implemented previously on a
variety of computational platforms with varying degrees of usability. To increase the user-base and maximize the
utility of these methods, we developed the program AUREA (Adaptive Unified Relative Expression Analyzer)—a
cross-platform tool that has a consistent application programming interface (API), an easy-to-use graphical user
interface (GUI), fast running times and automated parameter discovery.

Results: Herein, we describe AUREA, an efficient, cohesive, and user-friendly open-source software system that
comprises a suite of methods for relative expression analysis. AUREA incorporates existing methods, while
extending their capabilities and bringing uniformity to their interfaces. We demonstrate that combining these
algorithms and adaptively tuning parameters on the training sets makes these algorithms more consistent in their
performance and demonstrate the effectiveness of our adaptive parameter tuner by comparing accuracy across
diverse datasets.

Conclusions: We have integrated several relative expression analysis algorithms and provided a unified interface for
their implementation while making data acquisition, parameter fixing, data merging, and results analysis ‘point-and
-click’ simple. The unified interface and the adaptive parameter tuning of AUREA provide an effective framework in
which to investigate the massive amounts of publically available data by both ‘in silico’ and ‘bench’ scientists.
AUREA can be found at http://price.systemsbiology.net/AUREA/.
Background
Relative expression analysis examines the relative ranked
abundance of genes, as opposed to absolute gene expres-
sion values. The basic unit of comparison is the relative
expression reversal, where the expression value between
two biomolecules (e.g., genes) reverses between pheno-
types. These rank comparisons can then be generalize to
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larger numbers of biomolecules [1]. Changes in the rela-
tive ranks of expression have been shown in several
studies to accurately classify disease phenotypes, cancer
subclasses, and disease outcomes based on tumor-derived
RNA expression profiling [2-6]. Relative expression ana-
lysis also has tremendous potential for identification of
potential diagnostic and prognostic markers, and can
function as a hypothesis generator for investigating the
underlying biological processes of interest.
Currently, subsets of relative expression analyses are

available as Matlab functions [7,8], Perl scripts [6], and R
scripts [3,9]. The limited availability of these algorithms
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on specific platforms restricts their usage to researchers
well versed in the languages in which they were developed
or familiar with the environments in which they are
implemented. AUREA is the first application that provides
these algorithms (TSP, k-TSP, TST, and DIRAC) in a uni-
fied framework and with a simple-to-use graphical user
interface (GUI). AUREA is open source and available for
all major operating systems. Furthermore, the GUI enables
intuitive control over the parsing of input data, which can
sometimes be a bottleneck given the lack of standard for-
mats across gene expression studies. Finally, while the
methods combined in AUREA are designed to operate
with relatively few tunable parameters, the choice of set-
tings—and even algorithm—to obtain the best classifica-
tion signature presents an extensive search space for both
lay and advanced users. We have addressed this problem
by including a optimization-based approach to adaptively
determine algorithm settings. We hope the accessibility of
AUREA, combined with efficient data processing features
and adaptive parameter tuning, will allow a broader range
of scientists to incorporate relative expression methods
into their analytical toolbox.

Implementation
AUREA: an overview
AUREA incorporates the relative expression analysis al-
gorithms TSP, k-TSP, TST and DIRAC. The Top-Scoring
Pair (TSP) [10] algorithm identifies the pair of genes
with the maximum likelihood of being ordered consist-
ently within each class, but differently between classes.
The k-TSP [6] algorithm, by extension, uses internal
cross-validation (or similar) to identify the set of ‘k’ or
less TSPs (where each gene is permitted to appear in
only one TSP) that exhibits the greatest collective accur-
acy for separating classes when combined by majority
vote. The Top-Scoring Triplet (TST) [3] algorithm iden-
tifies the triplet of genes with the maximum likelihood
of being ordered consistently within each class, but dif-
ferently between given classes. The Differential Rank
Conservation (DIRAC) [7] algorithm identifies a gene
set (e.g., signalling or metabolic pathway) with maximum
likelihood of showing consistent relative expression (i.e.,
ranking of all network genes, from highest to lowest ex-
pression) within a class, while displaying different rela-
tive expression between given classes.
Unification of methods was achieved through develop-

