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Abstract

bivariate segmentation.

Background: SNP arrays output two signals that reflect the total genomic copy number (LRR) and the allelic ratio
(BAF), which in combination allow the characterisation of allele-specific copy numbers (ASCNs). While methods
based on hidden Markov models (HMMs) have been extended from array comparative genomic hybridisation
(aCGH) to jointly handle the two signals, only one method based on change-point detection, ASCAT, performs

Results: In the present work, we introduce a generic framework for bivariate segmentation of SNP array data for
ASCN analysis. For the matter, we discuss the characteristics of the typically applied BAF transformation and how
they affect segmentation, introduce concepts of multivariate time series analysis that are of concern in this field

transcriptome mapping and aCGH.

normal cells.

and discuss the appropriate formulation of the problem. The framework is implemented in a method named
CnaStruct, the bivariate form of the structural change model (SCM), which has been successfully applied to

Conclusions: On a comprehensive synthetic dataset, we show that CnaStruct outperforms the segmentation of
existing ASCN analysis methods. Furthermore, CnaStruct can be integrated into the workflows of several ASCN
analysis tools in order to improve their performance, specially on tumour samples highly contaminated by

Background

Two chief genetic instabilities associated to tumoural
cells are genomic copy number alterations (CNAs) and
somatic loss of heterozygosity (LOH) events, which rep-
resent a deviation from the normal allele-specific copy
numbers (ASCN). Both imbalances have been reported
to affect the expression of oncogenes and tumour-
suppressor genes [1], and therefore, the accurate charac-
terisation of ASCNs in tumoural samples is critical in
order to identify candidate cancer-related genes, to dis-
criminate cancer types [2] and to understand tumour
initiation and complexity [3].

Single nucleotide polymorphism (SNP) arrays of
[lumina [4] and Affymetrix [5] platforms allow screen-
ing for ASCNs at high resolution and throughout the
whole genome by providing measures for the log R ratio
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(LRR), which reflects the total intensity signals for both
alleles, and the B allele frequency (BAF), which is the
relative proportion of one of the alleles with respect to
the total intensity signal. Both LRR and BAF signals are
required for a complete characterisation of ASCNs since
they provide complementary information. Yet, although
each combination of copy number and allelic ratio has
an expected LRR value and a specific BAF pattern, these
signals can be blurred due to experimental probe-
specific noise and by autocorrelated [6] and dye [7]
biases, respectively.

In the study of ASCNs over tumour samples with SNP
arrays, three additional issues need to be considered.
First, there is a LRR baseline shift that depends on the
ploidy of the sample. Second, tumour biopsies can be
contaminated with normal cells, whose genotypes are
mainly diploid, which make the LRR and BAF signals to
shrink and converge towards those of a diploid state
proportionally to the degree of contamination [8]. Third,
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tumours can be composed of several subclones, this is,
subpopulations of cells that harbour specific alterations
along with the shared ones, which makes LRR and BAF
signals even more complex [9]. The second and third
tumour-specific issues, together with the experimental
noise and biases, affect the ability to correctly delimit
regions with different ASCNs. Therefore, inferring
change-point locations from tumour samples requires
mathematical models whose performance is affected as
little as possible by these issues.

Two approaches are used for the detection of ASCNs in
tumour samples on SNP arrays, both of which inherit
from methodologies applied to aCGH. The most recurrent
approach is based on a combination of a hidden Markov
model (HMM) and an expectation-maximisation (EM)
algorithm. OncoSNP [10] and GPHMM [11] are two re-
cent HMM-based tools validated on Illumina data which,
in contrast to previous methods [12-14], are capable of es-
timating both normal cell contamination and LRR base-
line shift. Most existing HMM-based methods, including
the two aforementioned ones, integrate the LRR and BAF
signals into the same model, which confers them more
change-point detection power. Yet, the pre-established
levels of HMMs are not prepared to characterise the ob-
served continuous mean levels that arise due to the pres-
ence of multiple subclones [9,15]. Additionally, HMMs
require parameterisation on region probability and length,
which vary among samples and are not known a priori.
Arguably due to the aforementioned issues, in a recent
method comparison [16] HMM-based methods were
outperformed by a change-point detection method. For
this reason, we propose tackling the problem of ASCN
analysis from a change-point-based stand.

