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Abstract

Background: DNA methylation profiles differ among disease types and, therefore, can be used in disease diagnosis.
In addition, large-scale whole genome DNA methylation data offer tremendous potential in understanding the role
of DNA methylation in normal development and function. However, due to the unique feature of the methylation
data, powerful and robust statistical methods are very limited in this area.

Results: In this paper, we proposed and examined a new statistical method to detect differentially methylated loci
for case control designs that is fully nonparametric and does not depend on any assumption for the underlying
distribution of the data. Moreover, the proposed method adjusts for the age effect that has been shown to be
highly correlated with DNA methylation profiles. Using simulation studies and a real data application, we have
demonstrated the advantages of our method over existing commonly used methods.

Conclusions: Compared to existing methods, our method improved the detection power for differentially
methylated loci for case control designs and controlled the type I error well. Its applications are not limited to
methylation data; it can be extended to many other case–control studies.

Keywords: Nonparametric method, One-sided test, Combining p-value
Background
Essential for normal development and an influence on a
variety of processes related to DNA integrity and func-
tion, DNA methylation plays an important role for epi-
genetic gene regulation in both development and disease
[1]. It is associated with processes including genomic
imprinting, X-chromosome inactivation, suppression of
repetitive elements, and carcinogenesis [2-4]. Aberrant
DNA methylation, such as hypomethylation of onco-
genes and hypermethylation of tumor suppressor genes,
leads to genomic instability and tumorigenesis [5-10].
With the development of high-throughput platforms,

genome-wide analysis of large-scale DNA methylation
patterns and their impacts on gene regulation have re-
ceived a significant amount of attention. We are propos-
ing an age-adjusted nonparametric method to detect
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differentially methylated loci that can account for age ef-
fects that has advantages over existing methods the limi-
tations of which we explain next. Typically, methylation
levels in Illumina methylation assays are quantified in
terms of the β-value calculated from the intensity ratio
of methylated (M) to unmethylated (U) alleles. Specific-

ally, β ¼ max M;0ð Þ
max M;0ð Þþmax U ;0ð Þþ100 ; where M and U are the in-

tensities of red and green dyes, respectively, for the
GoldenGate and VeraCode Methylation assays, or the
signals A and B, respectively, for the Illumina assay. The
striking feature of the β-values is that they are continu-
ous and range from 0 (totally unmethylated) to 1 (fully
methylated).
With more and more DNA methylation data generated

from the high-throughput DNA methylation platforms,
powerful and efficient statistical methods to handle these
complex data are becoming highly demanded. One of
the important research topics in this area is to detect
differentially methylated loci in case and control studies.
The commonly used methods for this purpose are the
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Student’s t-test and linear regression. Recently, a number
of model-based approaches have been proposed in the lit-
erature. Siegmund [11] introduced a Bernoulli-lognormal
mixture model to perform clustering analysis on methyla-
tion data generated using MethyLight. Houseman [12]
proposed a β-mixture model to classify different tissue
types using a recursive-partitioning algorithm for high-
dimensional data from Illumina arrays. Wang [13] devel-
oped a likelihood based uniform-normal-mixture model
to select differentially methylated loci between case and
control groups using the Illumina array. The basic idea
of Wang [13] is to describe the data using a three-
component mixture model and treat completed methyl-
ated, unmethylated, and partially methylated loci differ-
ently. Wang [13] showed that, compared to the Student’s
t-test under some situations, their method increases de-
tection power [13]. However, the aforementioned methods
assume that the methylation profiles follow some special
distributions that are known in terms of a finite number
of parameters. Obviously if the underlying true distribu-
tion is far from the proposed ones, such assumptions will
lead to biased results in practice.
Another complexity of the methylation study comes

