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Abstract

Background: Traditional methods for computational motif discovery often suffer from poor performance. In
particular, methods that search for sequence matches to known binding motifs tend to predict many
non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent
years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify
functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in
different cell types. However, it is not always trivial to make use of this data in combination with existing motif
discovery tools, especially for researchers who are not skilled in bioinformatics programming.

Results: Here we present MotifLab, a general workbench for analysing regulatory sequence regions and
discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif
discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds
of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites,
ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene
expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse
data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab,
including graphical presentation of the results.

Conclusions: We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The
flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two
previously published benchmark data sets for single motifs and modules, and a realistic example of genes
responding to treatment with forskolin. MotifLab is freely available at http://www.motiflab.org.
Background
Computational motif discovery for transcription factor
binding sites is a challenging research problem that has
been studied for many years, but we are still missing
approaches that can ensure generally good performance.
For transcription factors with known binding motifs,
scanning sequences for matches to motif models can
identify potential binding sites, but the performance is
often strongly degraded by a high content of false posi-
tive predictions; predicted sites that do not correspond
to actual transcription factor binding events [1]. De novo
motif discovery, i.e. discovery of potentially novel motifs
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from a set of DNA sequences, can work well for input
sequences with high motif content, like from ChIP-Seq
experiments. However, it is often less successful on more
general sequence sets, based for example on regulatory
regions for co-regulated genes [2].
It is a commonly used approach to not rely on predic-

tions of just a single method, but to run several motif
discovery methods on the same dataset and compare the
results. The motivation is, of course, that although one
individual method might be mistaken in a single case,
any motif predicted by several different methods is prob-
ably more likely to be correct. Tools such as Melina [3]
and Tmod [4] provide users the opportunity of running
and comparing results for several methods within a uni-
fied interface, and ensemble methods, like EMD [5] and
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MotifVoter [6], can take predictions from multiple methods
as input and automatically derive a consensus. Still, the
reason why motif discovery is so difficult in the first place
is that binding motifs are often rather short and can vary
substantially between binding sites. This makes them hard
to discover with de novo motif discovery methods since
the signal-to-noise ratio can be quite low when searching
for motifs embedded in long background sequences. How-
ever, transcription factors seldom operate alone but work
in concert with other transcription factors and co-factors
in order to achieve the required regulatory control. Hence,
groups of motifs for co-operating factors will often occur
in close proximity to each other in the DNA sequence,
and such “composite motifs”, or cis-regulatory modules
(CRM), can provide a stronger signal than individual
motifs. Several module discovery methods have therefore
been proposed to search for such motif groups [7].
A fundamental limitation with the traditional motif and

module discovery approaches is that they only rely on in-
formation in the DNA sequence itself, but the mere pres-
ence of a binding motif does not necessarily imply that it
is a functional binding site. Other conditions, such as for
instance chromatin accessibility, DNA-methylation or
even the distance to the transcription start site, can also
influence the ability of transcription factors to bind and
exert their regulatory function. Many binding sites may
also function in a cell- or tissue-dependent manner, and a
site which is active in one cell-type might well be inactive
in others.
Recent advances in high-throughput experimental

methods and large-scale genome annotation efforts, such
as the ENCODE project [8], have led to an avalanche of
data which is now available to researchers. ChIP-Seq
data, for instance, can provide evidence that a specific
transcription factor has bound to a region (albeit per-
haps by indirect binding), and information about DNase
hypersensitivity and epigenetic marks can indicate which
regions of the DNA are generally accessible and also give
clues as to their regulatory roles in different cell-types.
Newer motif/module discovery methods, including for

example Chromia [9], Centipede [10], ProbTF [11],
CompleteMOTIFs [12], Combinatorial CRM decoder
[13] and i-cisTarget [14], try to take advantage of such
additional information in order to improve their predic-
tions. Some of these tools rely on a fixed set of features
which are utilized in a predefined manner. This makes
them very convenient and easy to use, but it also means
that they are unable to incorporate new data unless their
original creators update the underlying databases. Other
methods are more general and can work with arbitrary
data, but require that the users themselves obtain all the
relevant data for the sequences they want to analyse and
also convert this data into a format the tool can handle.
This might not always be a trivial task, and it can
sometimes even require that the users are skilled in pro-
gramming. Hence, the threshold for making use of add-
itional data in the analysis can often be high.
In this paper we present a tool called MotifLab which is

designed to be a general workbench for analysing regula-
tory sequences and predicting binding sites for individual
transcription factors and modules of co-operating factors.
The main purpose of MotifLab is to provide a flexible
framework which allows users to easily incorporate differ-
ent kinds of additional information into the motif discov-
ery process. As a motif discovery workbench it has drawn
inspiration from other related tools, primarily Toucan
[15], but it also shares similarities with e.g. MochiView
[16], SeqVISTA [17] and RSAT [18]. MotifLab is written
in Java and will run locally as a stand-alone application.