Methods based on change-point detection algorithms
are typically comprised by segmentation followed by a
calling step [17,18]. This approach does not assume pre-
established signal levels and does not require parameter-
isation of a priori knowledge. Two change-point-based
approaches for unpaired tumour samples that use both
LRR and BAF signals have been developed: GAP and
ASCAT. PSCBS [19] also falls into this category, but it
only works on coupled tumour samples and does not
automatically estimate normal cell contamination. In the
segmentation step, GAP segments the LRR and BAF sig-
nals independently and merges the change-points with
those that come from the detection of LOH germline re-
gions in BAF. On the contrary, ASCAT performs a sin-
gle bivariate segmentation instead of two univariate
segmentations, because the integration of the signals
into the same formulation can increase the power to
detect dimmer joint changes and reduce false positives.
However, the extension from the univariate to the bivari-
ate case is not trivial and depends on the characteristics
of the considered segmentation approach, which may fall
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into one of two broad categories: boundary-based and
region-based (see [20] for an analogue distinction in
image segmentation).

In the boundary-based differential approach, change-
points are seen as inflection points, this is, places where the
first derivative has local extrema. Only local information
around each point is used to compute the derivative, often
resulting in spurious and merged change-points. Multi-
resolution analysis can be performed by computing the
derivative at various window sizes, but region-based
approaches are the most adequate to obtain more infor-
mation for segmentation decisions, although they
sacrifice change-point location accuracy. Region-based
approaches can be broken down into segment-growing,
split-and-merge and global optimisation. Region-growing
starts with a number of random single-point regions.
Neighbouring points are added to a region if they are
similar enough, according to a certain homogeneity criter-
ion; otherwise, a new segment is started. A representative
example of split-and-merge is the binary segmentation,
which selects as a change-point the position that divides
the data into two segments with the most different means.
The process is recursively applied to each segment until it
cannot be divided into two subsegments with a mean dif-
ference that is significant enough. Then, similar regions
are merged back together following some pruning criter-
ion. Circular binary segmentation (CBS) [21] is a modifi-
cation that allows at each step for the detection of one
change-point or two, where the subsegment in the middle
has a different mean than the other two subsegments.
Global optimisation methods try to optimise an objective
function, called cost function in minimisation and utility
function in maximisation. Some methods, such as the
structural change model (SCM) [15,22], return the actual
optimum. Others, namely heuristics, perform a non-
exhaustive scan over the combinatorial space of change-
points and can thus be trapped into local extrema.

Current change-point detection methods [17-19] are
based on region-based segmentation algorithms, which
are more adequate for ASCN analysis because finding
change-points is more important than establishing their
accurate location. More precisely, GAP is based on CBS
and ASCAT on bivariate global optimisation. PSCBS,
aimed at paired tumour samples, and BAFsegmentation
[8] and TAPS [23], which only segment either BAF or
LRR, are also based on CBS.

The application of the univariate segmentation methods
to the bivariate data from SNP array requires: (i) knowing
how the transformation typically applied to the BAF signal
influences the applicability of certain segmentation
methods and their extension to the bivariate case, and (ii)
a mathematical model that generalises the extension from
the univariate to the bivariate case. We provide such
formalisations, illustrate that the approach taken by
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ASCAT is a specific case of the bivariate generalisation
and discuss why there are more suitable formulations of
the bivariate segmentation for ASCN analysis. Then, we
show how the bivariate framework is applied to the SCM
model in order to achieve CnaStruct, a method that out-
performs the segmentation of existing approaches.