from the presence of other potential confounders such
as age effects. As shown in [14-17], age is by far the
strongest demographic risk factor for cancer, and there
is substantial evidence that aging affects DNA methyla-
tion of specific loci, including cancer-related genes.
Based on these observations, it is necessary to adjust age
effects in the analysis of detecting differentially methyl-
ated loci. If the relationship between the methylation
and age is more complex than a linear one, a traditional
linear regression leads to inaccurate results. To solve this
problem, Chen [16] proposed a method by first dividing
the samples into several age groups and then combined
the p-values obtained from each individual group to-
gether to form a new test. This method has been shown
to increase the power in contrast to the traditional t-test
without age adjustment or regression model with age
adjusted linearly. However, within each group, a p-value
is obtained from a simple t-test that is less robust and
thus leaves room for improvement.
In this paper, we propose and examine a novel means to

detecting differentially methylated loci and, that is, an age-
adjusted nonparametric method that can account for age
effects, given that substantial evidence exists that aging
affects DNA methylation of specific loci, including cancer-
related genes. Our method stems from the rank-based
nonparametric methods that focus on a comparison of two
entire empirical distribution functions rather than only two
means. More specifically, we first divide the subjects into
several age groups; then for each group, a nonparametric
test is performed on each locus, and an individual p-value
is reported. An overall p-value for each locus is estimated
through combining all the individual p-values computed
previously for that locus in different age groups. Our
method does not depend on any distribution assumption
but rather adjusts for age effects in an efficient way. We
demonstrate the powerfulness of our method using both
simulated and real datasets.

Methods
Assume all the subjects are from K different age groups.
In the kth group, k = 1,. . .,K, there are n1k control sub-
jects and n2k case subjects. For each DNA methylation
marker, let yijk, i = 1,. . .,njk, j = 1,2, k = 1,. . .,K, denote the
observation of β-value for the ith subject in jth treatment
(1 for control and 2 for case) and kth age group. To ad-
just the age influence on the methylation level, the linear
model takes the form

yijk ¼ aj�treatmentj þ bk�agek þ εijk ;

fori ¼ 1; . . . ; njk ; j ¼ 1; 2; k ¼ 1; . . . ;K ;

Where aj and bk are regression coefficients and εijk fol-
lows a i.i.d normal distribution. The normality assump-
tion is clearly invalid for the β-values which have limited
range between 0 and 1. Moreover, the relationship be-
tween the β-value and age is likely to be more compli-
cated than a linear one. Therefore more powerful and
robust nonparametric methods are desirable.
Here we propose a new nonparametric method which

does not depend on any distribution assumption and
meanwhile allows for the adjustment of covariates. We
process as follows. For each age group k (k = 1,. . .,K),
we test the difference between the control group yi1k
(i = 1,. . .,n1k) and the case group yi2k (i = 1,. . .,n2k). Our
goal is to test whether or not the two methylation
groups follow the same distribution. Toward this end,
the Wilcoxon rank sum test is a useful tool when
there are reasons to believe that the outcome variables
of interest may fail certain distributional assumptions
required for parametric methods. However, as dis-
cussed in Baumgartner [18], Wilcoxon rank sum test
is not suitable for situations where the expected values
of the two populations are close to each other. To
overcome this problem, they proposed a more power-
ful nonparametric test to handle the general two-sided
two-sample problem [18]. Neuhaeuser further extend-
ed the two-sided two-sample test to a one-sided test
that can detect if one population is stochastically lar-
ger than the other [19]. Our p-value calculation for
each age group is based on Neuhaeuser’s one-sided
test whose statistics can be explicitly formulated as

Bk ¼ 1
2

B1k � B2kð Þ;
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Here Gi, i = 1,2,. . ., n1k and Hj,j = 1,2,. . .,n2k are the
ranks of the samples from the kth case and control groups,
respectively. Due to the intractable asymptotic distribution
for the test statistics B, it is hard to find a close form for
the relationship between p-value and B. We will use nu-
merical fit to approximate this relationship. We first obtain
the empirical distribution of B based on 107 permutations
and then fit the distribution function piecewise exponen-
tially to obtain the empirical relationship. The p-value for
the kth age group can be calculated according to this em-
pirical formula.
As a consequence, we have K p-values from the left-sided

test, denoted by plk (k = 1,. . .,K), and K p-values from the
right-sided test, denoted by prk = 1-plk (k = 1,. . .,K). Then
combining K left-sided p-values together gives a statistic

