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Abstract

of a neuron, reconstructing the 3D cell morphology.

produces better reconstructions.

Background: Automatic 3D digital reconstruction (tracing) of neurons embedded in noisy microscopic images is
challenging, especially when the cell morphology is complex.

Results: We have developed a novel approach, named DF-Tracing, to tackle this challenge. This method first
extracts the neurite signal (foreground) from a noisy image by using anisotropic filtering and automated
thresholding. Then, DF-Tracing executes a coupled distance-field (DF) algorithm on the extracted foreground
neurite signal and reconstructs the neuron morphology automatically. Two distance-transform based “force” fields
are used: one for “pressure”, which is the distance transform field of foreground pixels (voxels) to the background,
and another for “thrust”, which is the distance transform field of the foreground pixels to an automatically
determined seed point. The coupling of these two force fields can “push” a “rolling ball” quickly along the skeleton

Conclusion: We have used DF-Tracing to reconstruct the intricate neuron structures found in noisy image stacks,
obtained with 3D laser microscopy, of dragonfly thoracic ganglia. Compared to several previous methods, DF-Tracing

Background
In neuroscience it is important to accurately trace, or re-
construct, a neuron’s 3D morphology. The current neuron
tracing methods can be described, according to the neces-
sary manual input, as being manual, semi-automatic or
fully automatic. Neurolucida (MBF Bioscience), a largely
manual technique, uses straight line-segments to connect
manually determined neuron skeleton locations drawn
from the 2D cross-sectional views of a 3D image stack. In
contrast, semi-automatic methods need some prior infor-
mation, such as the termini of a neuron, for the automated
process to find the neuron skeleton. For example, the
semi-automatic Vaa3D-Neuron 1.0 system (previously
called “V3D-Neuron”) [1,2] has been used in systematical
and large-scale reconstructions of single neurons/neurite-
tracts from mouse and fruitfly [3,4].

However, for very complicated neuron structures and/
or massive amounts of image data, the semi-automatic
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methods are still time-consuming. Thus, a fully auto-
mated tracing method is currently highly desired. Early
fully automated methods used image thinning to extract
skeletons from binary images [5-7].

These methods iteratively remove voxels from the seg-
mented foregroun region surface of an image. In addition,
neuron-tracing approaches based on pattern recognition
were also developed ([8-13]). However, in cases of low
image quality, the tracing accuracy may be greatly
compromised. The model-based approaches, such as those
that use a 3D line, sphere or cylinder for identifying and
tracing the morphological structures of neurons, are rela-
tively more successful ([14-17]). These methods can also
be guided using both global prior information and local
salient image features ([2,18,19]). While the basis of most
existing methods is to grow a neuron structure from a
predefined or automatically selected “seed” location, the
all-path pruning method [20] that iteratively removes the
redundant structural elements was recently proposed as a
powerful alternative.

Despite such a large number of proposed neuron tracing
algorithms ([14,21]), few can automatically trace compli-
cated neuron structures set in noise-contaminated
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microscopic images (Figure 1 (a) and (b)). Here we report a
new method, named DF-Tracing (‘DF for “Distance Field”),
which meets this challenge. We tested DF-Tracing with
very elaborate images of dragonfly neurons. Without any
human intervention, DF-Tracing produced a good recon-
struction (Figure 1 (c) and (d)), comparable in quality to
that of human manual work.

Method
A reconstructed neuron (e.g. Figure 1 (c) and (d)) has a
tree-like structure and can be viewed as the aggregation
of one or more neurite segments. Each segment is a
curvilinear structure similar to Figure 2. When a neuron
has multiple segments, they are joined at branching
points. The neuron structure can thus be described with
a SWC format [22], where there are a number of recon-
struction nodes and edges. Each node stands for a 3D
spatial location (x,y,z) on the neuron’s skeleton. Each
edge links a node to its parent (when a node has no par-
ent, then its parent is flagged as -1). The cross-sectional
diameter of the neuron at the location of each node is
also calculated and included in SWC format. Therefore,
to produce a neuron reconstruction, two key compo-
nents are (a) determination of the skeleton, i.e. ordered
sequence of reconstruction nodes, of this neuron, and
(b) estimation of the diameters at each node’s location.
An intuitive way to trace a neuron is to start from a
predefined or automatically computed location, called
“seed”, to grow the neuron morphology until it covers
all visible signals in the image. If the image foreground
region that corresponds to a neuron can be well extracted,
the problem reduces to determine the complete set of
reconstruction nodes, ie. skeletonize the neuron, using
the foreground mask of the image, followed by estimating
the cross-sectional diameter of all reconstruction nodes.
We follow this intuition and design the following
three-stage neuron-tracing algorithm:

(Step 1) Enhance line-like structures in the image,
followed by adaptive thresholding to remove
non-neuron background and noise. (2.1)

(Step 2) Skeletonize the neuron using coupled distance
fields. (2.2)

(Step 3) Assemble multiple spatially disconnected pieces
of the traced neuron into the final result. (2.3)

Preprocessing: extraction of neuron signal
Since a neuron segment looks like a line or a tube
(Figure 2), anisotropic filtering of image noise can en-
hance the neuron signal in an image. We use nonlinear
anisotropic filtering for signal enhancement, followed by
automated thresholding.

The key idea of anisotropic filtering is to calculate
image features that signify the orientation preference of
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local image areas. We follow the classic Hessian matrix
based method, which detects the curvilinear structures
in images [23]. Let u(x,5,2) stand for an image, where x,
9, z are the spatial coordinates. We use Vu to denote the
image intensity gradient. A filtered image pixel will take
the following value v,

v=exp(—(|Vul)*)f (). (1)

The function flu) is defined using the Hessian matrix
Uxx Uyy Uxg

of each image pixel u, H = | ttyx Uy, Uy,
Uzx Uzy Uy

, where H

is indeed symmetric. Of note, the Hessian method has
been well used in medical image computing, especially
vessel enhancement and segmentation ([24,25]).

To do so, we compute the eigenvalues of H, denoted as
A Ay, and A3 (A7 = A, = A3). Interestingly, when the brighter
pixel intensity indicates the stronger signal and a line-look
structure is present at the current pixel location, there is
A ~0and A; >> {Ay, A3} [23]. Therefore, we explicitly detect
if such conditions will be met for each pixel, and define the
following function f{u).

f<u> _ Z? =1 di/ll‘kl‘ (Alzo,/l1>>ﬂf2,/11>>/13)
0 (otherwise)

(2)

where o; (i = 1, 2, 3) are pre-defined coefficients («;=0.5,
(X2=O.5, 0(3225), k[ = exp(—Alz/Zi 1/1[2).

After signal enhancement, extracting the neurite fore-
ground using global thresholding is straightforward. We
determine the threshold with the following iterative
process. First, the average image intensity is taken as a
candidate threshold. We use this candidate threshold to
divide the image into two portions: pixels with higher, or
lower intensity. We then calculate the average of the two
mean intensity values of these two portions and use it as
a new candidate threshold. This process is iterated until
the candidate threshold value no longer changes. This
converging threshold is used as the final global thresh-
old: any image pixel with intensity higher than this
threshold is part of the so called “image foreground”,
which is assumed to contain the neuron signal.

Lastly, since the 3D-extracted image foreground could
contain multiple neurite areas and noise, neuron recon-
struction is carried out in individual areas, which are
“stitched” together via post-processing. Discarding the
very small pieces (smaller than 10 pixels) removes the
noise still present in the image foreground.
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Figure 1 Examples of 3D confocal images containing complicated dragonfly neurons and heavy noise. (a) A dragonfly neuron with highly
complex structures. (b) Noise-contaminated image. (c) (d) DF-Tracing reconstructions (red color, only skeletons are shown) of (a) and (b), respectively.

