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Abstract

Background: Networks are ubiquitous in modern cell biology and physiology. A large literature exists for inferring/
proposing biological pathways/networks using statistical or machine learning algorithms. Despite these advances a
formal testing procedure for analyzing network-level observations is in need of further development. Comparing
the behaviour of a pharmacologically altered pathway to its canonical form is an example of a salient one-sample
comparison. Locating which pathways differentiate disease from no-disease phenotype may be recast as a two-
sample network inference problem.

Results: We outline an inferential method for performing one- and two-sample hypothesis tests where the
sampling unit is a network and the hypotheses are stated via network model(s). We propose a dissimilarity measure
that incorporates nearby neighbour information to contrast one or more networks in a statistical test. We
demonstrate and explore the utility of our approach with both simulated and microarray data; random graphs and
weighted (partial) correlation networks are used to form network models. Using both a well-known diabetes
dataset and an ovarian cancer dataset, the methods outlined here could better elucidate co-regulation changes for
one or more pathways between two clinically relevant phenotypes.

Conclusions: Formal hypothesis tests for gene- or protein-based networks are a logical progression from existing
gene-based and gene-set tests for differential expression. Commensurate with the growing appreciation and
development of systems biology, the dissimilarity-based testing methods presented here may allow us to improve
our understanding of pathways and other complex regulatory systems. The benefit of our method was illustrated
under select scenarios.
Background
Networks, a construct emphasizing the interrelations be-
tween objects, have application in studying human behav-
iour, mathematics, physics, econometrics, etc. With the
introduction of microarrays and other high-throughput
systems, networks increasingly provide a means to
organize and study the interdependencies of genes, pro-
teins, metabolites, etc. Gene transcription/regulatory net-
works, metabolic pathways, protein-protein interaction
systems (PPIs), signal transduction pathways, and phylo-
genetic trees are established tools in biology. Prone-to
-noise experiments are routinely coupled with computa-
tional algorithms to infer relationships. Given the empir-
ical reliance on uncertain data it seems natural to ask, “Do
these networks differ from one another?” This paper
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outlines and demonstrates an inferential process for
performing one- and two-sample hypothesis tests when
the sample data are biological networks.
Numerous books are devoted to networks. Bornholdt

et al. [1] and Junker et al. [2] provide a broad introduc-
tion to networks with application to biology, e.g., correl-
ation profiles and motifs, network behaviour in
nematode development, etc. Emmert-Streib et al. [3] is a
collection devoted to inferring microarray-based net-
works. Kolaczyk [4] appears to be the first statistics text
devoted solely to networks. Brandes et al. [5] provide an
overview of analysis methods from a computer science
perspective.
Testing graphs is not trivial; comparing two static

graphs is conceptually different from comparing a sample
of stochastic graphs under one or more treatments. Defin-
ing a suitable null probability model for a network is a dif-
ficult consideration [6]. Erdős-Rényi random graphs,
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where the probability of an edge between any two vertices
is a fixed constant p, play an important conceptual role in
our understanding of graphs [7]. The use of these graphs
in forming statistical tests has received some criticism [6].
Chung et al. [8] explore a complex hybrid-graph model to
mimic observed small-world networks. Simple models,
e.g., random, scale-free, or small-world graphs, etc., al-
though useful for comparing features across a class of net-
works, may have less utility for weighted biological
networks. Schwöbbermeyer [9], in discussing network
motifs, makes a troubling comment regarding the forma-
tion of actual biological networks, “A single network gen-
eration mechanism may not be sufficient to resemble the
structure of these networks.” This difficulty in defining a
suitably rich or ‘realistic’ parametric model poses a chal-
lenge in forming a hypothesis testing procedure for net-
work parameters. Exponential random graph models
(ERGMs), referred to as p* models in social network ana-
lysis, offer a theoretical model for stochastic networks and
have been used in biological applications [10]. ERGM pa-
rameterizations can contain attractive motif-like struc-
tures. But, these models do not typically assume that the
nodes of a graph are aligned and suffer from model degen-
eracy concerns [4]. Motif frequencies have been used to
compare biological networks via a statistical test [9]. Wiuf
et al. [11] outline a full-likelihood probability model ap-
proach to estimating the parameters of a C. elegans pro-
tein interaction growth model. Cardelli [12] suggests that
qualitative models provide more insight than quantitative
models due to parameter estimation and criticality con-
cerns. In contrast, Steinhauser et al. [13] argue and dem-
onstrate that correlation networks, a form of weighted
network, provide more understanding of cellular systems
relative to qualitative edge/no-edge models or node-based
cell inventory quantitative models. Unlike traditional
parameter-centric testing procedures, this dichotomy
suggests that a testing procedure might benefit from
distinguishing structural (edge) distinctions from weight
(quantitative) distinctions. The methods presented here
will accommodate this need for a flexible model.
Approaches for both two- and one-sample comparisons

occur in the literature. Faust et al. [14] use a combination
of p* models and correspondence analysis to compare net-
works. Banks et al. [15], using a symmetric difference
based on a Hamming distance, outline an estimation/hy-
pothesis testing approach for labeled unweighted loop-
free graphs. Sanil et al. [16] extend [15] to networks
whose edge set evolves in time. Kahlem et al. [17], in a re-
verse engineering application, suggest three approaches
(experimentally testable perturbations, training/validation
test sets, using synthetic system data) for comparing two
networks that conceptually differs from the approach pur-
sued here. Stolovitzky et al. [18] propose ROC and
precision-recall curves as the method-of-choice for
validating inferred models, a motivating example for a
one-sample comparison. Chen et al. [19] use an additive
element-wise score to compare a gene regulatory network
estimate to a known network, a parallel to the one-sample
procedure developed here.
While our focus here is on forming statistical compari-

sons of network model parameters, computer scientists
can divide the graph comparison problem into two areas –
exact graph matching and graph similarity [5]. Graph
similarity, tailored to deal with errors in the network data,
has been addressed with three broad strategies: compare
the difference of path lengths using all pairs of vertices, lo-
cate the maximal common subgraph between the two
graphs, or use an edit distance. Edit distance, which moti-
vated and resembles the dissimilarity index proposed here,
has been used in string matching applications and uses
graph operations, e.g., node/edge insertions/deletions,
to transform one graph into a second graph [5]. Inser-
tions/deletions can be implemented using set operators.
Xulvi-Brunet et al. [20] propose a bootstrapped degree of
similarity via union/intersection operations. Gill et al. [21]
combine a partial least squares-based connectivity score
with an intersection/union measure to test for differential
modular structures via permutation. Expanding beyond
strings to motif- or neighbourhood-like objects has dem-
onstrated biological benefit. Li et al. [22] extend a node-
based topological overlap dissimilarity to assist in defining
relevant gene neighbourhoods. Chen et al. [19] capture a
study where the statistical accuracy of protein function
prediction was improved by incorporating information be-
yond the protein’s immediate neighbours in the network.
Such precedent helped motivate the definition of our dis-
similarity measure. Graph matching is typically limited to
unlabeled graphs. We assume here that the graphs are la-
beled, an assumption critical for computational and inter-
pretation reasons.
The use and analysis of weighted (correlation-based)