Methods

BAF transformation and characterisation

Methods for the detection of changes in mean on uni-
variate data can be extended to the bivariate case in
order to be applied jointly to LRR and BAF, called “vari-
ables” from here on. However, a transformation of the
BAF variable, which leaves a mostly single-banded signal
along the genomic axis, is preferred for posterior seg-
mentation. For the matter, BAF is first mirrored along
the 0.5 axis in order to obtain mirrored BAF (mBAF).
Then, non-informative SNPs, defined as those in homo-
zygous bands of heterozygous regions, are removed,
leaving a transformation that has already been described
[8,17] but not named, so we call it informative mirrored
BAF (imBAF) (Figure 1).

The resulting imBAF is not homoscedastic for two
reasons: (i) the homozygous band resembles a mixture
of a point mass function and a truncated normal distri-
bution with lower variance than its heterozygous coun-
terparts; (ii) the distribution of the heterozygous band,
when near the 0.5 axis, is truncated due to the mirroring
and thus has lower variance. Nevertheless, homoscedas-
ticity violations seem to be sufficiently small so as to not
impact segmentation performance of the approaches we
assessed (CBS and SCM).

Non-polymorphic probes yield missing values on the
BAF variable. Additionally, the transformation of BAF into
imBAF generates more missing values, all of which can be
easily removed for the application of univariate segmenta-
tion approaches. However, the removal of missing values
on bivariate approaches typically implies the exclusion of
the corresponding LRR observations and, thus, loss of in-
formation. Therefore, missing values should be either
handled by the segmentation method or imputed, which
can be easily done through interpolation. In general, we
observed that constant interpolation is more adequate for
change-point detection than linear interpolation, because
this latter inserts values that lie between imBAF bands,
distorting the profile.

Bivariate segmentation

The methodology of univariate change in mean segmen-
tation can be generically formalised in the following way.
Consider the energy value § of a generic event that arises
in a segmentation process, subject to fitness assessment
through a decision function 7, given a parameterisation
0 (Equation 1). In region-growing, § can be the
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difference between a segment’s measure of centrality and
the value of a neighbour observation. The Boolean func-
tion 7 decides whether § is small enough to incorporate
the new point to the growing segment given, for in-
stance, a threshold that depends on the length and vari-
ance of the segment. In binary segmentation, § can be
the student’s t (or its corresponding p-value) that arises
from testing the difference between the left and right
subsegments, whereas 7 is a simple thresholding func-
tion. Other typical &’s are residual sums of squares
(RSSs) and values of peaks in a derivative signal.

7:R-B

(1)
7(6]0)

The generalisation can be extended to the multivariate
case, where the objective of segmentation ramifies into
finding recurrent changes in mean or changes present on
a subset of variables. Approaches that detect points where
the variables change together are based on the change in
the covariance structure. However, we also seek to detect
points where the variables LRR and imBAF change in the
opposite direction and where just one of them suffers a
relevant mean change. The reason is that the copy num-
ber may remain constant along two segments with differ-
ent allelic ratio, and vice versa. This takes us to the
adequate model for our problem: a bivariate change in
mean. Here, the bivariate decision function 7 arises from
jointly applying the function over the d's of the two corre-
sponding variables, balanced with a normalisation con-
stant /3. This is essentially an averaging process, where the
variable that is expected to provide more information is
given more weight. Exponentiation before the averaging
promotes the importance of changes present in just one of
the variables. The resulting overall § is a metric in the
Euclidean space R? called Minkowski distance, whose par-
ameter p, a real positive number, determines its order and
models the interaction between the variables V1 and V2,
which correspond to LRR and imBAF in our case
(Equation 2, Figure 2A). Letting p=1 (e.g. the approach
taken by ASCAT) means that events in just one of the var-
iables, represented by the corresponding variable §, need
to be more extreme than joint events in order to be con-
sidered relevant by 7. By contrast, Minkowski distances of
order p>1 promote, through the exponentiation, the
importance of § values in which there is greater disequilib-
rium between their variable J's, so changes in a single
variable are easier to detect. The extreme case p =0 is
equivalent to making the decision based on the maximum
weighted variable § (Equation 3). An adequate order p is
defined then as the one that keeps a balance in the filter-
ing of joint and single events. In general, orders greater
than 1 are appropriate for maximisation problems and
lower than 1 for minimisation problems.
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Figure 1 Transformation from BAF to mBAF and then, into imBAF. A sample toy BAF signal is transformed to mBAF and then into imBAF. X-
axis: probe index. Y-axis: B allele frequency (first) and B allele frequency mirrored along the 0.5 axis (second and third). Grey points represent
homozygous SNPs within heterozygous regions.