Implementation
Software description
At its core, MotifLab functions as a repository of data
objects that can be manipulated and analysed using a
number of available operations. The results can be visua-
lized and examined interactively within the system or be
output to standard text based formats (FASTA, GFF etc.)
for further processing by other programs. MotifLab is not
backed up by a central dedicated database server, but data
can be retrieved automatically from various internet
resources, such as the UCSC Genome Browser [19] or
DAS servers [20], or alternatively be imported from local
files. New data objects can also be derived from already
existing objects or created manually from scratch.
MotifLab distinguishes between several types of data for

different purposes. One of the fundamental data types in
MotifLab is the sequence, which represents a segment of a
genome, such as the promoter region associated with a
specific gene. Users can create new sequence objects by
specifying their chromosomal coordinates or by providing
MotifLab with a list of gene identifiers and selecting a re-
gion to analyse around the genes’ transcription start or
end sites. The sequence objects merely function as refer-
ences to genomic locations, and besides the coordinates,
genome build and strand orientation of the sequences,
they hold little additional information by themselves.
However, sequences can be further annotated with feature
datasets, which come in three different types: DNA se-
quence datasets, numeric datasets and region datasets.
DNA sequence datasets contain a single base letter for
each position within a sequence. Usually, they just hold
the original DNA sequences for the genomic segments
being investigated, but it is fully possible to have multiple
DNA sequence datasets associated with the same
sequences. These additional datasets can then contain
masked versions of the original DNA sequence or ran-
domly scrambled sequences to be used for statistical com-
parisons. Numeric datasets, on the other hand, have a
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numeric value for each position in the sequences, and
this data type can represent information such as phylo-
genetic conservation level, DNA stacking energy, melt-
ing temperature or basically any other signal that can
vary in intensity along the sequence. The final feature
data type, region datasets, associates each sequence
with a set of regions. A region here refers to a subseg-
ment of a sequence which has distinct properties that
sets it apart from the rest of the sequence. Regions can
represent features such as genes, CpG-islands, repeat
regions or transcription factor binding sites. Different
regions within the same sequence may overlap each
other, and regions can also be assigned values for vari-
ous attributes, including a type designation, score value
and strand orientation.
MotifLab’s graphical user interface offers a sophisticated

sequence browser with powerful capabilities for visualiz-
ing sequences and associated feature data tracks, as shown
in Figure 1. All the sequences are displayed simultaneously
beneath each other in the same window so that features
for different sequences can be compared visually. The
browser is highly interactive and customizable, and it sup-
ports fast zooming to any scale and panning to show dif-
ferent parts of a sequence. The appearance of each track,
including its colour, size and orientation, can be easily
modified, and the order of the tracks and sequences can
be rearranged or sorted according to different criteria. In-
dividual sequences, tracks and even individual regions
within region datasets can also be hidden from view to
display only what the user wants to focus on at any time.
Besides sequences, another fundamental data type is

the motif, which is used to model binding motifs for
transcription factors. The binding motifs themselves are
typically represented as either position weight matrices
or IUPAC consensus sequences, but motif objects can
be annotated with a lot of additional information as well,
such as the names of different transcription factors that
bind to the motif, names of organisms and tissues these
factors are expressed in, references to other motifs
representing known interaction partners for these factors
and references to alternative models for the same motif.
New motif objects are automatically added when per-
forming motif discovery, but they can also be created
manually by entering a matrix, IUPAC consensus or a
set of aligned binding sequences. MotifLab includes sev-
eral predefined motif models from databases such as
TRANSFAC [21], JASPAR [22] and ScerTF [23].
It is often useful to be able to refer to subsets of

sequences and motifs, for instance to divide a set of
sequences into groups according to gene expression or
to limit the search for binding motifs to transcription
factors that are actually present in the cell-types being
investigated. In MotifLab this can be accomplished with
the help of collection objects. Users can create new
collections by selecting data objects from a table or
by supplying a list of objects to include. Collections
can also be based on various statistics. For example, it
is possible to create a sequence collection containing
sequences with less than 40% GC-content or a motif col-
lection with motifs that appear in at least 80% of the
sequences. Somewhat related to collections are partitions
which allow all data objects of a specific type to be
divided into non-overlapping clusters. The numeric map
data type associates each sequence or motif with an indi-
vidual numeric value. Numeric maps can be used to
hold data such as gene expression values for sequences
or expected occurrence frequencies for motifs. General
text variables, on the other hand, can hold any kind of
structured or unstructured text which will be interpreted
depending on the context.

Operations and protocol scripts
MotifLab provides more than 40 data-processing opera-
tions to create, transform, combine, analyse and output
data objects, including special operations to perform
motif and module discovery. Some of these operations,
like “output” and “copy”, can be applied to any object,
while others may be specific to a single type of data. The
“mask” operation, for instance, can replace parts of a
DNA sequence with other letters, such as X or N, or it
can even replace the whole sequence with random bases
sampled from a background distribution to create an
entirely new artificial sequence. Numeric data objects
can be transformed with arithmetic operations or other
mathematical functions such as logarithms, range nor-
malizations etc., and sliding windows can be applied to
numeric features to smooth the data or to detect peaks,
valleys and edges within the track. Other operations
can change the size of regions by extending them in ei-
ther direction or merge regions that overlap with each
other. One of the simplest operations, but also one of
the most useful, is the “filter” operation, since it can be
employed to remove selected regions from a dataset,
particularly binding sites that are suspected to represent
false predictions.
Operations that target feature datasets can be limited

to selected parts of sequences by specifying conditions
that are evaluated for each individual base position or
region in the dataset. These conditions can be based on
the contents of the target track itself or involve informa-
tion compared across several tracks. For example, a sim-
ple way to perform phylogenetic footprinting without
having explicit access to orthologous sequences would
be to first predict a set of binding sites in the normal
way and then filter out those predictions where the aver-
age value of a conservation track within the binding sites
is less than some threshold. Likewise, the process of “re-
peat masking”, which is often performed prior to motif