networks is increasingly relevant in biological applications.
Zhang et al. [23], in a close parallel to pure correlation-
based networks, form weighted gene co-expression net-
works. Langfelder et al. [24], as part of an R package for
analyzing weighted correlation networks, provide several
measures for comparing network topologies. Here, we
utilize network models based on two forms of correlation
matrices. Anderson [25] contains large-sample statistical
tests for (partial) correlation coefficients, canonical corre-
lations, and various tests for covariance matrices. Ander-
son [26] uses a distance-based dissimilarity measure
combined with a permutation procedure to compare dis-
persion matrices.
Resampling methods are common in network analysis,

e.g., see [27], and will be used extensively here. Their use
in validating network models is less common. Perkins [28]
uses cross-validation and resampling methods for
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validating a gap gene development model. Toh et al. [29]
use bootstrap samples to assess edge reliability in a partial
correlation network. Emmert-Streib [30] combines a
permutation-based procedure with a graph-edit distance
to compare disease pathways. Xiong et al. [31] use a per-
mutation procedure to test the largest element-wise differ-
ence in a matrix of genetic network parameter estimates.
Hypothesis tests for networks have a variety of obvious

applications. A one-sample comparison can occur when
comparing a network estimate to a known ‘gold standard’
model. The standard could reside in an online ontology,
be defined via a data processing algorithm (e.g., RMA
normalization), or reflect the starting t0 state of a signal
transduction network. Algorithms that derive networks
using in silico or in vitro/vivo data could be tested for the
comparability of their network model estimates in either a
one- or two-sample context. For obvious reasons, two-
sample comparisons have a broad application range. Two-
sample tests are conducted by drug developers to compare
pathways between an investigative compound at various
doses or to a competitor’s compound. We conduct one-
and two-sample tests using both simulated and
microarray-based network data. To evaluate both Type I
error control and the power of our procedure, we examine
both null and non-null cases under a small set of network
models. We assume that each sampling unit is an inde-
pendent realization of a network. Our testing approach
follows the traditional hypothesis testing route: define the
null and alternate hypotheses (e.g., η=η0 versus η>η0 or
η1=η2 versus η1≠η2) and the risk associated with a deci-
sion; define a ‘nearby neighbour’ dissimilarity-based test
statistic for testing the hypothesis; compute the test statis-
tic; compute the distribution of the test statistic under the
null hypothesis; and, make a decision using the sampling
distribution and the calculated test statistic. Our approach
applies to edge/no-edge graphs, weighted graphs, and can
be extended to directional networks. In the one-sample
hypothesis testing context a null network model is as-
sumed or based on resamples from an a priori null sample
to generate the sampling distribution of our test statistic
under the null hypothesis. To implement a two-sample
comparison we rely on the permutation testing principle
as the formal basis of our inferential approach [32].

Methods
Differential testing via dissimilarity
We consider an observed network as a realization of a
stochastic process. A sample {xi, i = 1, . . ., n} of inde-
pendent observations is therefore a set of networks. In
contrast to social networks, where the sampling unit is
often the node, we assume that the biological network
is inherent to each sample observation. We propose a
dissimilarity measure as a test statistic to capture the
separation between two networks. We assume that we
can align the nodes across the networks to be com-
pared. Since each node in the network represents a
gene or other molecular entity, the ability to align no-
des across a set of networks implies that we know
a unique identifier for each node to allow for a mo-
lecule-by-molecule comparison across a set of net-
works. We determine the sampling distribution of the
test statistic under the null hypothesis via resampling
techniques.
First, we begin with some definitions. Our definitions

are consistent with Bollobás [7]. A graph G is an ordered
pair of disjoint sets (V,E) where both V and E are finite
sets. V = V(G) is the set of vertices and E = E(G) is the set
of edges. An edge {x,y} is said to join, or tie, the vertices x
and y and is denoted xy. If xy ∈ E(G) then x and y are adja-
cent, or neighbouring, vertices of G and the vertices x and
y are incident with the edge xy. Two edges are adjacent if
they have exactly one common endvertex. G’ = (V’,E’) is a
subgraph of G = (V,E) if V’ ⊂ V and E’ ⊂ E. If x is a vertex
of G we write x ∈ G in place of x ∈ V(G). The order of G is
the number of vertices in G; the size of G is the number
of edges of G. G(n,m) denotes an arbitrary graph of order

n and size m. A graph of order n and size
n
2

� �
is a

complete n-graph. A covariance matrix of nonzero ele-
ments with dimension n, Σn, is a complete n-graph. The
set of vertices adjacent to x ∈ G, the neighbourhood of x,
is Γ(x). For adjacent vertices x and y we have x ∈ Г(y) and
y ∈ Г(x). The degree of x is |Γ(x)|. A vertex of degree 0 is
an isolated vertex (or isolate). A path is a graph P where V
(P) = {x0, x1, . . ., xl} and E(P) = {x0x1, x1x2, . . ., xl-1xl}. The
length of P is the size of P. A graph without any cy-
cles, a path with length greater than or equal to three
and comprised of distinct vertices, is an acylic graph.
Unlike trees, we allow for cyclic graphs with isolates.
Paths have an obvious tie to motifs and other regula-
tory functions. By definition, a loop (xx ∈ E(G)) is not
allowed; multiple edges joining the same two vertices
are not allowed. A graph G can contain a subgraph G’
that is not connected to the remainder of G. Isolated
nodes and subgraphs occur in biological networks. Ac-
commodating isolates is necessary to align nodes bet-
ween two graphs.
It is common to represent a graph G in matrix form. The

adjacency matrix A = A(G) = (aij) of a graph G is the nxn

matrix given by aij ¼ 1; vivj∈E Gð Þ
0; otherwise:

�
To extend the defin-

ition to a weighted graph replace 1 with wij, where wij is the
strength, covariance, etc., between vertices vi and vj. Given
nxn network matrices G = (gij) and H = (hij) we define G-H
in the standard algebraic sense, i.e., gij-hij. We do not re-
quire a matrix be square; some directed network forms are
nxm matrices. But, our use of element-wise subtraction is
key; we are not suggesting a definition based on subspaces/
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subgraphs or set complements. We need to map an nxn
network onto the real line in order to define a measure
of separation. Under this definition of matrix subtraction,
G-H = 0, where 0 is an appropriately dimensioned matrix
of zeros, implies no separation between two networks.
The concept of dissimilarity (or similarity) is standard

fare, especially in cluster analysis and pattern recogni-
tion. The dissimilarity measure drs between r and s satis-
fies the following: drs ≥ 0 for every r, s, drr = 0 for every
r, and drs = dsr for every r, s. Refer to Gan et al. [33] for
an excellent catalogue of measures. Dissimilarity mea-
sures for categorical data x and y are generally based on

a simple matching distance, δ x; yð Þ ¼ 0; x ¼ y
1; x≠y

�
. The

well-known Hamming distance [34] is a symmetrical
form of a simple matching distance for binary strings
and is used in communication theory. To craft our dis-
similarity measure we propose a modified element-wise
version of a matrix norm. Element-wise measures do not
account for the interrelations present between nodes.
Similar to linkage measures in genetics (e.g., LOD score),
where markers are often correlated, we desire a measure
that incorporates these interrelationships. Since net-
works are defined using interrelationships the inclusion
of information for both a node and its neighbours is an
intuitive concept.
Let WO = (wij

O) be a (weighted) adjacency (or directed
incidence) matrix for the observed network estimate and
WT = (wij

T) the target network. In a one-sample compari-
son WT represents the true network model. For a two-
sample comparison the distinction between the two la-
bels is arbitrary. Both WO and WT represent graphs of
order n; the nodes are labeled, common to, and aligned
between both graphs. For node i define the dissimilarity
at that node to be a combination of that node’s dissimi-

larity, dOT
i ¼

Xn

j≠i
I wO

ij ≠0
� �

� I wT
ij ≠0

� ���� ���þ wO
ij � wT

ij

��� ��� ,
and the dissimilarity for node i’s neighbours, dOT�

ij ¼Xn

k≠i;j
I wO

jk≠0
� �

� I wT
jk≠0

� ���� ���þ wO
jk � wT

jk

��� ��� , for nodes j

≠ i, j ∈ Г(i). For the overall network, the dissimilarity D
is defined as

D ¼
Xn

i
dOT
i þ

Xn

j≠i
dOT�
ij cij

n o
, where cij ¼

wO
ij

��� ���I wT
ij ≠0

� �
for weighted networks and specified by

the researcher for unweighted networks. I is defined as
the standard mathematical indicator function. For a
graph of order n a set/neighbourhood is formed at each
node wii, i = 1,. . .,n. We measure the dissimilarity be-
tween a node and its adjacent neighbours between the
two graphs. To account for the intrinsic network struc-
ture the neighbourhood is then extended to those
neighbouring nodes that are incident to nodes in Γ(wii)
for both the target and observed networks. I.e., we now
measure the dissimilarity for the two subgraphs induced
by Γ(wjj), where i ≠ j and wjj is an element of Γ(wii). This
‘extended’ neighbourhood dissimilarity is added to the
dissimilarity measured at wii. The contribution of the
second nearest neighbours is weighted by cij in the defin-
ition of D. In a weighted network, e.g., a correlation net-
work, this weight is easily motivated. In an unweighted
network cij is set by the researcher. Assuming a weight of
cij = 0 for an unweighted 0–1 graph reduces D to an un-
scaled version of the familiar Hamming distance and is
comparable to the edit distance approach listed in [30].
We form D using separate edge and weight L1-norms.

We elaborate on this choice later. The need to align the
two graphs is critical to calculating D. Our approach
does result in additional computational overhead since
edge xy will be counted for nodes x and y. But, the
counting is consistent and avoids the need for complex
single-count network partitioning schemes. Only those
nodes with a path length of 2 or less from wii are in-
cluded; D can easily be extended to include path lengths
greater than 2.

One- and two-sample differential network comparisons
Defining an appropriate hypothesis in the context of net-
works can be nontrivial. For an Erdős-Rényi graph of
order n, G(n,p), the obvious parameter to test is p. Apart
from ERGMs and (partial) correlation networks, explicit
network parametric models may not be readily apparent.
The basic form of a one-sample network hypothesis test
here is H0: η = η0 versus H1: η ≠ η0, where η is antici-
pated to be a vector-valued parameter for most realistic
(weighted) biological networks. For a G(n,p) graph we
have η = p and one could test H0:G(n,p) = G(n,p0) versus
H1:G(n,p) ≠ G(n,p0). We intentionally provide no explicit
guidance for how to determine p. And, we make explicit
the probability model for the graph rather than state the
hypothesis in a more compact manner, i.e., H0:p = p0.
For a network defined using a correlation matrix Ω we
construct hypotheses of the form H0:Ω = Ω0 versus
H1:Ω ≠ Ω0. One needs to make explicit the procedure
used to establish the edges in the network and the prob-
ability model for the observation data. In an example we
test H0:G(n,p) = G(n,p0) versus H1:G(n,p) > G(n,p0).
Here, one needs to recognize that the amount of ran-
domness/entropy for a G(n,p) graph is less when p is
close to 0 or 1 relative to p close to 0.5 to successfully
perform a one-sided test. Primarily, we are interested in
the question, “Does this differ from the target?”
We employ a resampling approach to perform one-

and two-sample network hypothesis tests. Following the
five-step procedure outlined in Good [35] we first
analyze the problem. We identify the null and alternate
hypotheses under an assumed probability model and
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choose a suitable Type I error rate. Second, we select a
test statistic to test the hypothesis. Here, D may be suit-
able in its stock form or require customization for the
problem at hand. Third, compute the test statistic.
Fourth, determine the distribution of the test statistic
under the null hypothesis via a suitable resampling pro-
cedure. Finally, make a decision using the sampling dis-
tribution of the test statistics as a guide.
To generate a null distribution for D in the one-

sample case we assume a parametric model or explicit
generative algorithm is available in order to draw sam-
ples from the null network model. In most customary
testing situations a test statistic is an estimate for a par-
ameter of interest. However, in some cases the sample it-
self is the statistic – concise reductions of the data may
be limited or not obvious/possible. Biological networks,
where each edge or weight may be associated with tran-
scription activity or a regulatory cascade, are inherently
high-dimensional objects and may therefore lack parsi-
monious model parameterizations. In many applications
a network algorithm F is required to produce an ob-
served network. In these instances we may need to
resample from F(x) instead of resampling from the ob-
served data {xi}. In other cases, e.g., the Erdős-Rényi G
(n,p) graph, the role of the xi may be suppressed or not
apparent since we observe F(x). For networks based on
explicit probability models, e.g., (partial) correlation net-
works, parametric bootstraps or Monte Carlo proce-
dures may be possible under suitable assumptions [35].
Although a one-sample comparison has application for