6= (30, +80) "

r<(a°;1 +B4855) " |9) = 1(max(8y1,B*5v,)|6)
(3)

CnaStruct
The model
The SCM segmentation [15,22] is a region-based, global
optimisation approach that models the data as a piece-
wise constant function:

zZk = Y, + e for te<k <t (4)
where k=1...n indexes the observations of the variable
z, 4. ..tg;1 parameterise the borders of the S segments,

s is the mean value of the s -th segment and ? ; are the
residuals.

CnaStruct is based upon SCM and extends it to a bi-
variate form that is suitable for ASCN analysis on SNP-
array data. For the description of the bivariate form,
consider first the residual sums of squares (RSSs) of a
segment s, with borders #; and £, in the LRR and
imBAF variables respectively:

ti1—1 1 —1
78S, s = Z (re —[45)2 , TSShs = Z (b — )*
k=t; k=t

where r; and by are the LRR and imBAF observations at
the indexed SNP probe k, and /i, and 7, are the mean
values of the segment in the two variables. Following the
notation introduced for bivariate segmentation, each ¢ is
linked to a segment s through the Minkowski distance
given its RSSs in the two variables:

5 = (rssfﬂs —|—/)’*rss’;_s)l/p

SNP-array data may contain missing values in the LRR
and BAF variables and, in addition, the transformation
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Figure 2 Minkowski distances. (A) Example with Minkowksi distances for the case where & represents a difference of segment means. Each
point represents the value of a probe for the LRR (y-axis) and imBAF (z-axis) variables at its corresponding index (x-axis). Black dots: informative
SNPs. Grey dots: non-informative SNPs. Red lines: segment means calculated from informative SNPs. Blue lines: Minkowski distances, between the
two segments, of order 1 (the sum of the dashed lines, which correspond to §,zz and S;mpar), 2 and infinite. Green shapes: lines that delineate
mean differences with the same Minkowski distances of orders 1 (rotated rectangle), 2 (oval), and infinite (rectangle), with respect to the first
segment mean. (B) Shapes in the bidimensional space of Minkowski distances of different orders.The points that make up each shape are, from
the shape's centre, at an equal p -order Minkowski distance.

from BAF results in a high percentage of missing values
in imBAF. Such cases do not contribute to the corre-
sponding RSS and thus & should be normalised with re-
spect to the number of actually observed values in each
variable:

lb.s

lr,s + lb,s

r,s

I}
6S B (lr,s + le,s

where /,; and [, are the number of non-missing obser-
vations of a segment s present in the LRR and imBAF
variables, respectively.

*pgs?
rss, s +

1/p
*/3*"535,5)

Under the bivariate SCM, the model in Equation 4 is
fitted by minimising the following cost function, which
is the sum of all segment J's:

S

G(tl...tg):Zc$s

s=1

A dynamic programming algorithm (see [24]) finds the
optimal set of change-points ¢;. . .ts. The decision func-
tion 7 is defined recursively in such dynamic program-
ming algorithm, where it allows a J; if the segment s
minimises the segmentation cost with x segments, given
the cost of the best segmentation with x — 1 segments up
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to the beginning of s:
7(85]0) = (minG(ty .. . tx—1) + 8 = minG(t; ... L) |0)

where 6 establishes constraints for the number of seg-
ments and the maximum allowed segment length. This
last constraint reduces computational time complexity
from O(n?) to O(nl) [15].