Figure 1 MotifLab’s graphical user interface. The screenshot shows MotifLab’s graphical user interface with three data panels to the left and
with the sequence browser to the right taking up most of the screen space. The top data panel contains the feature datasets in the order they
are visualized as tracks in the sequence browser, the middle data panel contains the motifs and modules, and the bottom panel contains
miscellaneous data objects that to not belong in the first two panels. Features and motifs that are greyed out in the data panels are hidden from
view in the sequence browser. The bottommost sequence shows a motif track in “close-up mode” which is activated at zoom-levels above
1000%. The binding sites are shown with superimposed “match logos” where the base matching the DNA sequence in that position is shown in
colour and the other three bases are greyed out.
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discovery, can easily be accomplished by limiting the
“mask” operation to bases that lie within regions in a
track containing known repeats. Conditions offer an easy
way of integrating information from several features,
and they can be made arbitrary complex by combining
multiple individual conditions with Boolean operators.
Analysis of regulatory sequences usually involves mul-

tiple steps and requires several operations to obtain and
pre-process data, discover motifs and binding sites and
post-process and analyse the results. To keep track of
what is being done, MotifLab provides functionality that
allows users to automatically record every step they per-
form in a protocol. The protocol is written in a struc-
tured format and includes information about which
operations have been executed, as well as details about
their parameters, conditions and constraints. The proto-
col can thus serve as a form of documentation of the
analysis process, but more importantly, it also makes
MotifLab able to automatically apply the same workflow
to other datasets as well, or to restore a previous session.
Protocols can alternatively be written and edited manu-
ally, either in external text editor programs or in Motif-
Lab’s own internal protocol editor. By supplying a
protocol script describing the full analysis workflow, it is
possible to run MotifLab in “batch mode” from a com-
mand line without starting up the graphical user inter-
face. This also allows MotifLab to be incorporated as a
component in larger analysis pipelines.
MotifLab’s graphical user interface promotes interactive

data exploration, and multi-level undo/redo-functionality
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provides users the opportunity to experiment with various
operations and try out different parameter settings for
these without having to worry about making irreversible
changes to the data. Unlike some other workbench sys-
tems, MotifLab does not maintain an explicit history rec-
ord which keeps track of all changes made to data and
provides access to earlier states. However, when data is
updated through the use of operations, the results can al-
ways be stored in a new data object under a different
name rather than replacing the original object. This way,
the original data can be kept intact and used for other pur-
poses as well. It is also possible to save the entire state of
MotifLab to a single “session file” to continue working on
an analysis at a later time.

Motif discovery
Discovering motifs and searching for transcription factor
binding sites within sequences are some of the primary
functions of MotifLab. However, MotifLab is not actually
capable of performing motif discovery by itself but relies
on external programs installed on the user’s computer to
accomplish such tasks. This makes MotifLab flexible
with respect to local software preferences or novel tools.
In order for MotifLab to communicate with external
programs, they must conform to standard data formats
for input and output and their interfaces must be
described in XML-based configuration files. MotifLab
already supports several popular motif discovery tools,
including AlignACE [24], BioProspector [25], MDscan
[26], MEME [27], MotifSampler [28] and Weeder [29],
and more tools will continuously be added (visit the
MotifLab web site for a complete and updated list).
Many of the supported programs have also been gath-
ered in a central repository so they can be downloaded
and installed from within MotifLab.
MotifLab has separate operations for performing motif

scanning, where external programs are provided with a
collection of predefined motifs and should return a re-
gion dataset containing predicted binding sites for these
motifs, and de novo motif discovery, where the programs
should discover both the binding sites and the motifs
themselves. In addition, a third operation offers support
for ensemble methods which can take predictions from
other methods as input and combine these into poten-
tially more reliable predictions.
Tracks with predicted binding sites are called motif

tracks, and they have a special status in MotifLab be-
cause of the connection between the binding site regions
and the motif objects associated with these sites. This
enables the sequence browser to visualize binding sites
with motif logos superimposed on the regions (as can be
seen in the bottom sequence in Figure 1), and clicking
on a binding site will bring up additional information
about the motif.
Using positional priors to guide motif discovery
Motif discovery is a challenging problem since it involves
searching for short and often degenerate patterns embed-
ded in potentially long sequences. However, some parts of
the sequences are more likely to contain functional bind-
ing sites than others, such as regions where the chromatin
has an open conformation or sites that have been con-
served throughout evolution. Some motif discovery pro-
grams allow users to limit the search space by masking
out parts of sequences and thereby excluding them com-
pletely from further consideration. However, this approach
might be considered too strict, since the excluded regions
could, in fact, contain functional binding sites that will in-
evitably be destroyed by the masking procedure. A more
flexible alternative is to construct a positional priors track
wherein each sequence position is assigned a score or
probability value reflecting a prior belief that the position
could be part of a binding site. Such a track can be used
to guide motif discovery programs by biasing the search
towards regions with higher probability of containing true
sites. Many types of information can be represented using
positional priors, for instance phylogenetic conservation
[30], nucleosome occupancy [31], properties of the DNA-
helix [32] and epigenetic marks [33], and information
from many different sources can be combined into a sin-
gle priors track [34]. Positional priors are currently only
supported directly by a few motif discovery and scanning
programs, including PRIORITY [35], MEME [36], FIMO
[37], ChIPMunk [38] and GRISOTTO [39], but they can
also be used indirectly in combination with other pro-
grams, for instance by employing positional priors to filter
out likely false predictions in a post-processing step.
Although tracks related to e.g. conservation, DNase