Neuron tracing using coupled distance fields

Figure 2 shows that the skeleton of a neuron segment is
essentially the medial axis of this segment. How can the
medial axis be recovered? Possibly the simplest way is
image thinning, which unfortunately has two well-known
problems: (a) sensitivity to orientation of the image region
of interest, and (b) unnecessary forks of the skeleton at
the ends of the image region. Another intuitive approach
is to use tube fitting (e.g. [17]) or a rolling ball fitting.
Below, we present a simple method that works robustly
without a parameter.

Distance transform of an image region R with respect
to another image region T is defined as for each image
pixel in R, replace its intensity using the shortest
distance to T. Typically T is selected as the image

background, but it can also be selected as any specific
image pixel. We have the following observation of
Figure 2.

« In the distance transform of a neuron segment with
respect to an arbitrarily selected seed location, s, at a tip
point of the neuron segment, the distance-transformed
pixel intensity has a larger value than those of the nearby
foreground pixels. In another word, any tip/terminal
point in a neuron structure will have a local maximum
on the boundary pixels in this distance field.

« In the distance transform of a neuron segment to the
image background, the boundary pixels will have value
1 and the skeleton points will form a ridge of local
maximal values, compared to all other image pixel

indicate the thrust and pressure forces of our neuron tracing method.

Figure 2 Schematic view of a neuron segment. Circles/spheres: reconstruction nodes, of which their centers (red dots) indicate the skeleton
(blue curve) of this segment. Each reconstruction node has its own cross-sectional diameter estimated based on image content. F; and £,
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Figure 3 Image denoising results using 3D confocal images containing dragonfly neurons. (a) Original images. (b) Our anisotropic filtering
result. (c) Gaussian filtering.

Figure 4 Results from the DF-Tracing method using 3D confocal images containing dragonfly neurons. (a) The 3D maximum intensity
projection of the input data and the neuron tracing results (red). (d) The cross-sectional view (image intensity brightened for better visualization).
(b) (c) and (e) the zoom-in the respective areas.
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Figure 5 Differences between DF-Tracing (red) and NeuronStudio (green) tracing methods using 3D confocal images containing
dragonfly neurons. (a) The 3D view. (b) The zoom-in the respective areas (c) The cross-sectional view. In all sub-figures, the skeletons are
overlaid on top of the image. We intentionally offset these two reconstructions a little bit for clear visualization.

locations that are orthogonal to the tangent direction
of the skeleton. Extraction of the ridge will skeletonize
the neuron segment.

« Assume we have a rolling ball that is pushed forward
by these two coupled distance “force” fields. It can be
seen that this ball will move toward the skeleton from
any starting location and then along the ridge curve.
Following this trajectory we can extract the neuron
skeleton quickly. For this reason, in Figure 2 we call these
two force fields “thrust” (for F;, which is the distance
transform field of the foreground pixels to an
automatically determined seed point) and “pressure” (for
F,, which is the distance transform field of foreground
pixels (voxels) to the background) fields, respectively.

« Multiple traced neuron segments can be merged at
their convergence point to reconstruct the tree-like
structure of a neuron.

Based on these observations, we have designed the
following DF-Tracing algorithm:

(1) Detect neuron region(s) in 3D using method in 2.1.
Multiple spatially non-connected neuron regions
may be produced.

(2) For each neuron region R, find the set of boundary
pixels B, which is defined the set of pixels having
at least one neighboring pixel (26-neighbors in 3D)
as the background.

(3) Arbitrarily select a seed location, s, from the
boundary pixel set B.

(4) Compute both the thrust and pressure distance
fields with respect to s and B, using the entire
image.

(5) In the thrust field, detect the set of all local
maxima locations, M.

(6) For each point ¢ € M, set an initially empty
skeleton C(¢) to {¢}. Denote the last added skeleton
point as p (initially p = ¢).

(7) Denote mi(p) = R N Q(p) (Q is the 26-neighborhood
of a pixel in 3D). For all pixels g € ni(p), find g* that
has the largest pressure field value.

(8) If g* also has a lower thrust field value (note that
now we are back-tracing a path) than p, then add
q* to the skeleton set.

(9) Assign g* to p, and repeat steps 6 and 7 until the
seed location s is met. This completes the skeleton
of a neuron segment C(z).