ing a consistent programming interface across all algo-
rithms. This unified interface allowed us to create a
single data acquisition/presentation layer that is exten-
sible and easy to use. AUREA can process SOFT [11]
and comma-separated values (CSV)-formatted data files,
which are handled by parser sub-modules in the AUREA
system library. Extending AUREA to new user-specified
data file formats requires development of a parser for
the new data format and presentation of the results of
the parser to the packager module, which then presents
a consistent data layer to the rest of the system. The
merging of multiple data files is also handled in the
packager module, via a Python implementation of Babel
[12], which maps between different microarray plat-
forms. Within the GUI, users are not required to know
anything about these processes because data acquisition,
parsing and merging are handled automatically.
Adaptive parameter tuning with the relative expression

analysis algorithms was also enabled by the consistent
programming interface. This tuning initiates a broad
search of algorithm parameter space, which is guided by
accuracy, running time and the relative number of itera-
tions an algorithm has previously performed. Using
these variables as heuristics allows a simple and effective
automated method of finding the parameters and algo-
rithm that best characterize the phenotype of interest.
Using AUREA: an example workflow
Prototypical usage of AUREA begins with a selected
dataset of interest (containing multiple related samples
of microarray expression data) from the GEO database
[13]. Upon opening the AUREA GUI, the Data Sum-
mary screen is displayed (Figure 1A), with button links
to each task or module on the left side. While AUREA
allows for some tasks to be performed in a nonlinear
manner, the links are ordered according to the most lo-
gical flow in a typical scenario. The first task in this ex-
ample is acquiring the data set; data are imported via
the Import Data screen (Figure 1B), which is accessible
by clicking Import Data. At the Import Data screen,
data can be added for analysis by either browsing the
local hard drive or by entering the GEO accession in the
Download dialog box. Entry of the GEO accession num-
ber initiates automatic retrieval of the data from GEO,
which are added to the workspace. If the user intends to
run either the DIRAC or Adaptive algorithm, specifica-
tion of a Gene Network File to map genes onto networks
is also required on this screen (c2.biocarta.v2.5.symbols.
gmt [14] is provided by default); such files typically com-
prise dozens to hundreds of gene lists representing bio-
logical pathways (e.g., signaling, metabolic) or other
relevant groupings. This specification can also be done
at a later time. Once all data files are specified, the task
is executed by clicking the Import Files button.
After expression data have been imported, profiles in

the dataset must be partitioned into two groups (i.e.,
Class 1 and Class 2) prior to classifier training. These
groups represent the two classes that the learning algo-
rithms are attempting to discriminate. The Class Defin-
ition screen (Figure 1C) provides descriptive information
and convenient functionality for completing this step.



Figure 1 The AUREA GUI.
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Single or multiple samples can be selected and moved to
Class 1 or Class 2; samples not moved to one of the two
groups will not be considered in the analysis. SOFT files
from GEO have the additional benefit of grouping sam-
ples into various cohorts based on the meta-data pro-
vided. This information for individual samples can be
easily viewed at the bottom of the screen, and each pro-
file can then be moved to Class 1 or Class 2 by clicking
the left or right arrow, respectively. Alternatively,
selecting and moving any of the individual cohort tags
automatically moves all samples within the cohort to the
corresponding class, allowing for batch partitioning of
the data—i.e., all samples with the ‘cancer’ subset tag can
be moved to Class 1 or Class 2 with one click).
The final step is training classifiers on the defined clas-

ses. Each individual relative expression algorithm (TSP,
k-TSP, TST, and DIRAC) can be run from the Train
Classifiers screen (Figure 1D) to identify the associated
signature (gene pairs, gene triples, or gene networks)
that best distinguishes between the defined classes. By
selecting Adaptive Training, AUREA runs through a
combination of settings and algorithms, learning which
appears to be most useful for the dataset (based on
k-fold cross-validation accuracy). When the training
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times out (at a user-specified time limit) or an algorithm
reaches perfect accuracy on cross-validation, AUREA
returns the results of the training, reporting the accuracy
and the molecular phenotype characteristics that were
most discriminative from the defined classes.
At any point during the analysis, returning to the

Home screen will give a summary report on the current
state of the analysis. The user can also perform k-fold
cross-validation on the dataset for each of the learning
algorithms (including the Adaptive trainer) or select a
subset of the data for classification (Figure 1E).