Tl ¼ �2
XK
k¼1

log plkð Þ

Similarly, combining K right-sided p-values together
gives a statistic

Tr ¼ �2
XK
k¼1

log prkð Þ

Under the null hypothesis of no difference between
the two treatment groups, plk and prk are uniform [0,1]
random variables for k = 1,. . .,K. Therefore, according to
Fisher [20], both Tl and Tr will follow a chi-square distri-
bution with degree of freedom 2 K. We define a new
variable:

T ¼ max Tl;Trf g;
then we have [21]

2α� α2≤ Pr T > xð Þ≤ 2α; where α
¼ 1� FX2

2K
xð Þ; and Fχ22K is the CDF of χ22K :

Thus, for small α, we can approximate the p-value of
T by its upper bound 2α as

Pr T > xð Þ≈2α
More details can be found in [21-23]. For large α, we

will fit a formula empirically through permutation. We
call the above proposed method “combined Baumgartner-
Weiß-Schindler (BWS) test”.

Results and discussion
Empirical fit of the p-value formula for one-sided BWS test
The asymptotic distribution function of B is complex
and in practice permutation method is often used. The
permutation results depend on the sample size. But as
mentioned in Baumgartner [18], for a two-sided test, the
asymptotic distribution can be approximated by the per-
mutation method quite well even with a small sample
size (as small as 10). We first derive the empirical formula
to fit the asymptotic distribution using the permutation
method. Toward this end, we sample two subpopulations
from the same distribution (e.g. standard normal), each of
which has a sample size of 30. Then, the whole popula-
tions are permuted 107 times, and a one-sided BWS test
statistic B is calculated for each permuted sample. Then
we fit the empirical cumulative distribution of B using a
piecewise exponential function to arrive at the following
empirical formula

P Bð Þ ¼
( e�0:699�1:255�B 0≤B < 1:5ð Þ
e�0:895�1:153�Bþ0:0173�B2

1:5 ≤B < 9ð Þ;
e�2:895�0:786�B B≥ 9ð Þ

and

P �Bð Þ ¼ 1� P Bð Þ:
The node points we used here are 1.5 and 9. We find

that the choice of node points has very little influence
on the final analysis results for both simulated and real
data. Note that the sample size we used for deriving this
formula is 30. We have also tried some other choices
and found that the results are quite similar. Thus, we
recommend the above formula to be used in practice for
problems with a sample size larger than 10.

Simulation results
The first simulation settings are for the evaluation of the
type I error rate for the proposed method. For the pur-
poses of comparison, we also include the results from
the combined t-test proposed in [16], linear regression
and combined Wilcoxon methods for all simulated and
real datasets. We assume that there are 6 age groups,
and each group includes 100 subjects, 50 controls and
50 cases. For each age group, we also assume the β-
values follow a three-component mixture distribution as
in Wang [13]. Let τ1 and τ2 be the two threshold values.
The first and the second components are uniform dis-
tributions U 0;τ1½ � and U τ2;1½ � . The third component is a

truncated normal distribution N τ1;τ2½ � μ; σ2ð Þ . The prob-
abilities for a measurement to fall into these three com-
ponents are π1, π2, π3 respectively. Under the null
hypothesis, the two treatment groups are sampled from
the same distribution. The mean of the truncated



Table 1 Estimated Type I error rates at significant level 0.05 based on the four methods under different parameter
settings of the three-component mixture distributions with τ1 = 0.1, τ2 = 0.9 and δμ = 0.05