biomedical researchers, relative comparisons are of
broad practical relevance. Research clinicians and phar-
macologists are interested in exploring standard-of-care
and new treatment comparisons for therapeutics.
Transitioning to the H0: η1 = η2 versus H1: η1 ≠ η2 two-
sample problem allows one to draw upon established
parametric and nonparametric comparisons. A null hy-
pothesis of network equality versus an alternate hypoth-
esis of network inequality is expected to be
commonplace. Alternate hypotheses such as H1: η1 > η2
are possible but not explored here. We make the stand-
ard assumption of two independent and identically dis-
tributed samples {x1, . . ., xn} and {y1, . . ., ym}, where xi
and yj are network-valued. Following the notation of
[35], let P be a family of distributions for {X1, . . ., Xn}
that are symmetric in the sense that for a permutation π
of the subscripts {1, . . ., n} we have P{( X1, . . ., Xn) ∈ B}
= P{( Xπ(1), . . ., Xπ(n)) ∈ B} for all Borel sets B. The ran-
dom variables Xi are said to be exchangeable – a condi-
tion established under the assumption of independent
and identically distributed samples or via the principle
of randomization/random allocation in experimental de-
sign. As noted in Good, permutation tests rely on the as-
sumption of exchangeability under the null hypothesis.
Permutation testing, a procedure which relies on sam-
ples drawn from the combined pool of experimental
units and the random assignment of a treatment label to
each unit, is common in the bioinformatics literature
due to the prevalence of ‘n<p’ wide data and the lack of
closed-form sampling distributions for various test sta-
tistics proposed. Pesarin [32] lists a variety of settings
where these conditional inference procedures are useful.
Some of the items listed that may apply to biological
networks are: the distributional models for the responses
are nonparametric, distributional models are not well-
specified or may rely on too many nuisance parameters,
the asymptotic null sampling distribution is unknown or
depends on unknown quantities, or the sample size is
less than the number of responses. To continue, these
procedures might prove useful for multivariate problems
where some variables are categorical (e.g., edge) and
others quantitative (e.g., weight), in select multivariate
inference problems where the component variables have
different degrees of importance (e.g., edges discrepancies
may be more severe than weight differences), and when
treatment effects impact more than one aspect of the
network. Applying the permutation testing principle, as
stated in [32], to the two-sample network comparison
problem via the customary mechanics serves as the in-
ferential foundation for our two-sample testing strategy.

Computer simulation
We first demonstrate D using an Erdős-Rényi G(n,p)
graph. We test H0:G(n,p) = G(n,p0) versus H1:G(n,p) > G
(n,p0). The order of G is 25 and p0 is 0.20. We simulate
four cases with 100 hypothesis tests (or experiments) in
each case. For the null case we assume that the observed
network is a p = p0 = 0.20 model. For the remaining two
cases we assume that p = 0.25. We set cij = 0 for both a
null and an alternate case and cij = exp(−2) for the
remaining two cases. These four cases illustrate the Type
I and II error rates of our procedure both with and with-
out the inclusion of the neighbouring information in cal-
culating D. 1,000 resamples were used to estimate the
null distribution for D. The execution time for the set of
100 experiments using 1,000 resamples was approxi-
mately 1 hour on a standard personal computer. The R
package Statnet [36] was used to generate the G(n,p)
graphs. All of our computations were conducted using R
(http://www.r-project.org/). For testing large networks
or large numbers of networks a more computationally
efficient language such as Fortran or C++ is recom-
mended. The representation diversity and size of net-
works, combined with a need or interest to tailor D for a
particular application, poses a challenge for software
developers.
To evaluate D for a correlation-based network model

we assume that the p-dimensional observations follow a

http://www.r-project.org/
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multivariate normal distribution, Np(μ,Σ), with mean
vector μ and positive definite covariance matrix Σ.
Transforming Σ into correlation form Ω allows us to
form a partial correlation matrix. Applying a threshold
to each ρ estimate or a testing procedure to the entries
of Ω can be used to define a correlation network. Given
Ω-1 = (ωij) we compute the partial correlation matrix Π
= (πij) via (πij) = −ωij/√(ωii ωjj). Under multivariate nor-
mality two variables are conditionally independent given
the remaining variables if and only if the partial correl-
ation vanishes. The zeros in Ω-1 determine the condi-
tional independence graph. As before, a threshold or
testing procedure is used to define the partial correlation
network. We evaluate both the Type I error rate and the
power of D under an alternate hypothesis.
Apart from the Erdős-Rényi example, the one- and

two-sample simulation comparisons assume that the ob-
servations are in their correlation form, i.e., xi ~ N(0, Ω).
To mimic a sparse biological network Ω consists of 6
nonzero 5x5 blocks along the diagonal. A sample rejec-
tion scheme guaranteed that the magnitude of each
block entry exceeded a predefined threshold. The num-
ber of nodes (30) and the threshold (ρ = 0.2) was com-
mon to all simulations. The same threshold ρ was used
to define the data generation model and to estimate the
observed correlation network in the one-sample case.
For both comparisons we evaluated D using sample sizes
of n1 = n2 = 200. For the one-sample comparison the
target correlation network Ω0 is estimated from the
sample data and the resamples are drawn from the ob-
served samples to determine the null distribution for D.
Admittedly, this approach violates the true spirit of a
one-sample test under an assumed null model. But, if
historical sample observations are available for analysis
and reflect the null hypothesis then these samples might
provide the most scientifically defensible null distribu-
tion for Ω0. The same approach is used for the derived
microarray-based correlation network comparison; a
case where the true null model is unknown. To simulate
the alternate hypothesis of network inequality at least
10% of the 5 × 5 blocks for a 30 × 30 correlation matrix,
with a minimum of one block per experiment, were var-
ied using a random number generator. A total of 100 ex-
periments were performed and 1,000 resamples used in
calculating each p-value. For both the correlation and
partial correlation networks we calculate D using only
the weight portion of the index since the existence of an
edge was defined via the (partial) correlation estimate.
The execution time for the 100 experiments using 1,000
resamples was approximately 1–2 hours on a standard
personal computer for the one-sample comparison. The
two-sample setting execution time was on the order of
4–6 hours. For select simulation data the algorithm used
to estimate the partial correlation network, see below,
would abruptly terminate. All of the resample p-values
shown here were obtained upon a successful completion
of the estimation process. The computation time for the
actual biological data was negligible. This is likely due to
the small networks involved; network comparisons in-
volving a large number of nodes and/or edges present a
non-trivial computational burden. Refer to Additional
file 1 for the R code used.
We selected partial correlation networks as presented