(10) Merge the common portion of multiple skeletons.

Figure 6 Differences between DF-Tracing (yellow) and iTube (red) tracing methods using 3D confocal images containing dragonfly
neurons. (a) The 3D view. (b) The zoom-in the respective areas (c) The cross-sectional view.
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1.0. (b) NeuronStudio. (c) iTube. (d) DF-Tracing.

Figure 7 Results of different tracing methods using a binary confocal image of a fruitfly olfactory projection neuron. (a) V3D-Neuron

(11) Use the pressure field value of skeleton points as
the respective values for the radius estimation.

(12) Assemble multiple neurite reconstructions for all
neuron regions using the post-processing method
in 2.3.

In its implementation, our DF-Tracing algorithm can be
further optimized. Indeed, steps 6-9 can be parallelized.
Instead of finding the complete skeleton for each terminal
point ¢ € M sequentially, we can grow every skeleton one
step at a time in parallel. A skeleton stops growing when
either the seed location or any other skeleton pixel loca-
tion has been reached. This process iterates until all skele-
tons stop growing. The parallelized algorithm will also
avoid step 9, i.e. merging common portions of skeletons.
In addition, to save computational time when calculating
the distance fields, we use the city block distance [26]
instead of the Euclidean distance.

Post-processing: produce the complete reconstruction

The neuron-tracing algorithm in 2.2 can return a tree-
like structure for a single 3D connected neuron region.
In case that the neuron foreground extraction (2.1) pro-
duces multiple spatial disconnected neuron regions, we
will have multiple neuron trees. Often these pieces need
to be assembled into a full reconstruction. Since a gap
between two disconnected neuron regions is typically
small; only the nearby pieces with a separation smaller
than two times the radius of the nearest nodes are

Table 1 Number of branches of different methods

Method V3D-Neuron  iTube NeuronStudio DF-

1.0 Tracing
Number of 17 15 9 17
branches

connected. Then, an arbitrarily selected “root” location
(usually the first leaf node in the SWC representation) is
used to sort the order (i.e. parent-children relationship)
of all neuron reconstruction nodes. Finally, pruning the
very short branches whose lengths are less than two
pixels completes the reconstruction.

Pros and cons of DF-tracing, and comparison to other
methods

DF-Tracing is an efficient, deterministic, and essentially
parameter-free method (for the core part of coupled dis-
tance fields). Compared to many previous neuron-tracing
methods, this new method avoids the complication intro-
duced by the previous need to select parameters. In
addition, DF-Tracing is a local search method, similar to
the major body of existing neuron-tracing techniques.
While local search cannot guarantee the global correct-
ness of the final reconstruction, compared to those use
the global guiding information (e.g. Vaa3D-Neuron 1.0),
DF-Tracing has the advantage that it uses a smaller
amount of computer memory. Moreover, we note that the
termini produced in the thrust field (step 5 in the
DF-Tracing algorithm) could be used as global guiding
prior information for the Vaa3D-Neuron system. In that
sense, the steps 6-10 in DF-Tracing is basically equivalent
to the shortest path algorithm in the graph-augmented
deformable model [2]. However, DF-Tracing does not
need to literally produce the graph of image pixels and
thus uses less computer memory.

DF-Tracing has several caveats that deserve further
improvement. First, it is based on distance transform,
which may be sensitive to neuron boundary and also
anisotropic neuron structure in 3D images. This can be
refined in the future by (1) replacing distance transform
with a more robust statistical test method, similar to the
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a

(c) NeuronStudio. (d) iTube. (e) DF-Tracing.

Figure 8 Results of different tracing methods using a grayscale dragonfly confocal image. (a) The 3D view. (b) Vaa3D-Neuron 1.0.

diameter estimation method used in Vaa3D-Neuron and
(2) smoothing the contour/edge of the extracted image
foreground to make the distance transform more robust
to image noise. Second, the post-processing of DF-
Tracing can be further improved by adding machine
learning methods (e.g. [27]). Third, the preprocessing
step can be further improved using a multi-scale aniso-
tropic filtering approach [23].