hypersensitivity and ChIP-Seq experiments do not actually
contain probability values in a strict statistical sense, such
tracks can often be used directly as positional priors (or
after minimal processing) since higher values in these
tracks correlate well with occurrences of functional bind-
ing sites. For other types of features the relationship might
not be so direct, and more advanced processing will be
required to generate positional priors based on such fea-
tures. MotifLab is an extension of an earlier program
called PriorsEditor [40], which was developed specifically
for creating and using positional priors tracks for motif
discovery. Many of the operations provided by MotifLab
are therefore related to transforming and combining fea-
tures to facilitate manual construction of positional priors
tracks, for instance to make weighted combinations of
several tracks. Creating positional priors tracks manually
can be beneficial if you want to utilize specific biological
knowledge or want to set up a track with clearly defined
focus. For example, if you have a set of known binding
sites for a single transcription factor and want to look for
potential interaction partners for this factor, you can
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create a track which focuses the search to the vicinity of
these sites, possibly adjusting the track further, for in-
stance by assigning increased weight to conserved regions.
Compared to PriorsEditor, MotifLab offers several new

functions to work with positional priors, including an op-
eration to convert a regular priors track into a discrimina-
tive prior (as described in [31]) and analyses to evaluate
the potential merit of priors tracks. The most important
new addition, however, is the introduction of “Priors Gen-
erators” that can be used to generate positional priors
automatically based on information from various features.
A Priors Generator is basically just a machine learning
classifier that can be trained to predict whether or not a
position in a sequence would be expected to lie within a
transcription factor binding site depending on the values
of relevant features at that position. MotifLab provides a
simple “wizard” to guide users through the steps required
to configure a new Priors Generator, such as selecting the
target and input features, setting up a training dataset and
finally training the classifier and saving the result. Once a
Priors Generator has been created, it can be used to gen-
erate positional priors for any sequence as long as the
required input features are available. Although Priors
Generators were introduced primarily for the prediction
of transcription factor binding sites, they can just as well
be trained to predict other region-based features in the
same manner, provided that a reasonable correlation be-
tween the target feature and the input features can be
expected.

Module discovery
Co-occurrence of motifs in modules represents a higher
level of cis-regulatory organization that can be exploited
to improve motif prediction, as binding sites for interact-
ing factors which appear in close proximity to each
other are less likely to represent spurious motif occur-
rences. MotifLab allows motifs to be annotated with in-
formation about known interaction partners, and one
way to utilize this information is simply to filter out pre-
dicted binding sites that do not have sites for potential
partners within some given distance.
Regulatory modules can also be modelled explicitly in

MotifLab with their own data type analogous to single
motifs. A module is made up of multiple constituent
motifs along with optional constraints on their order,
their orientations relative to each other and the distances
between them. Because public motif databases often
contain several alternative motif models for the same
transcription factors, MotifLab permits each constituent
motif in a module to be represented by collections of
motifs in order to achieve greater sensitivity when per-
forming module scanning.
As for single motif discovery, MotifLab provides separ-

ate operations to scan sequences for matches to
predefined modules and to search sets of sequences to
identify groups of motifs that might represent novel
modules. Again, both of these operations rely on exter-
nal module discovery programs to do the actual work.

Statistical analyses
The analyze operation is a versatile operation that can
be employed to perform a number of different statistical
analyses ranging from simple data comparisons to more
elaborate analyses like motif overrepresentation studies.
It will often be used to produce the final reports for an
analysis session, but it is also useful for providing rapid
answers to simple questions that might arise when work-
ing with datasets, such as “what is the GC-content of
these DNA sequences”, “do these two collections share a
significant overlap”, “is property X correlated with prop-
erty Y” or “is the value of this numeric track higher
within some regions than outside”.
The results from the analyses can be output either as

HTML-documents, with nicely formatted tables and
images, or in a “raw text” format suitable for parsing by
other programs. Individual results can also be extracted
from analysis objects and turned into other types of
objects for use elsewhere. For example, if you have per-
formed an analysis to determine the number of times
each motif occurs in a sequence set (“count motif occur-
rences”), you can extract these counts as a numeric map,
or you can make a motif collection containing the motifs
that were significantly overrepresented in the sequences
and use this in another analysis.
Some analyses, like the previously mentioned “count

motif occurrences”, will generate individual results for each
motif, module or sequence, and these results are presented
in interactive tables that are linked to the corresponding
data items. This makes it possible to e.g. highlight entries
in the tables that are members of different collection
objects, or to highlight corresponding elements in the se-
quence browser based on selections made in the tables.
For example, when examining the results from a motif
overrepresentation analysis, users can select the top most
significant motifs from the table and then choose “Show
only these motifs” from a context menu to visualize only
the binding sites for these motifs in the sequence browser.
The tables are therefore not merely static presentations of
the results, but can be used as a starting point for further
exploration of the data. If the tables contain motifs, the
motif logos will always be included in a separate column.
This is very useful, since rather than just listing numerous
motif identifiers or names of transcription factors the user
may or may not be familiar with, the logos enable users to
immediately identify properties of the corresponding
motifs and see similarities between them.
Results from multiple analyses can be collated into