in [37] (commonly referred to as Gaussian graphical
models, or GGMs, for multivariate normal observations)
for the two-sample comparisons due to their use in the
literature, e.g., De la Fuente et al. [38] use partial corre-
lations up to order 2 to model genomic data, and partial
correlations are formed using a plurality of variables –
an intuitive appeal for defining a network. Markowetz
et al. [39] suggest that partial correlations may better re-
flect interdependencies in a network relative to a stand-
ard correlation coefficient. We fit these networks using
the GeneNet algorithm presented in Opgen-Rhein et al.
[40], an extension of the algorithm from Schäfer et al.
[37]. The GeneNet R package is available from the
CRAN R archive (http://cran.r-project.org). The algo-
rithm broadly consists of 3 steps. First, the correlation
(or covariance) matrix Ω is converted to a partial correl-
ation matrix Π; pseudoinverses may be involved. The
second step tests for the presence of ‘significant’ edges.
The final step extracts the significant edges based on a
user-defined criterion. We used the magnitude of the es-
timated (shrunken) partial coefficient to establish this
cut-off – the cutoff.ggm parameter for πij was set to 0.5.
Default settings were used for the remainder of the
GeneNet settings. We do not claim that GGMs are su-
perior for modeling gene/protein networks. [37] demon-
strate via simulation that the quality of various partial
correlation estimators can vary according to the sample
size and dimensionality of the observed data. [39] docu-
ment the need for larger samples in the practical use of
GGMs.

Type II diabetes mellitus data: one-sample comparison
Type II diabetes mellitus (DM2) is a serious metabolic
disorder affecting a large number of people worldwide.
Mootha et al. [41], using microarray transcriptional pro-
files obtained from 17 normal and 17 DM2 muscle bi-
opsy samples, presented a study in conjunction with the
Gene Set Enrichment Analysis (GSEA) tool to detect dif-
ferential expression patterns among functionally-related
gene sets. They identified a single gene set, OXPHOS –
an oxidative phosphorylation pathway, which exhibited
differential gene expression levels between the two phe-
notypes and linked this gene set to clinically important
variation in human metabolism. Mootha et al. analyzed
149 gene sets – 113 were selected based on their

http://cran.r-project.org
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involvement in metabolic pathways and the remainder
based on co-regulated gene clusters from a mouse ex-
pression atlas. The transcript expression data and the
gene set definitions from the original GSEA study were
obtained from the authors’ website [42].
The original study examined average expression levels

across the two groups. Here, we explore the differences in
covariance or correlation structures between the two phe-
notypes as expressed in a correlation network formed via
a threshold for ρ. To facilitate a one-sample comparison
the normal tissue samples are used to define a target net-
work. The resampling procedure was outlined in the pre-
vious section. Rather than analyze severely ill-conditioned
correlation matrices (numerous gene sets contained over
100 genes), we formed correlation networks only for those
gene sets with fewer than 18 probes in the pathway. A sig-
nificant one-sample finding for one or more gene sets
may suggest differences in co-regulation network behav-
iour of a person with DM2 relative to a normal subject.

Ovarian cancer: two-sample comparison
Ovarian cancer is the foremost lethal neoplasm of the fe-
male genital tract. We examine here the gene expression
signatures of ovarian serous carcinomas (SCAs) relative
to serous borderline tumors (SBTs) based on three re-
cent studies. Sieben et al. [43] confirmed the activated
role of a mitogenic pathway in SBTs and uncovered
downstream genes that helped differentiate SBTs and
SCAs. De Meyer et al. [44] investigated the role of the
E2F/Rb pathway in SBTs and SCAs. Chien et al. [45]
demonstrated the significance of the p53 and E2F path-
ways in serous carcinomas and reinforced the role of
E2Fs listed in [44]. These three studies demonstrate that
differential expression patterns exist between SBTs and
SCAs. We examine a subset of these data to test
whether or not covariation patterns differ between SBTs
and SCA1s (low-grade carcinomas) and between SCA1s
and SCA3s (high-grade carcinomas). Changes in covari-
ation patterns may assist in the design of follow-up
studies, suggest a novel biomarker test or a better
categorization of SCAs, or provide insight into a pa-
tient’s responsiveness to chemotherapy agents.
The microarray data analyzed here was obtained from

the NCBI GEO database [46] via accession number
GSE12471. These data were originally presented in [43]
and contain the mRNA expression profiles of 11 SBT, 10
SCA1, and 15 SCA3 samples. 2 micropapillary pattern
SBT samples were omitted from our analysis. De Meyer
et al. [44] screened the original expression profiles to re-
duce the number of genes examined and cross-
referenced their E2F target genes with the studies of
Bracken et al. [47] and Bieda et al. [48]. 43 of these
genes were classified by 6 biological processes in [47]: 5
for the G1/S phase of the cell cycle, 13 from the S/G2
phase of the cell cycle, 6 checkpoint genes (e.g., BRCA2),
1 development gene, 5 DNA damage and repair genes,
and 13 DNA synthesis/replication genes. A table of the
specific genes included is in Additional file 2. Excluding
the singleton subset, we estimated partial correlation
networks for each of the 5 process-defined gene subsets
across the three carcinoma subtypes.
Results
Simulation study
For the Erdős-Rényi G(n=25, p=0.20) random graph
comparison refer to Figure 1. Apart from the appearance
of a weak bias for both the cij = 0 and cij = exp(−2) cases
the p-values are approximately uniformly distributed
under the null hypothesis. In panels (a) and (c) we see
that the nominal Type I α level is approximately 0.05.
Comparing panel (b) to (d) we see the improvement in
the power of D when p = 0.25 and cij = exp(−2). When
the neighbouring information was not used in calculat-
ing D 34% of the resample p-values were below a nom-
inal α level of 0.05. When the neighbouring information
was included in D and scaled by cij = exp(−2) 55% of the
p-values were below the nominal 0.05 level. The likeli-
hood of D detecting the true alternative hypothesis
increased from 34% to 55% just by including the
neighbouring information here.
For the one-sample correlation network comparison