Parameter Setting π1 π2 π3 μ σ t-test Linear regression Wilcox BWS

1 0.3 0.5 0.2 0.3 0.1 0.0513 0.0521 0.0514 0.0458

2 0.4 0.5 0.1 0.2 0.1 0.0495 0.0494 0.0519 0.0492

3 0.4 0.5 0.1 0.3 0.2 0.0511 0.0519 0.0503 0.0495

4 0.5 0.1 0.4 0.3 0.2 0.0528 0.0521 0.0544 0.0511

5 0.4 0.2 0.4 0.2 0.1 0.0509 0.0510 0.0472 0.0464
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normal distribution is taken to be μ + k*δμ for the kth age
group. The simulation is repeated 10000 times. Table 1
lists the proportion of times that null is rejected using
the four different methods under different parameter
settings. Table 1 shows that the nominal type I error rate
of 0.05 is well controlled by all methods.
The second simulation settings are for assessing the

power of the proposed method under alternative hy-
pothesis, i.e. the case and control subjects are sampled
from different distributions. We still assume that the β-
values follow the similar three-component mixture dis-
tributions. Two scenarios are considered here. In the
first scenario, we use different means for different treat-
ment groups. More specifically, we let the truncated nor-
mal mean for the control sample be constant μ, but for
the case sample vary as µ + k * δμ for the kth age group.
We replicate the simulation 10000 times for each scenario.
The power is defined as the proportion of times that the
p-value is less than 0.05. The first two rows in Table 2 list
the results for this scenario. In the second scenario, we
let the two threshold values vary as τ1 + kδτ and τ2-kδτ for
the kth case group but keep them constants as τ1 and τ2
for all control groups. The results are listed in the last two
rows of Table 2. For the first scenario, the mean values are
different for the case and control groups. As expected, all
four methods have increasing powers as the signal in-
creases. For the second scenario, the expected values are
the same, but the variances are different between the two
treatment groups. In this situation, our proposed method
is more powerful in detecting the difference than the other
three methods. Therefore, the proposed method can de-
tect not only the location difference but also the scale dif-
ference between the two distributions.
The third settings assume that the β-values for both the

case and control subjects follow the beta-distributions. Let
Table 2 Estimated powers of the four methods at significant
three-component mixture distributions with τ1 = 0.1, τ2 = 0.9

Parameter Setting π1 π2 π3 μ

δμ = 0.03 0.3 0.5 0.2 0.3 0

δμ = 0.05 0.3 0.5 0.2 0.3 0

δτ = 0.03 0.45 0.1 0.45 0.5 0

δτ = 0.06 0.45 0.1 0.45 0.5 0
s1 = s2 = 4. For the case group, the β-values are sampled
from a beta-distribution Beta(s1 + δ, s2 − δ). For the control
group, the β-values are sampled from a beta-distribution
Beta(5s1 + δ, 5s2 − δ). Here δ takes six different values, -3λ,
-2λ, -λ, 0.5λ, λ, and 1.5λ, one for each age group.
Based on the above setting, it can be easily shown that

the mean of the distribution for the case group is s1þδ
s1þs2

while the mean of the distribution for the control group

is s1þδ=5
s1þs2

The mean difference between the two treatment

groups is 4δ=5
s1þs2

which will increase with δ. Table 3 lists

the empirical powers of four methods for different λ
values. In all situations, the most powerful method is
combined DWS. Since the variance of two distributions
are different, even in situation where δ = 0, the power of
the proposed method can still reach 0.67, whereas the
other three methods have no power at all. As λ de-
creases, the mean differences become smaller and make
it more difficult to distinguish between the two treat-
ment groups. As expected, the powers decrease for all
methods as λ decreases. For small λ, the power from the
combined DWS method is much bigger than those from
the other three methods. The performances of the com-
bined t-test and combined Wilcoxon methods are quite
similar, and both are much better than the linear regres-
sion method.
Real data results
We also applied our proposed method to the United
Kingdom Ovarian Cancer Population Study (UKOPS)
[15] to select differentially methylated loci between
ovarian cancer cases and healthy controls. The data were
created using Illumina Infinium Human Methylation27
Beadchip and downloaded from the NCBI Gene
level 0.05 under different parameter settings for the