“meta-analyses” by extracting selected columns from
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individual analyses and combining them into larger tables.
Information from different types of analyses can be com-
bined in this way to produce more comprehensive reports,
or results from the same analysis run multiple times with
different parameter settings can be juxtaposed to assess
the impact of varying these parameters.

Interactive tools
In addition to the data manipulation and analysis cap-
abilities provided by operations, MotifLab also includes
a few tools aimed at interactive exploration of data. Un-
like operations, these tools cannot be controlled by
protocol scripts, and they are only available through the
graphical user interface. Many of the tools are intended
to aid visual inspection of motif tracks, for instance by
highlighting binding sites with selected properties in the
sequence browser.
The Motif Browser and Module Browser are two con-

venient tools for managing your motif and module librar-
ies. These browsers will show an overview of all motifs or
modules currently known to the system. The entries are
displayed in a table with three columns containing the
name of the motif/module, a graphical logo representa-
tion, and a third property that can be chosen by the user
(see Figure 2a). A filter box enables users to search for en-
tries with specific properties, for instance motifs asso-
ciated with a given transcription factor, motifs for factors
expressed in specific organisms or tissues, motifs contain-
ing a given consensus sequence, or modules containing a
specific constituent motif. The search filter can also be
coupled to the sequence browser so that only binding sites
for motifs or modules matching the selected filtering cri-
teria will be shown in the tracks.
The Motif Score Filter tool is basically just a slider

bar which is used to dynamically adjust a cut-off thresh-
old. Any binding site region whose score-property falls
below the selected threshold will be hidden from view in
the sequence browser. This tool can thus be used to
highlight sites with increasingly higher scores. Besides
the standard score-property, other values associated with
binding sites can be used for filtering as well, for in-
stance the average score of a numeric data track within
the binding site.
As previously mentioned, MotifLab allows motifs to be

annotated with known interaction partners, and this in-
formation can be utilized by the Interactions Viewer to
visualize potential interaction networks directly within
motif tracks. When a user clicks on a binding site re-
gion, any binding sites within a chosen distance that are
associated with known interaction partners of the target
motif will be highlighted (Figure 2b). The network can
also be expanded to show several levels of interactions
in different colours. This tool is especially useful if you
already have a verified binding site that can be used as a
starting point to implicate additional predictions that
might be likely to represent functional binding sites.
Finally, the Positional Distribution Viewer will draw a

histogram based on the locations of all currently visible
regions in a selected track across all sequences (Figure 2a,
bottom). The histogram will be dynamically updated in re-
sponse to events that change the visibility of regions, mak-
ing it very useful in conjunction with other tools such as
the Motif Browser or Motif Score Filter.

Results
This section presents three examples of practical applica-
tions using MotifLab, which also illustrate some benefits
of incorporating additional information when analysing
regulatory sequences. Complete protocol scripts for these
examples are available from the MotifLab web site.

Example 1: Improving motif discovery with automatically
generated positional priors
We have previously published a suite of benchmark
datasets for single motif discovery (based on binding
sites annotated in TRANSFAC) where we made sure
that it would be at least theoretically possible to discrim-
inate the target motifs from the background sequence.
Nevertheless, when we tested the performance of the
motif discovery program MEME on these benchmark
sets, the results were not particularly encouraging [41].
In this example we use an updated version of the data-
sets (see Additional file 1) to demonstrate how informa-
tion about various sequence-related features can be
integrated into a positional priors track and used to
guide MEME towards the target motifs. The features
chosen as a basis for the priors track were: conservation,
conserved peaks, DNase hypersensitive sites, general
regions bound by transcription factors according to
ChIP-Seq data, CpG-islands, gene regions, coding
regions, repeat regions and regions with histone marks
H3K4me1 and H3K4me3. Since not all organisms are
annotated with these features at the present time, we
restricted the benchmark datasets to only consist of
sequences from human and mouse genomes. The
updated benchmark suite comprised 22 datasets, each
containing binding motifs for a particular transcription
factor and consisting of at least five sequences. We used
a cross-validation approach where a Priors Generator
based on a neural network classifier was trained on 21
of the 22 datasets and then used to generate a positional
priors track for the dataset that was held out. The priors
tracks were provided as input to MEME along with the
DNA sequences, and MEME was instructed to identify a
single motif with size between 8 and 16 bp in each data-
set. For comparison we also ran MEME with a uniform
priors track (effectively the same as using no priors) and
a priors track based solely on conservation.