Results and discussion
To assess the DF-Tracing method, we consider several
datasets, especially one consisting of 3D confocal images
of dragonfly neurons (species L. luctuosa), which have very
complicated neuron arborization patterns, heavy noise
and uneven image background (Figure 1 (a) and (b)). We
also tested DF-Tracing using neuron images from other
organisms, such as the fruit fly (species D. melanogaster).
We compared DF-Tracing with existing automatic ap-
proaches, especially NeuronStudio [28] and iTube [17],
and the semi-automatic approach Vaa3D-Neuron 1.0 ([1]).
We tested the neuron-tracing algorithm on 3D confocal
image stacks of neurons in dragonfly (data set was
obtained from [29]) and Drosophila (data from the Digital

Table 2 Number of branches of different methods

Method V3D-Neuron  iTube NeuronStudio DF-

1.0 Tracing
Number of 27 6 3 27
branches

Reconstruction of Axonal and Dentritic Morphology (DI-
ADEM) competition (http://www.diademchallenge.org).

Neuron signal enhancement and neuron tracing

Our dragonfly image stacks are noisy and have low con-
trast (Figure 1(a) and (b), thus they are good test cases
to examine the neuron signal enhancement method in
2.1. We added Poisson noise to the original image and
compared the results to Gaussian-filter based denoising.
As shown in Figure 3, our anisotropic filtering method is
able to produce much better peak signal-to-noise ratio
(PSNR) ([30]). Visually, our method also preserves and
enhances the neurite signal significantly.

We then used DF-Tracing to trace the neuron in
Figure 3 (a). After filtering, there are many disconnected
neuron regions (Figure 3 (b)). DF-Tracing successfully
traced all individual regions and merged the final result
(Figure 4). The final tracing result faithfully replicates the
original neuron morphology. A few small branches are
missing (Figure 4 (b)), which are due to the low image
quality in the respective image areas. In summary, Figure 4

Table 3 Tracing time of different methods

Method V3D-Neuron iTube NeuronStudio DF-

1.0 Tracing
Tracing time of 10 (s) 15(s) 4(s) 20 (s)
Figure 7
Tracing time of 22 (s) 28 (s) 10(9) 38 (s)

Figure 8
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(d) v =0.05.

Figure 9 Reconstructions produced for Gaussian-noise contaminated images. (a) Gaussian noise variance v = 0.01. (b) v = 0.02. (c) v = 0.03.

demonstrates that both the signal enhancement and
tracing modules in the DF-Tracing algorithm yield a high
performance.

Neuron tracing: comparison with other methods

We compared DF-Tracing to the following three neuron-
tracing programs, which are publicly available and have
been used to produce several recent significant results in
neuroscience.

(1) Vaa3D-Neuron 1.0 semi-automatic tracing ([2]);
(2) NeuronStudio automatic tracing (0.9.92 version,
http://research.mssm.edu/cnic/tools-ns.html);

(3) iTube automatic tracing [17];

To compare the key tracing modules of different
methods, we used one confocal image of fruitfly olfac-
tory projection neuron, which has a very high signal-
to-noise ratio and is also used in several previous studies
([31]). We binarized this image for testing.

We also compared the tracing performance of these
methods for complicated neuron morphology using the
dragonfly neurons. Due to the complexity of the neuron

structure, it is very difficult to manually determine the
end points of neurons within a day, thus it is impractical
to directly use Vaa3D-Neuron 1.0 for these dragonfly
neurons. Figures 5 and 6 show the tracing results pro-
duced by both NeuronStudio and iTube. Both methods
missed a number of branches, whereas DF-Tracing rea-
sonably recaptured the neurons’ morphology.

Neuron tracing: quantitative analysis

Figure 7 compares the results between tracing methods.
With Vaa3D-Neuron, we manually selected all end-
points of this neuron and inspected the results to pro-
duce the “ground truth” for evaluation (Figure 7 (a)). We
selected a total of 17 points. It is apparent that the
NeuronStudio result misses many branches (Figure 7
(b)). The iTube result includes most branches, but still
misses a few, especially the highly curved structures
(Figure 7 (c)). DF-Tracing produced the same result as the
ground truth version (Figure 7 (d)). Table 1 summarizes
the comparison quantitatively. It is clear that the DF-
Tracing result is the best among these methods as all
branches were correctly traced.