we examined both the Type I error rate and the power
of D to reject H0: Ω = Ω0 versus H1: Ω ≠ Ω0. The tests
were performed using cij = 0, i.e., excluding the
neighbouring information, and cij = rij, the thresholded
correlation estimate. Under the assumed null model the
distribution of p-values, for both cij = 0 and cij = rij, had
less mass at the extremes of the p-value range. Add-
itional simulation work, see [49], suggested that when n1
= n2 = 100 the Type I error rate was conservative, pro-
duced an inflated error rate when n1 = n2 = 2,000, and
the test achieved a proper size when the a priori sample
size was a factor of 10 larger than the observed network
based on a sample of n = 200. These results suggest cau-
tion when trying to determine the null distribution for D
using a finite set of a priori samples. Figure 2 graphs
pairs of p-values obtained from 100 experiments under
the alternate hypothesis. This figure demonstrates that
incorporating the neighbouring information in the calcu-
lation of D via cij = rij penalized our ability to reject the
null hypothesis when compared to the use of cij = 0.
Additional file 3 graphs the Type I error performance for

the two-sample comparison under the null hypothesis of
partial correlation network equality,H0:Π1 =Π2. In Figure 3
we plot the pairs of p-values obtained under an alternate
hypothesis. In both figures we illustrate the inclusion/exclu-
sion of the neighbouring information in calculating D (i.e.,
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cij ¼ 0 or cij ¼ π ̂
ij ). Under the null hypothesis we see that

the p-values are approximately uniformly distributed with
reasonable Type I error control. Including the neighbouring
information does suggest more lack of fit; this is not sur-
prising given the data’s correlated block structure and the
correlated components used in D. Under the alternate hy-
pothesis simulated here 45 of the p-values determined with
the neighbouring information were less than the corre-
sponding p-value calculated excluding the neighbouring in-
formation, a result comparable to the flip of a fair coin. The
more dramatic result is comparing the number of times we
reject H0 at an alpha level of 0.05. Under H1, 40 of the
p-values were less than 0.05 when D included the
neighbouring information; 24 of the p-values were less than
0.05 when D excluded the neighbouring information. This
gain in power by including the neighbouring information
differs from the one-sample correlation network simula-
tions. But, as the p-values shift away from 0, and move in
favour of H0, excluding the neighbouring information con-
sistently produced smaller p-values. This suggests the be-
haviour of D may vary according to the network inference
method employed.
Comparison of derived biological networks
We first compare the correlation networks for the DM2
phenotype to the Normal phenotype. We test H0: ΩDM2

= ΩNormal versus H1: ΩDM2 ≠ ΩNormal where we assume
ΩNormal is known. We form Pearson product-moment-
based correlation networks only for those gene sets with
fewer than 18 probes in the pathway. The 17 normal
samples were used to form ΩNormal. We emphasize here
the potential power of our test since the true state of the
null or alternate hypothesis is unknown. To generate the
null distribution for D we resample, with replacement,
from the original 17 normal samples. 1,000 resamples
were used throughout. As in the simulation study, the
level of the test may be unreliable due to the resampling
procedure employed. Estimating an overparameterized
correlation matrix based on small samples is a general
challenge for the practical estimation of network models.
Comparable to the earlier simulation study Figure 4

illustrates the performance of D including/excluding
the edge portion of D and including/excluding the
neighbouring information at a correlation threshold of
ρ = 0.5. Panel (a) suggests that the edge portion of D is
redundant to the weight component and panels (b-c)
suggest that including the neighbouring information de-
tracts from the power of D. Table 1 lists the resample
p-values for the 37 network comparisons performed at
correlation thresholds ρ = 0.35 and ρ = 0.5 (see [49] for
additional results). The edge portion was excluded from
D and, despite the potential loss in power, the
neighbouring information was included. Even at less
conservative Type I error levels we fail to declare a
network difference in the majority of the cases. The
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p-values have not been adjusted for the number of com-
parisons. To illustrate the estimated correlation net-
works for the two phenotypes near the p-value extremes
we provide the Normal and DM2 correlation network
estimates for the MAP290 and MAP472 gene sets in
Table 2. Yates [49] provides a post hoc analysis of the
MAP290 correlation network under the assumption of a
declared significant network difference.
For the two-sample comparisons we examined a lim-

ited ordered comparison of the SBT, SCA1, and SCA3
phenotypes for the 5 biological processes. Our subjective
rationale was that a comparison of the SBT and SCA1
phenotypes might suggest a biomarker candidate; com-
paring the SCA1 and SCA3 phenotypes might better
characterize disease progression or provide insight re-
garding resistance to chemotherapy agents. Table 3 lists
the number of edges in the estimated partial correlation
networks obtained using GeneNet for the subsets cate-
gorized by Bracken et al. [47]. Apart from the DNA syn-
thesis and replication process the estimated GGMs are
either empty or sparse. As a side note – some of our
simulation work suggests that GeneNet tends to underfit
a network. Table 4 lists the resample p-values for a test
of H0: Π1 = Π2 versus H1: Π1 ≠ Π2 across the eight
comparisons. All of these comparisons used the neigh-
bouring information in calculating D; apart from the
smallest p-value listed the differences between the neigh-
bour/no-neighbour p-values were negligible. At a stand-
ard alpha level of 0.05, a conservative value for a
comparison of covariance-based matrices, none of the
hypotheses would be rejected. Rather than adopt such a
conservative view, and ignoring the topic of multiple
comparisons, we chose to provide the partial correlation
networks for the 13 genes in the SCA1 and SCA3 phe-
notypes (p-value 0.142) in Table 5. This table suggests
an observable difference between the two networks.

Discussion
The definition of D was inspired by the question, “How
long is the coast of Britain?” This question motivates the
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definition of fractal dimension, a concept suited for
complex objects. Cutler’s [50] definitions of packing and
pointwise dimension suggest measures based on an addi-
tive decomposition of sets/neighbourhoods. The neigh-
bourhood size and scaling behaviour can vary across
the points in the set. Combining these ideas with a
Riemann-like sum is our basis for a topological compari-
son of networks. Nacu et al. [51] suggest the use of
neighbourhoods, of potentially varying radius, for identi-
fying differentially expressed pathways. Choosing a node
as the centre of the local neighbourhood, and not an
edge, allows for several advantages: a reduction in com-
binatorial complexity, facilitates molecular node-based
post hoc tests, avoids the need for an ‘optimal’ tiling or
network partition, and it limits the number of relational
features/motif-like structures to compare. We limited
our set/neighbourhood-based definition of D to inter-
nodal path lengths strictly less than three since this is
the minimum distance necessary to capture a feed-
forward/feedback loop, it limits the range of topological
comparisons, and D is prevented from revisiting the
‘centre’ of a neighbourhood in a cyclic graph. D can be
extended to include a larger neighbourhood. Apart from
obvious computational implications, defining a second
set of cij’s is necessary and the efficiency of D may de-
teriorate as D integrates a larger set of imprecise or vari-
able estimates. In contrast to fractals, viewing a network
as an inhomogeneous mixture of subgraphs suggests
that a local distance may be preferable to large distances
that span a large set of nodes.
We do not claim that D is or will be optimal under a