Figure 2 Examples of interactive tools. a) The Motif Browser tool (top dialog box) has here been used to search for TRANSFAC motifs
containing the consensus sequence “CCAAT” (both orientations). The corresponding binding site predictions for the 15 motifs matching this
criterion are shown as red boxes in the sequence browser partly visible in the background. The Positional Distribution Viewer tool (bottom
dialog box) shows a histogram of the locations of these binding sites, and the prominent peak indicates that the majority of the sites are located
within 200 bp upstream of the TSS. b) The Interactions Viewer tool. A part of a motif track is shown in close-up mode at 1200% scale (binding
sites are displayed here without motif logos). The black binding site in the middle is the target site selected by the user and the red sites on
either side have been highlighted by MotifLab as binding sites for transcription factors that are known to interact with the target factor(s) from
other locations. All other binding sites are greyed out.
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Figure 4 Predictive capabilities of individual features. These
ROC-curves illustrate the ability of both the auto-generated
combined priors and the 10 individual features the combined priors
were based on to discriminate between sequence positions that are
part of binding sites or part of the background sequence. The
numbers in the legend box are the area under the curve (AUC)
values for each feature.
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The results, combined over all datasets, are shown in
Figure 3. Detailed results for individual datasets are pro-
vided in Additional file 1. As can be seen from the bar
chart, the performance of MEME when not relying on any
additional information was rather low, with an average CC
score of 0.06. However, the performance increased about
3- to 4-fold for most metrics when the automatically gen-
erated positional priors were used to guide the search.
Many of the target binding sites in the benchmark were
located in conserved regions, and conservation was the
most informative single feature with respect to binding
site prediction. Conservation also contributed most to the
specificity of the combined priors, while the other features
primarily helped to elevate the basal prior probability
slightly within some broader parts of the sequences.
Figure 4 illustrates the ability of the individual features
to discriminate between binding sites and the back-
ground sequence.
Even when positional priors were used, the results

were far from perfect. There are several reasons for this:
1) for about half of the datasets MEME failed to predict
the correct target motif as its top candidate, 2) in some
datasets where MEME did identify the correct motif, al-
ternative binding sites for the motif were selected in-
stead of the annotated targets in a few sequences, and 3)
even if MEME predicted the basic motif and binding
sites correctly it did not always predict the correct size
of the motif, which could have significant impact on the
nucleotide-level statistics. A closer look at the predicted
sites and motifs revealed that MEME found the target
motif (or a resembling one) in 3 out of the 22 datasets
with the uniform priors. This number increased to 8
when conservation was used to guide the search, and
with the auto-generated priors MEME found the target
Figure 3 Results from example 1 – Single motif discovery benchmark
discovery benchmark when guided respectively by a uniform positional pri
priors track made by automatically integrating information from several fea
by combining all sequences from the 22 datasets into one large dataset an
target sites. The first eight statistics are nucleotide-level statistics whereas th
overlapping with at least 25% of a target site). Due to the stochastic nature
priors track could vary slightly depending on the training. We therefore tra
generated by each of them. The bars show the average scores with standa
motif in about 9 to 11 datasets (depending on the par-
ticular Priors Generator used).

Example 2: Module discovery
In a second benchmark study we evaluated the perform-
ance of eight published module discovery methods on a
novel benchmark suite [7]. The suite consisted of 10
datasets with pairs of motifs appearing together in
. The figure shows the performance of MEME on the single motif
ors track, a priors track based only on conservation, and a combined
tures with the use of a Priors Generator. The statistics were calculated
d measuring the overlap between the predicted binding sites and the
e last statistic is the site-level sensitivity (number of predicted sites
of the algorithm used to train the Priors Generator, the combined

ined 20 different Priors Generators and ran MEME with priors tracks
rd deviations over the 20 runs.
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multiple sequences and two additional datasets with lar-
ger heterogeneous modules involved in regulation in
liver and muscle tissue respectively. Most of the meth-
ods we tested relied on a first step to scan sequences
with a provided motif collection to find a set of candi-
date binding sites, and then they proceeded to search
through these candidates in order to identify potential
modules. The results showed, not surprisingly, that the
task of identifying the target modules became harder as
more candidate motifs were considered. In this example
we demonstrate how the performance of a module dis-
covery tool can be improved by utilizing additional in-
formation to reduce the number of candidate sites in a
pre-processing step.
To generate the candidate datasets we first scanned

the benchmark sequences with 1363 motifs from
TRANSFAC PRO using a rather sensitive threshold
(80% match) to ensure that all the target binding sites
were recovered. Then we filtered the predicted sites
according to various criteria to produce different candi-
date sets. As filtering criteria we used increasing levels
of average conservation within the sites (more than 0%,
10%, 30% and 60%) or required that each site should be
located nearby a site for a known interaction partner
(within 10 or 20 bp). For the “liver” and “muscle” data-
sets we also filtered sites for transcription factors that
were not known to be expressed in the respective tis-
sues. In addition we tried several combinations of these
criteria. The remaining binding site predictions for each
dataset were provided as input to the module discovery
tool ModuleSearcher [42].
Results for two of the datasets are shown in Figure 5,

and the remaining results are included in Additional file
1. For all 12 datasets there was some form of additional
information that would lead to better performance when
used to filter candidate sites. However, in some cases,
there were filtering criteria that would actually result in
lower performance. This was especially true for the data-
sets “CEBP-NFkB” and “IRF-NFkB” (see Additional file
1: Figures S2d and S2g). These two datasets were the
easiest in the original benchmark, and ModuleSearcher
did a good job of discovering the target modules even
without filtering the candidate sites. However, since only
about half of the binding sites comprising these modules
were conserved, using a strict conservation criterion made
it impossible to correctly discover the target modules.
As an additional control we also tried to filter the can-

didate datasets completely at random to verify that any
increase in performance was not simply due to a general
reduction in the number of candidate sites. Filtering sites
at random would in fact lead to better results in many
cases, most notably for datasets where the baseline per-
formance was poor. This is perhaps not so surprising,
since the vast majority of the candidate sites would be
considered to be false positives anyway according to the
benchmark datasets. However, the increase in perform-
ance was usually not as great as when more sensible fil-
tering criteria were employed.