(c) v=003.(d) v =005

Figure 10 Reconstructions produced for Gaussian-noise contaminated images. (a) Gaussian noise variance v = 0.01. (b) v = 0.02.
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We also compared the tracing results for a non-binary
confocal image. We chose a local region of the dragonfly
neuron (Figure 8 (a)). We also selected all end-point (totally
27) of this neuron and inspected the results to “ground
truth” for evaluation (Figure 8 (b)). The NeuronStudio and
iTube results miss many branches (Figure 8 (b) and
(Figure 8 (c)). DF-Tracing produced the same result as the
ground truth version (Figure 8 (d)). Table 2 summarizes the
comparison quantitatively. There was also clear that the
DF-Tracing result produced the best performance among
these methods, as most branches were correctly traced.
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With regards to running time for tracing, Vaa3D-
Neuron 1.0 is still faster than the new DF methods,
although it requires some human-interaction time, with
an execution time of around 10 seconds for the Figure 7
on an Intel Q6600 processor (2.40 GHz). The tracing
time for Figure 8 is around 22 seconds. Table 3 summa-
rizes the comparison time of different methods. It is
clear that the time of DF-Tracing is currently the slowest
of all automatic methods, but its accuracy is the best.
However, it should be noted that the operations of
DF-Tracing can be parallelized, and thus in a future

Figure 11 Tracing results using 20 confocal 3D images containing different dragonfly neurons. The reconstructed skeletons (red) are
overlaid on top the maximum intensity projection of different confocal images for clear visualization.
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implementation we hope to accelerate the speed by or-
ders of magnitude through the use of multi-core proces-
sors and graphics processing units (GPUs).

Neuron tracing: robustness

We tested the robustness of DF-Tracing. We added
Gaussian white noise of mean 0 and different variance v to
the image in Figure 7(a), where v = 0.01, 0.02, 0.03 and
0.05 respectively. In this way, multiple reconstruction re-
sults were produced As shown in Figure 9. We computed
the pair-wise spatial distance (SD) score of these recon-
structions, as defined in [1]. The average SDs is 0.149
pixel, very close to 0.

We also tested the robustness of DF-Tracing for a non-
binary confocal image. We added Gaussian white noise of
mean 0 and different variance v to the image in Figure 8
(a), where v = 0.01, 0.02, 0.03 and 0.05 respectively. In this
way, multiple reconstruction results were produced. As
shown in Figure 10, the test image contains various levels of
noise. For example, when v = 0.05, most signals of the image
have been contaminated, yet we can trace major neuron
branching in the remaining visible image regions. We com-
puted the pair-wise SD score of these reconstructions and
the average of SDs is 0.62 pixel. These expe-riments demon-
strate that our method can produce consistent and robust
reconstructions.

Automatic tracing of complicated morphology of many
neurons

In Figure 11, we tested the performance of DF-Tracing
on 20 dragonfly neurons (thoracic ganglia) that have
various levels of complexity and background noises. DF-
Tracing reconstructed the morphology within a day on a
MacBook Pro laptop. Fully manual tracing of same set
of data would need at least tens of days. The biologist
(PGB) in this study visually inspected all results and
found all major neuron trunks and branches have been
correctly traced. Of note, the complexity of morphology
and high noise level make it very hard to produce faith-
ful manual tracing, thus DF-Tracing is evidently a mean-
ingful solution to this data set.

Conclusion

We have developed a automatic neuron tracing method,
DEF-Tracing, that outperformed several previous auto-
matic and semi-automatic methods in a very challenging
set of dragonfly neurons with complex morphology and
high noise levels. This method is efficient and essentially
parameter-free. DF-Tracing has application potential in
large-scale neuron reconstruction and anatomy projects.
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