broad range of network models. Apart from the literature
related to ERGMs, weighted biological network models
with well-developed inferential theory analogous to max-
imum likelihood, uniformly minimum-variance unbiased,
or minimax estimators is largely unavailable. The ability to
apply D to a broad range of edge/no-edge and weighted/
unweighted networks is sure to involve tradeoffs. Banks
et al. [52] illustrate a case where a metric for a clustering
application is ill-suited for a phylogenetic inference prob-
lem. [53] state the need for fixed/absent edges in their in-
formative prior approach to network inference. A
decomposable additive measure can be tailored to reflect
meaningful comparisons, e.g., [54] modify an L1-based
edit distance for unweighted binary networks using pro-
tein signaling logic. While not constituting a definitive ar-
gument, we speculate that the value of including the
neighbouring information in the G(n,p) simulation ex-
ample is due to the uniformity of p across the set of nodes.
The loss in performance using the neighbouring informa-
tion for a pairwise correlation network model is likely due
to D unnecessarily integrating across a larger set of impre-
cise estimates. For the two-sample partial correlation net-
work comparison, the gain in performance via the use of



Table 1 One-sample correlation network comparison of
Type II diabetes versus Normal phenotype

Gene Set Name ρ=0.35 ρ=0.50

1 KET-HG-U133A probes 0.38 0.828

2 MAP31 Inositol metabolism 0.607 0.608

3 MAP40 Pentose&glucuronate interconversions 0.599 0.574

4 MAP53 Ascorbate&aldarate metabolism 0.455 0.809

5 MAP62 Fatty acid biosynthesis path 2 0.644 0.761

6 MAP72 Synthesis&degradation of ketone bodies 0.588 0.915

7 MAP130 Ubiquinone biosynthesis 0.122 0.115

8 MAP140 C21 Steroid hormone metabolism 0.901 0.902

9 MAP271 Methionine metabolism 0.49 0.879

10 MAP272 Cysteine metabolism 0.522 0.584

11 MAP290 Valine leucine&isoleucine biosynthesis 0.139 0.431

12 MAP400 Phenylalanine tyrosine&tryptophan biosyn 0.443 0.804

13 MAP430 Taurine&hypotaurine metabolism 0.782 0.705

14 MAP450 Selenoamino acid metabolism 0.554 0.874

15 MAP460 Cyanoamino acid metabolism 0.569 0.808

16 MAP472 D-Arginine&D-ornithine metabolism 0.916 0.948

17 MAP511 N-Glycan degradation 0.58 0.677

18 MAP512 O-Glycans biosynthesis 0.613 0.673

19 MAP522 Erythromycin biosynthesis 0.081 0.254

20 MAP532 Chondroitin Heparan sulfate biosynthesis 0.726 0.882

21 MAP533 Keratan sulfate biosynthesis 0.861 0.943

22 MAP580 Phospholipid degradation 0.484 0.271

23 MAP601 Blood group glycolipid biosyn lact series 0.571 0.588

24 MAP603 Globoside metabolism 0.92 0.88

25 MAP630 Glyoxylate&dicarboxylate metabolism 0.276 0.622

26 MAP631 1-2-Dichloroethane degradation 0.473 0.797

27 MAP632 Benzoate degradation 0.515 0.812

28 MAP680 Methane metabolism 0.319 0.337

29 MAP720 Reductive carboxylate cycle CO2 fixation 0.085 0.459

30 MAP740 Riboflavin metabolism 0.231 0.583

31 MAP760 Nicotinate&nicotinamide metabolism 0.581 0.899

32 MAP780 Biotin metabolism 0.451 0.67

33 MAP900 Terpenoid biosynthesis 0.802 0.835

34 MAP950 Alkaloid biosynthesis I 0.666 0.6965

35 MAP3030 DNA polymerase 0.877 0.707

36 PYR-HG-U133A probes 0.524 0.75

37 ROS-HG-U133A probes 0.658 0.756

Resample p-values for the 37 gene sets analyzed based on correlation
networks using thresholds ρ = 0.35 and 0.50.
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neighbours may be influenced by the fact that each edge is
formed using a plurality of variables. For researchers inter-
ested in alternate network models, e.g., preferential attach-
ment or small-world models, evaluating D (or comparing
it to a competing procedure) under various scenarios is
recommended.
Basing D on a more general form of a Hamming dis-

tance parallels efforts in the area of global network align-
ment scoring. Others have proposed alignment-based
operations for use with biological networks, e.g., [55] for
comparing phylogenetic trees. The use of set algebraic
operations, e.g., union, intersection, strict and symmetric
differences, is commonplace [20,21,56]. Having D in-
corporate neighbouring information might be obvious to
a systems biologist; see [57] for an example in classifying
breast cancer metastasis and [58] for a pathway differen-
tial expression application. [38], using partial correla-
tions, found it useful to restrict the number of genes/
nodes to condition on. [59] use level-1 and level-2
neighbours to predict protein function. [23] outline a
weighted topological overlap measure to cluster gene
modules. [22] present a topological overlap measure
that generalizes pairwise similarity to one based on
shared neighbours. The precedent of incorporating
neighbouring information for network objects is clear;
the question of, “But how far do we go?” is less clear. As
mentioned earlier, the matter of neighbourhood size is
liable to impact the behaviour of D and may interact
with network estimation procedures, data collection re-
quirements, etc.
Despite D’s simplicity and potential for use across a

broad set of network models, the importance (and
weighting) of D’s components should receive serious
consideration by the investigator. Gower [60] concedes
that weighting components of a measure is challenging.
A robustness study is recommended to address this
topic, see Yates [49]. For both one- and two-sample
comparisons, tuning D to gage or improve its perform-
ance for a specific network model is advised. The selec-
tion of the weight constant cij for weighted graphs was
motivated by the idea of conditional probabilities. If A
and B represent two adjacent edges and information
flows through their common vertex then it is reasonable
to assume that some form regarding the state of B is
meaningful to A. It is plausible to assume that the force
two objects exert on one another is proportional to their
proximity. Preferential attachment networks assume that
new edges are formed at a node conditional on the num-
ber of existing edges at that node. Wei et al. [61] employ
gene-specific prior probabilities in a spatially correlated
mixture model application. But, the quality of the
weights may be suspect. Ashyraliyev et al. [62] found
quantitative parameter estimates to be unreliable in
modeling a gap gene circuit but that inferring a reliable
qualitative network topology was possible. The relative
weighting of edge and weight differences is a topic to
discuss here. The idea of scaling or normalizing portions
of D is complicated. Gao et al. [63] allow hubs to exert



Table 2 Valine leucine and isoleucine biosynthesis (MAP290) and D-Arginine and D - Ornithine Metabolism (MAP472)
gene sets for the Normal and Type II (DM2) phenotypes

MAP 290

Probe Normal DM2

1 1.0 . . . . . 1.0 . . . . .