σ t-test Linear regression Wilcox BWS

.1 0.475 0.479 0.749 0.836

.1 0.889 0.892 0.951 0.988

.05 0.048 0.047 0.078 0.727

.05 0.048 0.047 0.092 0.877



Table 3 Change of the power with λ for four different
methods when the distributions are Beta(s1 + δ, s2 − δ)
and Beta(5 s1 − δ, 5 s2 + δ) for the case and control
groups; δ takes the values of -3λ, -2λ, -λ, 0.5λ, λ, and 1.5λ
for the six age groups and s1 = s2 = 4

λ Combined
t-test

Linear
regression

Combined
Wilcoxon

Combined
BWS

0 0.056 0.053 0.073 0.669

0.05 0.075 0.057 0.094 0.703

0.1 0.182 0.087 0.200 0.832

0.15 0.402 0.141 0.412 0.939

0.2 0.701 0.212 0.687 0.988

0.25 0.911 0.298 0.893 0.999
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Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo)
under the accession number GSE19711. There were 274
control samples and 131 pre-treatment case samples,
and the number of loci was 27578. For the data quality
control, we removed 29 patients (15 controls and 14
treatments) with BS conversion efficiency value < 4000
or coverage rate < 95% [15]. For each treatment group,
the samples were divided into 6 age groups (50–55, 55–
60, 60–65, 65–70, 70–75, and 75 and over). We further
removed 12 patients in the pre-treatment group whose
ages exceeded 78 since there were no such patients in
the control group. The final sample size for each indi-
vidual group is the same as the one listed in Table 2 of
Chen [16] except that the “75 and over” group has 13
pre-treatment samples instead of 25. This dataset was
analyzed by both Wang [13] and Chen [16] in their pa-
pers. Wang [13] did not consider the age effect, and only
96 cases and 136 controls were included in their analysis
Figure 1 Scatter plots for negative log10 p-values based on different
DWS and linear regression. The middle panel is for the comparison betwee
comparison between combined DWS and combined Wilcoxon test.
after further screening; while Chen [16] included the 12 pa-
tients with ages exceeding 78; thus their results are different
from ours even though the same method was used.
Figure 1 shows the scatter plots for each locus based

on the negative log10 p-values derived from four dif-
ferent methods. Figure 1 (a) plots the results for the
combined DWS test and the linear regression method,
Figure 1 (b) plots the results for the combined DWS test
and combined t-test, Figure 1 (c) plots the results for the
combined DWS test and combined Wilcoxon-test. From
Figure 1 (a), it can be seen that most of the loci with
small p-value in the linear regression tend to have small
p-value in our proposed method as well. However, there
exist many loci whose p-values are large in the linear re-
gression but small and significant in the combined DWS
test, i.e., those points in Figure 1 (a) with x-values close
to zero but y-values large than 3. This indicated that our
proposed method is more powerful than the linear regres-
sion method in detecting the differentially methylated loci.
Similar conclusions can be drawn from Figure 1 (b) and
Figure 1 (c) for the comparison with the combined t-test
and combined Wilconxon test respectively.
Table 4 lists the number of the loci detected by each

of the four tests based on four different significant levels,
10-3, 10-4, 10-5, 10-6. Clearly at the same significant level,
in terms of the number of significant loci detected, the
most powerful method is combined DWS, the next one
is combined Wilcoxon test, and then combined t-test
and linear regression. Table 4 also reports the numbers
of significant loci obtained by pairs of the proposed test
and each of the other three methods for given significance
levels. For example, when the cutoff p-value is 10-3, the
combined BWS, the linear regression, the combined t-test,
methods. The left panel is for the comparison between combined
n combined DWS and combined t-test. The right panel is for the

http://www.ncbi.nlm.nih.gov/geo


Table 4 Number of loci with p-values less than the given cutoff significance levels from different methods

Cutoff p-value Linear
regression (I)

Combined
t-test (II)

Combined Wilcoxon
test (III)

Combined BWS
test (IV)