Because this is a fitting problem, Minkowski distances
of order p <1, which model the interaction between the
variables as a decay function, are appropriate (Figure 2B).
Such approach makes a pair of strong-weak fits result in
a lower cost than two average fits, given the same linear
combination of residual errors. In other words, it pro-
motes the detection of strong mean shifts albeit in a
single variable, such as transitions between segments
with same allelic ratio but different copy number. The
weighting coefficient  parametrises the relative contri-
bution of the imBAF variable to the cost function. For a
balanced contribution, its value should quantify the ratio
of informative observations in each variable and the rela-
tionship between their signal-to-noise ratios. While the
standard deviation is around 6 times larger on LRR inde-
pendently of the sample data, the expected mean
changes depend on the amount of LOH regions and the
diversity of copy numbers among other sample factors.
The tests we have performed on synthetic data suggest
establishing a weighting between variables of =1, and
show that a Minkowski distance of order of p =1/4 cap-
tures very well the interaction between the variables.

Model selection

Data can always be fitted better by increasing the number

of change-points S, so there is a need to find the optimal

S. An option is the use of penalised log-likelihoods [22].
Assuming that the residual errors € ; in Equation 4 are

independent, the log-likelihood of a model using the

Bayesian information criterion (BIC) is:

~ N 216
logLgic = -3 (1 + logZ{) — k*S*logN

where N is the number of observations, S is the number
of segments, § determines the best segmentation with S
segments and k=1. Huber et al. [15] discuss that log-
likelihood penalisation overestimates the number of
change-points in transcriptional data. In SNP-array copy
number data, we found the BIC-penalised log-likelihood
to be a satisfactory model selector, but it can be adjusted
depending on the desired sensitivity required for down-
stream analyses.

Software
We built a CnaStruct R package that is freely available at
http://web.bioinformatics.cicbiogune.es/cnastruct. ~ The
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segmentation function is based on the one included in
another R package, called tilingArray [15]. Maximum
segment length and the number of maximum segments
are parameters inherited from such function. The order
of the Minkowski distance and the weighing constant
between variables are also parameterised, with p=1/4
and f=1 set as the default values. Finally, CnaStruct
allows the selection of k in the information criterion
(default is k=1, BIC), in order to alter the number of
located change-points.

Results and discussion

We evaluated the performance of CnaStruct against the
two latest HMM-based methods (GPHMM [11] and
OncoSNP [10]) and the two change-point detection
methods (ASCAT [18] and GAP [17]) that use both LRR
and BAF variables.

All the assessed methods can handle Illumina data, so
we evaluated them on the benchmarking dataset from
Mosén-Ansorena et al. [16], which simulates data from
this platform. The dataset considers five characteristic
tumour alteration patterns (near-diploid, near-triploid,
near-tetraploid, LOH-enriched and complex) and con-
tains one hundred samples per pattern. Fragments with
copy numbers 1, 2, 3, 4 and 5 with and without somatic
or germline LOH spanning 10, 20, 40, 80 or 160 SNP
probes were included and samples were generated at
four percentages (0, 25, 50 or 75%) of non-tumoural cell
contamination. Longer regions were not included be-
cause no major performance differences were expected
from the longest considered region on (see Discussion
for rationale on this matter). For a more detailed de-
scription of the datasets, see Mosén-Ansorena et al. [16].

A true change-point was considered recalled if at least
one predicted change-point falls within a window of 3
probes from it, a threshold that is wide enough to re-
cover most of the correct predictions in the benchmark
dataset. Furthermore, from such window on, between-
method differences do not vary significantly. Given that
GAP outputs the result of merging three segmentations,
the calculation of the specificity does not penalise
repeated calls of the same change-point in order not to
deflate its specificity.