Example 3: Identifying TFs regulating genes after
forskolin treatment
Forskolin is a diterpene which is known to raise the level
of cAMP (a second messenger) within cells [43], and this
will in turn trigger many different responses, including
activation of various transcription factors. HEK293 cells
were treated with forskolin and the effect on gene ex-
pression was measured at different time points using
microarray technology. Genes that were significantly dif-
ferentially expressed compared to untreated cells were
identified and sorted according to their peak time point.
Of the 860 genes in total whose transcript levels were
changed by the forskolin treatment, 270 had a peak dif-
ferential expression after 2 hours (108 upregulated and
162 downregulated). We obtained promoter sequences
for these 270 genes spanning 2000 bp upstream to
200 bp downstream of the transcription start site and
performed motif scanning with 931 vertebrate motifs
from TRANSFAC PRO.
The standard procedure for identifying transcription

factors that might be involved in regulating a set of genes
is to identify motifs that are significantly overrepresented
in the dataset relative to a realistic background frequency.
To estimate an expected frequency of each motif, we used
a 3rd-order background model based on human promoter
sequences to create a set of artificial control sequences
and performed motif scanning in those sequences using
the same parameter settings as before. We then derived
the frequencies of the motifs from these control sequences
and stored the results in a numeric map. Finally, we
counted the number of times each motif occurred in the
target dataset and used the expected motif frequencies to
calculate p-values for overrepresentation with a binomial
test. 113 motifs were found to be overrepresented at a sig-
nificance threshold of 0.05 (Bonferroni corrected to
5.37 × 10 –5 by dividing with the number of motifs consid-
ered). Many of the motifs with lowest p-values were GC-
rich, which might stem from the fact that the sequences
in the target dataset had a slightly higher GC-content than
the control sequences used for comparison. The transcrip-
tion factor CREB, which is a well-known cAMP-respon-
sive factor but does not have a particularly GC-rich motif,
was only ranked as number 57 according to p-value.
An alternative to overrepresentation is to look for

motifs whose sites share similar properties across several
sequences, for instance motifs that tend to appear at the
same distance from the transcription start site, or motifs
that are consistently conserved in many sequences.
We therefore ran two additional analyses where we first



Figure 5 Results from example 2 – Module discovery benchmark. This figure shows the nucleotide-level performance of ModuleSearcher on
two of the datasets from the module discovery benchmark. Since ModuleSearcher is based on a non-deterministic algorithm, we ran it 10 times
on each dataset. The bars show the average scores with standard deviations. The “baseline” scores reflect the performance when no pre-
processing was performed to filter candidate binding sites, and the other scores are for different filtering criteria and combinations thereof.
“C10_I10” means that the sites were filtered according to both the “Conservation10” and “Interacting10” criteria etc. a) The “Sp1-Ets” dataset was
one of the hardest in the original benchmark, but filtering sites based on either conservation or potential interacting sites nearby significantly
improves the performance of ModuleSearcher on this dataset. b) For the “liver” dataset we also filtered binding sites for motifs that were not
known to be expressed in liver (“Tissue”) and combined this criterion with different requirements on conservation level (“C10_T” etc.).
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calculated the average conservation level for each motif
across all its binding sites and then analysed the pos-
itional distribution of the sites, using kurtosis as a simple
measure of clustering.
Not surprisingly, the motifs that scored highest on

average conservation were those that only occurred once
or twice and their binding sites just happened to lie
within conserved regions. These motifs are not interest-
ing for the dataset as a whole, however, since they are at
best involved in regulating only a few genes. The most
interesting motifs would be those that score high on
conservation and kurtosis but still occur often enough
to have a significant overrepresentation p-value, so we
combined these three properties into a single measure
using rank sum.
According to this combined measure, CREB (along with

the related factor ATF which binds to the same motif) was
ranked on top, followed by the ubiquitous factor Sp1 which
binds to the GC-box. Another significant transcription fac-
tor found was NF-Y which binds to the CCAAT-box. This
motif scored particularly high on kurtosis, and it is known
that functional binding sites for NF-Y tend to be located
between 60 to 100 bp upstream of the TSS [44]. NF-Y
is also known to cooperate with Sp1 to regulate some
genes in response to cAMP [45,46]. The two factors
NRF-1 and NRF-2 (nuclear respiratory factors) bind to dif-
ferent motifs, but both are ranked high and both have pre-
viously been implicated together with CREB in responses
to raised levels of cAMP [47]. Interestingly, many of the
sites for these two factors coincided with narrow peaks in
the conservation track whose size matched exactly the
width of the motifs. The fact that these sites were con-
served while the flanking sequence around the sites was
not is a strong indication that the sites might be functional.
Figure 6 shows the top ranking motifs from this analysis.