From both
I and IV

From both
II and IV

From both
III and IV

10-3 2038 2754 3143 3387 1884 2659 3081

10-4 1438 1879 2152 2321 1352 1795 2117

10-5 1120 1343 1495 1653 1059 1286 1479

10-6 894 982 1109 1222 844 931 1099
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and the combined Wilcoxon obtained 3387, 2038, 2754,
and 3143 significant loci, respectively. However, among
those 3387 loci that have p-values less than 10-3 using the
combined BWS method, there were 1884, 2659, and 3081
loci overlapping with the linear regression, the combined
t-test, and the combined Wilcoxon methods, respectively.
In other words, there were 1503, 728, and 306 significant
loci were only obtained by the proposed test, but not by
the linear regression, the combined t-test, and the com-
bined Wilcoxon, respectively. In contrast, at the same sig-
nificance level 10-3, there were only 154, 95, and 62 loci
whose p-values from the new method are larger than 10-3

but less than 10-3 from the linear regression, the combined
t-test, and the combined Wilcoxon, respectively. There-
fore most of the loci detected by the other three methods
are also detected by the proposed method. However,
for the same cutoff level, there were many loci that were
significant in the proposed method but not in the other
three methods, a point that clearly demonstrated the
advantages of our method over those three.

Discussion
To study whether or not the proposed method can con-
trol type I error rate as well, we created pseudo case and
control samples. The way we did this was to first ran-
domly divide the original control subjects into two parts
Figure 2 Test the distribution of p-values by applying the proposed m
samples from the original control group. The left panel is for the histog
for each age group. Then we put one part into the new
pseudo-control group and the other one into the new
pseudo-case group. The distribution of p-values from
applying the proposed method to this new case–control
data set is shown in Figure 2 (a). It is very close to uni-
form distribution, and this finding is further confirmed
by the qq-plot against the uniform [0,1] distribution as
illustrated in Figure 2(b). Therefore, our method in-
creased the detection power while it simultaneously con-
trolled the type I error rate.
In this paper we chose different cutoff p-values to

compare the performance of the proposed test with
others. We did not consider the multiple testing issue,
which is an important but difficult task for this area [4]
and other areas where a large number of correlated vari-
ables are tested simultaneously [24-28]. The traditional cor-
rection methods for multiple comparisons, such as
Bonferroni correction, are inappropriate here as they are
too conservative due to the fact that many loci from the
same gene are highly positively correlated. To account for
the correlations among loci, methods based on the concept
of “effective number”may be adopted [29].
There are many ways to combine p-values from inde-

pendent tests [20,30-32]. In this paper, we chose to use
Fisher test due to its robustness. It is possible, however,
that other methods may be more powerful under some
ethod to a newly created case–control data based on the
ram and the right is a qq-plot against the uniform [0,1] distribution.
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certain conditions. The combined p-value method used
in this paper is based on the assumption that the test for
every individual age group is independent from each
other. However, if this assumption is questionable, the
current combined p-value method needs to be modified
such that it can handle the correlations among the indi-
vidual tests as well. This is another research topic we
will pursue in a future paper.

Conclusions
In case–control methylation studies, the underlying distri-
bution of the β-values is rarely known in advance, and
clearly the normality assumption is not valid. Parametric
models can be powerful if the assumptions for the models
are valid, but they can also lead to biased results if the
underlying true distribution is far deviated from the im-
posed ones. Thus, it is desirable to choose a powerful yet
robust statistical test that does not depend on any under-
lying distribution assumption. In this article we proposed
and examined a rank-based nonparametric method to de-
tect differentially methylated loci. Through simulation, we
showed that our proposed method is as powerful as the
linear regression, t-test and Wilcoxon rank sum test
methods if the mean differences between the two treat-
ment groups are large. However, our method substantially
outperformed the others in situations where the mean dif-
ferences between the two groups were small while the
variance differences were large.
Note that the age effects are strongly associated with

methylation, and the ignoring age effect will cause a loss
of power or a large number of false positives. Another
advantage of the proposed method over many existed
ones is that it combined the nonparametric test together
with age adjustment. Our next goal was to generalize
our method to adjust for more confounders other than
the age such that it can have a much wider application
in methylation research.
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