Receiver operating characteristic (ROC) curves allow
visual assessment of method performance and the influ-
ence of sensitivity parameterisation (Figure 3). To keep
the consistency with the terms used in this text, we built
ROC curves with specificities instead of false positive
rates (FPR, 1-specificity). GPHMM does not provide any
means of adjusting change-point detection sensitivity, so
we could not evaluate its behaviour in these terms. The
rest of the methods present dissimilar ROC curve shapes
which reach varying specificity and sensitivity limits. The
greatest difference is seen on sensitivity, where CnaStruct
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Figure 3 ROC curves for the different methods over a subset of the synthetic data. ROC curves that arise from running methods with
different sensitivity parameterisations over the complex-patterned samples with 50% normal cell contamination. The combinations of pattern and
contamination level were chosen for being representative of the overall performance. Sensitivity is shown in the vertical axis and specificity in the
horizontal axis. Colour code: purple (ASCAT), red (CnaStruct), orange (GAP), black (GPHMM), blue (OncoSNP). Bigger dots correspond to the results
obtained with default parameterisations (two for GAP due to the different parameterisations of CBS in the two versions of GAP). If applicable,
squares correspond to the best non-default parameterisations. Grey lines are F-measure isocurves (the F-measure integrates, with the same
weight, sensitivity and specificity in a single value).

and GAP are clearly the methods that reach higher levels.
However, given comparable change-point sensitivities,
GAP has significantly lower specificity than the rest of
methods. A reasonable explanation is that a bivariate
model, which GAP lacks, prevents many false positives
thanks to the additional information available at each
point. Overall, CnaStruct combines the high sensitivity of
GAP and the high specificity of the methods with a bivari-
ate model.

The default parameterisations in OncoSNP and
ASCAT are aimed to the detection of longer regions
than the ones included in the analysed synthetic sam-
ples, so, in order to account for parameterisation differ-
ences and keep further comparisons fair, we replaced the
default sensitivity-related values with those that achieved
the best combination of specificity and sensitivity in the
corresponding ROC curves. Such combination is called
F-measure, the harmonic mean of specificity and sensi-
tivity. However, notice that the traditional F-measure
gives the same importance to both measures, which may
not be adequate, as it has been noted that sensitivity is
preferable over specificity [17]. Certainly, regions with

the same allele-specific copy number can be merged a
posteriori after excessive segmentation, but missed re-
gion borders cannot be recovered if too few change-
points have been detected. Hence, long regions are easily
identified regardless of parameterisation, but delimiting
short regions requires high sensitivity. Because of this, (i)
if a posteriori region merging is applied, parameterisations
(of the same method) that prioritise sensitivity achieve
better results on shorter regions while having similar re-
sults on longer ones (see Additional file 1 for an example),
and (ii) CnaStruct’s downstream improvement is expected
to be greater with respect to ASCAT, which mainly
delivers lower sensitivity, than with respect to GAP, which
delivers lower specificity.

We ran the five methods with their optimal para-
meterisations based on their ROC curves and F-measures,
with the exception of GPHMM, which does not allow
parameterisation tuning. GAP was run with its default
segmentation parameterisation in its original and updated
version, which achieved similar F-measures. CnaStruct
consistently achieves the best change-point sensitivities
and F-measures out of the compared methods along the
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Figure 4 Change-point sensitivity (y-axis) and specificity (x-axis) by sample pattern. Change-point sensitivity (y-axis) and specificity (x-axis)
by sample pattern. Dots connected by a line correspond to the sensitivity and specificity achieved by the corresponding method at the following
normal cell contamination levels: 0%, 25%, 50% or 75%. Colour code: purple (ASCAT), red (CnaStruct), orange (GAP with CBS parameterisations
from: original (left); updated (right)), black (GPHMM), blue (OncoSNP). Grey lines are F-measure isocurves (the F-measure integrates, with the same

weight, sensitivity and specificity in a single value).

five alteration patterns and four normal cell contamin-
ation levels (Figure 4). Notice how the improvement in
sensitivity is more noticeable at 75% contamination (lower
points of the “sticks”) with respect to GAP, and at the rest
of contamination levels with respect to ASCAT.