AUREA libraries: system design
The GUI was designed to utilize the information provided
by relative expression analysis. The unification of the
learning algorithms was achieved through object-oriented
design. Encapsulation of the learning algorithms into self-
contained modules with compatible interfaces was done
throughout the design of the rest of the system. While
AUREA is a desktop application designed for use by
people with little programming expertise, AUREA is also a
software library that maintains the same functionality for
the Python interpreter as is available through the GUI.
This means that scripts can be written in Python to per-
form any of the included algorithms.
Python was chosen for this project because it is a

cross-platform language that is fully object-oriented,
uses a simple syntax and has a large developer commu-
nity. AUREA was designed to impose a minimal number
of dependencies on the user. The only external module
required is the Tk/Tcl windowing module, allowing
cross-platform GUIs. Scripts can be run from any stand-
ard Python installation, version 2.6 or higher.
The AUREA libraries are broken up into a set of mod-

ules: the GUI, packager, learner, adaptive and parser mod-
ules. The GUI module handles the graphical interface to
the AUREA libraries. The learner module contains the
relative expression algorithms. The adaptive module pro-
vides the adaptive learning features in AUREA. The parser
and packager modules are of particular interest to those
who wish to extend AUREA to their problem domains;
the packager module contains objects that take parser ob-
jects, transform those objects into data tables, and then
merge those data tables to create inputs for the learning
algorithms. As such, extending the functionality of
AUREA to an unsupported data format only requires a
new parser to provide a mapping of the parse to the pack-
ager module.
Another extensible aspect of the AUREA libraries is the

learner module, which allows for the addition of a new
learning algorithm using the interface of the existing rela-
tive expression analysis algorithms. By implementing
train, classify and crossValidate methods for the new
learning algorithm, AUREA can utilize the new method as
if it were one of the stock algorithms, greatly decreasing
development time by removing the need to develop an en-
tirely new framework. It is not necessary to develop a new
learning algorithm in C or another lower level language,
as was done with the current relative expression analysis
algorithms, but it is recommended, since Python, as an
interpreted language, is much slower than a compiled lan-
guage like C/C++. In accordance with this point, AUREA
uses Python where performance is I/O bounded, i.e., in
the parsers and graphical interfaces, and as a wrapper
around the optimized C/C++ code on the computationally
intensive relative expression algorithms.
The API documentation is available [15], and all code is

provided under the GPL v. 3 Affero license. Developers
can use the source code to create their own adaptations of
AUREA, although we encourage them to contribute their
changes back to the main project to simplify ease of use in
the community.

Results and discussion
Using AUREA, we analyzed datasets representing diverse
disease phenotypes, clinical outcomes and tissue types.
These analyses were carried out to demonstrate the per-
formance of the adaptive parameter tuning module;
however, they also demonstrate the flexibility of the
methods AUREA employs, and show that AUREA can
be utilized by researchers as a hypothesis generator in
crafting directed inquiries into the molecular character-
istics of the phenotypes being studied.

Adaptive parameter tuning
Each algorithm used in relative expression analysis relies
on parameters—albeit relatively few compared to those
needed for most classification algorithms—that affect ac-
curacy and running time. Finding the best set of parame-
ters for a given dataset can be a time-consuming task.
For example, TSP, TST and k-TSP can all operate on a
subset of genes for analysis based on the differential ex-
pression of the presented gene set (the Wilcoxon
signed-rank test is used to choose the most differentially
expressed genes between the defined classes). Aside
from the dramatic effect that this feature selection step
can have on the computational complexity of the algo-
rithms (TST is computationally infeasible over a
complete transcriptome on standard hardware, though
reachable on GPUs [8]), very few conditions result in a
complete change in genomic expression; examining too
large a set of genes can therefore result in over-fitting,
and lead to spurious results. The performance of DI-
RAC, on the other hand, is sensitive to the minimum
size of the networks examined and the number of net-
works used for classification. The adaptive parameter-
tuning tool automates the process of finding both the
relative expression algorithm and associated settings—



Earls et al. BMC Bioinformatics 2013, 14:78 Page 5 of 7
http://www.biomedcentral.com/1471-2105/14/78
the Algorithm-Parameter Configurations (APCs)—that
most accurately characterize the selected dataset.
The adaptive module computes the estimated running

time for each algorithm based on a user-defined range of
parameter values; it generates a score for each possible
configuration using the estimated running time and the
previous accuracy of the algorithm on the data set. In
short, an algorithm’s likelihood of running is inversely
proportional to the estimated running time, inversely
proportional to the number of times it has run, and pro-
portional to how well it scored the previous times it ran.
The score is defined as follows:

δ xð Þ ¼ t xð Þ
Q

y∈Xα yð Þ ð1Þ

where t(x) is the estimated running time of the algo-
rithm, X is the set of all the previously run learning algo-
rithms of the same type as x and α(y) is the linear
mapping of the Matthews Correlation Coefficient
(MCC)—our selected metric for classification accuracy,
which ranges from −1 (total disagreement between pre-
diction and observation) and 1 (perfect agreement)—of y
(prior iterations of the algorithm) to (0,1). The adaptive
module then runs the APC with the smallest δ. This
process can be run exhaustively, but generally is
Figure 2 A comparison of the cross-validation accuracies. The relative
validation, with the error bars showing the standard deviation between the in
prostate adjacent to tumor v. primary prostate tumor, (B) GDS2545 primary pr
GDS1210 normal v. cancer, (E) GDS1269 non-smoker control v. smoker, (F) GD
restricted to run until some time limit is reached, or a
sufficient accuracy in the training set is achieved.
Our tests show the variability of accuracy between dif-

ferent phenotype studies and demonstrate that while the
adaptive module does not always achieve the highest ac-
curacy, it does generally have an accuracy level compar-
able to the best possible, making it a good default choice
for exploring a dataset (see Figure 2).
Targeted users
AUREA is targeted to a diverse community of biological
researchers and can be leveraged to improve analysis,
streamline development cycles and guide human intu-
ition. AUREA simplifies the process of data analysis and
new tool development, whether the goal involves investi-
gation of new phenotypes or applying a new algorithm.
A biologist looking to quickly view a new dataset or a
computer scientist wanting to test a new classification
scheme can quickly and easily leverage AUREA.
AUREA (through the GUI) is designed to remove the

technical barriers to using relative expression analysis by
simplifying and streamlining the discovery process.
Without the need of stringing together multiple com-
mand line tools across languages and platforms, each
with its own learning curve, biologists can instead focus
expression analyzers were averaged over 10 runs of 10-fold cross-
dividual runs. All datasets are from GEO [13]. (A) GDS2545 normal
ostate tumor v. normal prostate, (C) GDS1209 normal v. sarcoma, (D)
S1330 normal v. Crohn’s disease, (G) GDS1330 normal v. ulcerative colitis.
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on the biological, as opposed to technical, problems
underlying molecular phenotype characterization.
The modular design of the AUREA software libraries

presents many opportunities for computational biolo-
gists to integrate or extend the capabilities of relative ex-
pression algorithms. We have successfully used AUREA
on clusters and desktops, integrating it with databases
and, in a dozen short lines of code, performing more
complex molecular phenotype characterization on a di-
verse range of projects.
For computer scientists, AUREA presents a platform

on which to create and run their own classification algo-
rithms, without the need to develop supporting software
for data acquisition and user interaction.

Comparison with existing implementations
Current implementations of relative expression analysis
methods include the tspair [9] package, which is in-
cluded in the Bioconductor suite of R software; RXA [3],
also in R, which includes TSP and TST; Tan et al.’s
k-TSP[6] PERL package and the original DIRAC [7]
implementation, available as a MATLAB script (Table 1).
None of these implementations provide integrated data
parsing or pre-processing capabilities, although it should
be noted that each environment does have a rich set of
tools for doing so. Furthermore, none of these programs
provide a graphical interface, which restricts their use to
analysts familiar with the programming environment.
AUREA is the only implementation to automatically
examine the parameter space and assist the analyst in
determining the best settings for their data set; it is also
the only tool that includes all four of these methods in
one package. It should be noted that each of these
implementations has unique advantages and features
such as the tspair package’s significance testing routine.

Conclusions
AUREA is an easy-to-use, open-source, cross-platform
system that unites several relative expression analysis al-
gorithms in a framework that enables application by a
broad range of users. Through minimal system require-
ments and simplicity of interface and configuration,
these tools can be applied far more casually and broadly
Table 1 Comparison of relative expression analysis software
Implementation Lang Interface TSP TST k-TSP DIRAC Data

parsing

tspair [8] R R console X

RXA [2] R R console X X

k-TSP [5] PERL Command
Line

X

DIRAC [6] MATLAB MATLAB
console

X

AUREA Python GUI X X X X X
than previously possible. As computational tools become
more powerful and easier to understand through re-
duced technological overhead, they will become more
accessible to non-computational scientists, who can use
them to fully harness actionable biological meaning and
understanding.

Source code
All of the source code and documentation is available on
the Price Lab Website (http://price.systemsbiology.net/
AUREA/).

Availability and requirements

� Project Name: AUREA (Adaptive Unified Relative
Expression Analyzer)

� Project home page: http://price.systemsbiology.
net/AUREA/

� Operating System(s): Windows, OS X, Linux
� Programming Language(s): Python, C/C++, SWiG

1.3.36
� Other Requirements: Python 2.6.x or 2.7.x, Tkinter

package (standard in most python packages)
� License: GNU Affero General Public License v.3
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