The full table is available on-line at the MotifLab web site.



Figure 6 Results from example 3 – Genes responding to forskolin treatment. Results from the forskolin-analysis output in HTML format. The
table is a combination of results from four different analyses performed in MotifLab. The “total”, “support” and “p-value” columns are from an
analysis that counts the number of times each motif occurs in the sequences and estimates the significance of overrepresentation (significant p-
values are highlighted in red). The “conservation” column is the average score taken from an analysis that compares the binding sites for each
motif to a selected numeric feature (here conservation). The “kurtosis” and “histogram” columns are from an analysis of the positional distribution
of the binding sites for each motif. The “group” column is from an analysis that compares the number of binding sites for each motif within
sequences from two different groups to see if some motifs are overrepresented in one group compared to the other. Here we compared the
group of upregulated genes to the downregulated genes. Motifs in the “A” and “B” groups (in red) were significantly overrepresented in the
upregulated sequences whereas motifs in the “D” group (in green) were overrepresented in the downregulated sequences. Motifs in the
“C” group (yellow) occurred at approximately the same rates in both groups. The table is sorted according to the combined ranks of p-values
(ascending), conservation (descending) and kurtosis (descending). Note that almost all top ranking motifs are preferentially located within a
narrow region upstream of the TSS, as indicated by the sharp peaks in the histograms around this position. Motif types are colour coded in the
left-most column (CREB/ATF motifs with boxes in red, SP1 in blue, NF-Y in yellow, nuclear respiratory factors in green, others in grey).

Klepper and Drabløs BMC Bioinformatics 2013, 14:9 Page 12 of 14
http://www.biomedcentral.com/1471-2105/14/9
Discussion
The examples given above, as well as previous publica-
tions by other groups, have shown that making use of
additional information might boost the performance of
motif and module discovery methods and help steer
them towards regulatory elements that are more likely
to be functional in a given context. However, relying
on the “wrong” data, or even using data in the wrong
context, can sometimes also have adverse effects. For
example, filtering predicted sites based on phylogenetic
conservation can lead to a higher proportion of true sites
among the remaining predictions, but this will inevitably
also remove any functional sites that are species-specific,
and therefore not conserved. Even “gold standard” data,
like DNase hypersensitive sites, should be used with
some caution, especially when applied across different
cell-types and conditions. To help users decide on which
types of data might be useful to consider, MotifLab
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includes several analyses to evaluate the merit of different
types of information and to benchmark the performance
of motif and module discovery methods. In fact, all the
performance evaluations in the previous examples were
performed within MotifLab, and the bar chart figures and
ROC-curves included in this paper were produced directly
from the analyses using the “output” operation.
Although many recent motif discovery tools can make

use of additional data, they are often limited in what
kind of data they can use and what they do with it, typic-
ally using information about known repeats to mask
sequences or conservation to filter predicted binding
sites. MotifLab allows users to incorporate many differ-
ent types of data and use it in any way they like. No kind
of information is treated as special compared to others
by MotifLab, and information is represented with a few
general data types. This means that it should be easy to
also incorporate new kinds of data that might be avail-
able in the future.
The ability of MotifLab to process data in arbitrary

ways using operations also sets this tool apart from most
other motif discovery workbenches. The program has
been designed so that users with some background in
the field of regulatory sequence analysis should be able
to rapidly learn how to perform standard tasks such as
obtaining promoter sequences, annotating them with
feature data and performing motif discovery or scanning.
But it should also be relatively easy to perform more
sophisticated pre- and post-processing tasks which
would otherwise often require writing custom scripts.
For the use case examples described in this paper, all the
data processing steps involved in the analyses were per-
formed within MotifLab itself.
MotifLab keeps all data objects in memory at all times

rather than relying on external storage solutions. In
addition, all operations are performed locally so most
processing tasks will execute relatively fast. Visualization
in the sequence browser is also very fast and responsive
since the system does not have to wait for individual
data segments to load from a server. This means that
the tool has not been designed primarily to handle ex-
tremely large datasets (e.g. full genomes), although it is
possible to apply it for genome-wide binding site predic-
tions if sufficient memory is available. However, Motif-
Lab is ideal for in-depth analysis of small to moderate
datasets ranging from a single sequence to a few hun-
dred (or even a few thousand) sequences, such as pro-
moter sequences from groups of co-expressed genes. It
is also very well suited for interactive, visual exploration
of datasets and for rapid hypothesis testing.

Conclusions
Although vast amounts of genomic annotation data are
now available to researchers who study transcriptional
regulation, it is not necessarily trivial to make good use
of this data for people who are not skilled in bioinfor-
matics programming. The MotifLab workbench pre-
sented in this paper was designed to make it simple for
users to obtain relevant data for sequences they want to
study and to use this information in combination with
existing motif discovery tools in many different ways.
The utility and versatility of MotifLab was demonstrated
through three practical analysis cases.

Availability and requirements
Project name: MotifLab
Project home page: http://www.motiflab.org
Operating system(s): MotifLab itself is OS-indepen-
dent, but some external tools used by MotifLab for motif
discovery etc. might only be available for some operating
systems.
Programming language: Java 1.6
Other requirements: None
License: None
Any restrictions to use by non-academics: None
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