To test whether downstream characterisation of allele-
specific copy numbers improves with CnaStruct segmen-
tation, we replaced the segmentation algorithms in GAP
and ASCAT with CnaStruct (see Additional file 2).
Then, we compared the new workflows against the ori-
ginal ones and the HMM-based approaches of GPHMM
and OncoSNP. The results show that overall perform-
ance is improved in both cases (Figure 5). In the case of
GAP, there is a slight drop at the null contamination
level, but a relevant improvement under heavy contam-
ination. In ASCAT, the improvement is even more sig-
nificant, as expected, with a gain of around 20% in the
recall rates of alterations that span 10 and 20 probes up
to 50% normal cell contamination (Additional file 3).
However, at 75% contamination, both the original and
the CnaStruct-ASCAT workflows deliver highly variable
results due to problems in the pattern recognition
process of ASCAT. As a sidenote, we were surprised by
how OncoSNP’s good performance on change-point

detection was not translated to better alteration recall
rates. There is not an overall best performer; instead, we
see that the combined workflow of CnaStruct and
ASCAT is best for samples with some contamination
and the combined workflow of CnaStruct and GAP is
best for samples without contamination (e.g. cell-line
samples) or heavily contaminated. Given that contamin-
ation is significant but a priori unknown in many sam-
ples, CnaStruct-GAP is the most prudent choice.
Although we only assessed CnaStruct on Illumina-like
data, we ran it in combination with GAP, ASCAT and
TAPS on samples from either the Illumina or Affymetrix
platform (Additional file 4). Visual assessment (see
Additional file 5) shows a good performance, although
ASCAT fails at the calling step on the sample with 53%
of normal cell contamination. Furthermore, we hypothe-
sise that the improvement with respect to existing
methods for the Affymetrix platform is even greater than
on the Illumina counterpart, given that the noisier pro-
file of Affymetrix SNP-array data is more appealing for
the bivariate segmentation and current methods for
Affymetrix data, including GAP, only perform univariate
segmentation. Particularly, TAPS [23] is an ASCN ana-
lysis tool for the Affymetrix platform whose change-
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Figure 5 Recall rates by normal cell contamination and alteration pattern. Recall rates (y-axis) of each of the assessed methods, calculated
by normal cell contamination (x-axis), over each of the five sample patterns. Colour code: purple (ASCAT), orange (GAP), black (GPHMM), blue
(OncoSNP). Thicker lines correspond to the workflows in which CnaStruct was integrated.
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point detection step consists on a simple CBS segmenta-
tion over the LRR variable, whose baseline shift is not
automatically estimated. Still, when compared to GADP, it
delivered a better performance [23]. Given that, as the
authors state, the CBS segmentation in TAPS can be re-
placed by other approaches, we propose the combined
use of CnaStruct and TAPS (see Additional file 2) for
ASCN analysis on the Affymetrix platform. Given a
proper construction of LRR and BAF, we believe that
CnaStruct is a sensible segmentation method for high-
throughput sequencing (HTS) ASCN analysis too,
where, at the moment of writing, the only method that
uses BAF [25] does not perform bivariate segmentation.

Conclusions

We have first identified the issues that arise on segmen-
tation due to imBAF characteristics, namely high value
missingness and heteroscedasticity. Although such trans-
formation had already been described, no literature
existed on how imBAF’s peculiarities affect segmenta-
tion, and more specifically bivariate segmentation.

Then, we have introduced and formalised the bivariate
segmentation of SNP-array data for the characterisation
of ASCNs in tumour samples. The formalisation gener-
alises the problem and describes the extension from the
univariate to the bivariate case, so further univariate
methods can eventually be extended to the bivariate
SNP-array case through such mathematical framework.
With an appropriately selected Minkowski order, the
generalisation considers the interaction between vari-
ables and their common features, but it is still capable of
retrieving changes in a single variable. Thus, the pro-
posed segmentation approach offers an intermediate stand
between univariate approaches (e.g. CBS in GAP), which
do not include the information available from both vari-
ables in the same model and are prone to skipping
changes common to the two variables, and bivariate ap-
proaches with p =1 (e.g. ASCAT), which overestimate the
effect of variable interaction and tend to obviate single
changes. The advantage of bivariate segmentation is more
evident in low signal-to-noise ratio (SNR) scenarios, such
as high degree of normal cell contamination and samples
with high noise levels, where joint variable information re-
duces the chance of false positives and the promotion of
single-variable changes avoids the reduction of recall rates.
Additionally, in comparison to the univariate approach,
duplicated estimation of change-points is avoided.

CnaStruct exemplifies the benefits of bivariate seg-
mentation with adequately selected Minkowski order
and outperforms existing methods at change-point de-
tection on synthetic data. Besides, when coupled with
the pattern recognition processes of GAP or ASCAT, the
new workflows improve the downstream ASCN analysis
in comparison to their original counterparts and the rest
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of compared methods. Notably, given its performance
under the low contrast situations produced by high nor-
mal cell contamination levels and intra-tumour hetero-
geneity, CnaStruct should greatly improve allele-specific
copy number characterisation in samples extracted from
tumour biopsies, which are typically highly contami-
nated with normal cells, and in samples from advanced
tumours, which are expected to present greater intra-
tumour cellular heterogeneity.

Additional files

Additional file 1: Recall rates by normal cell contamination and
alteration pattern, and alteration length for different
parameterisations. Recall rates (y-axis) by normal cell contamination
level, sample pattern and alteration length (x-axis) for two different
parameterisations of ASCAT (violet: default; brown: segmentation
penalisation scaled by a factor of 0.35). Recall rates converge as region
length increases, suggesting that both parameterisations achieve similar
recall rates at long lengths, but the one that focuses on sensitivity is able
to recall more short regions.

Additional file 2: Description of the procedures to couple CnaStruct
with GAP, ASCAT and TAPS.

Additional file 3: Recall rates by normal cell contamination and
alteration pattern, and alteration length for assessed methods.
Recall rates (y-axis) of each of the assessed methods, calculated by
normal cell contamination and alteration length (x-axis) over each of the
five sample patterns. Colour code: purple (ASCAT), orange (GAP), black
(GPHMM), blue (OncoSNP). Thicker lines correspond to the workflows in
which CnaStruct was integrated.

Additional file 4: Results of the analyses of real data with a
combination of CnaStruct and other methods. The analyzed samples
are: (i) Two samples from the Affymetrix platform, which are bundled
with the TAPS software package (example02 and example16). These
samples were analyzed with CnaStruct-TAPS. Provided TAPS results
format: columns “Start” and “End” specify probe genomic positions within
chromosome (i) Two samples from the lllumina plaform, which come
from a cell-line dilution series [8]. The two picked samples present
normal cell contaminations of 0% and 53%. Chromosomes 6 and 16
were excluded beforehand (see [8,17]). These samples were analyzed
with CnaStruct-GAP and CnaStruct-ASCAT. The compressed file contains
one tab-delimited table per analysis. ASCAT results format: columns
“start” and “end” specify probe indexes; "nA” and “nB" specify the number
of A and B alleles, so the called copy numbers can be calculated from
their sum. GAP results format: columns “Ind” and “Ind_K" specify probe
indexes; “CN1" specifies the copy number. “Chromosome”; “Cn" specifies
the copy number.

Additional file 5: Plots for the analysis of real data with a
combination of CnaStruct and other methods. The LRR profiles of
several samples as analyzed with different combinations of CnaStruct and
other methods are displayed. Colour code: blue, segment is called as
being CN4 or higher; green, CN3; grey, CN2; red, CNT or CNO. Only
segments with more than 10 SNPs are superimposed. Even though
ASCAT fails at the calling step on the 53% contamination sample, both
ASCAT and GAP detect a loss on chromosome 13 not present in the
pure tumour sample.
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