2 1.0 0.53 0.59 0.59 . 1.0 . . . .

3 1.0 0.73 . . 1.0 0.81 . .

4 1.0 0.86 . 1.0 . .

5 1.0 . 1.0 .

6 1.0 1.0

MAP 472

1 1.0 0.62 0.61 0.56 0.60 0.52 1.0 0.63 0.62 0.64 0.57 0.54

2 1.0 0.99 0.98 0.97 0.94 1.0 0.99 0.97 0.98 0.94

3 1.0 0.98 0.97 0.95 1.0 0.97 0.96 0.95

4 1.0 0.97 0.97 1.0 0.98 0.96

5 1.0 0.96 1.0 0.94

6 1.0 1.0

The numerical values are the thresholded correlation estimates. A ‘.’ denotes the lack of an edge between two probes, ‘1.0’ is a visual placeholder. The actual
probes differ between the two gene sets.
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an unequal influence; Yip et al. [64] normalize their gen-
eralized topological overlap measure to the unit interval.
Given a rough similarity between D and the total sums
of squares in regression modeling we allow for nodes
with a high degree (i.e., ‘large degree of freedom’ tests) to
contribute more to the calculation of D. If one chooses
to normalize portions of D at each node by some topo-
logical property then one has to justify the scaling factor.
Does one scale by the node’s (weighted) degree, a clus-
tering coefficient, in- or out-degree for a directed net-
work, etc.? If a network model has an efficient estimator
whose sampling distribution is well characterized, the
use of D may be contraindicated. At present, we do not
expect this to be the case for experiment-based weighted
biological networks. As a conservative measure, D could
be reduced to its Hamming-like form and only the infer-
ential procedures outlined here applied. Evaluating D
Table 3 Gaussian graphical model estimate details for
three ovarian cancer phenotypes

Biological Process No. of Genes in
Process

SBT SCA1 SCA3

G1-S phase of the cell
cycle

5 0 0 3

S-G2 phase of the cell
cycle

13 0 2 0

Checkpoint 6 0 3 4

DNA damage and repair 5 4 0 0

DNA synthesis and
replication

13 0 30 40

Number of edges in the Gaussian graphical model estimate for each of the
three phenotypes across the five processes categorized by Bracken et al. [47].
using an in silico model under plausible scientific scenar-
ios of interest to the investigator could also reduce con-
cerns about aspects of the definition of D.
Our choice of network architectures to evaluate with

D was limited. Computational expediency, an ability to
explore and contrast common parametric models and
their associated weighted network forms, and the use of
a canonical structure (e.g., G(n,p) graphs) motivated our
network model selection. Both Marbach et al. [65]
and Altay et al. [66] discuss difficulties associated
with currently available network inference algorithms.
Müller-Linow et al. [67] found that the proximity of me-
tabolites in a correlation network did not align with
metabolite proximity observed in genome databases.
Hubert et al. [68] suggest that final structural represen-
tations are unlikely to be global optima since the selec-
tion procedure, while reasonable, does not make use of a
Table 4 Two-sample comparison of select ovarian cancer
phenotypes

Biological Process SBT versus SCA1 SCA1 versus SCA3

G1-S phase of the cell cycle NA 0.636

S-G2 phase of the cell cycle 0.676 0.691

Checkpoint 0.812 0.380

DNA damage and repair 0.637 NA

DNA synthesis and replication 0.368 0.142

Resample p-values for phenotypic comparisons of the form H0: Π1 = Π2 versus
H1: Π1 ≠ Π2.



Table 5 Estimated networks for the SCA1 and SCA3 phenotypes

SCA1

PCNA 1.0 . . . 0.60 0.65 . −0.75 . −0.59 −0.59 . .

TOP2A 1.0 −0.64 . . . 0.53 . . . . 0.52 −0.48

MCM3 1.0 −0.43 . −0.41 . . 0.66 . . 0.88 −0.72

MCM6 1.0 . . −0.72 . 0.64 . . 0.49 −0.44

MCM2 1.0 . . . −0.46 0.55 . . .

TK1 1.0 . 0.66 0.47 0.50 . . .

CDC6 1.0 0.58 . . . . .

RFC4 1.0 . . −0.77 . .

CDC45L 1.0 . . −0.62 0.80

RFC3 1.0 . . .

POLA2 1.0 0.61 −0.43

CDC7 1.0 0.77

RRM2 1.0

SCA3

PCNA 1.0 −0.52 . . 0.37 0.42 0.64 . 0.34 . . 0.34 −0.44

TOP2A 1.0 0.36 −0.49 0.37 . 0.84 . 0.62 0.35 . . −0.56

MCM3 1.0 . 0.47 . . 0.47. −0.40 −0.60 −0.40 . .

MCM6 1.0 0.60 0.34 . −0.40 . 0.37 . −0.43 .

MCM2 1.0 −0.44 −0.43 . . . . 0.45 .

TK1 1.0 −0.35 . . . . . .

CDC6 1.0 . −0.42 . 0.39 . 0.70

RFC4 1.0 0.34 0.82 0.49 −0.46 .

CDC45L 1.0 −0.37 . . 0.60

RFC3 1.0 −0.58 0.34 .

POLA2 1.0 0.46 .

CDC7 1.0 .

RRM2 1.0

The estimated SCA1 and SCA3 Gaussian graphical model networks for the DNA synthesis and replication genes. Off-diagonal non-zero weights indicate the
presence of an edge between two genes, ‘.’ denotes the lack of an edge, and ‘1.0’ is a visual placeholder.
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verifiable optimal search strategy. Even the limited simu-
lation work presented here suggests the nuance that net-
work algorithms or models can inject into the process.
Relying on a priori samples or an assumed null model to
generate a sampling distribution for D may be restrictive
in the one-sample case; but, the complexities surround-
ing network probability models and the intractability of
network-based test statistics does not suggest easy alter-
natives. Large (weighted) networks are likely to be costly
in terms of the data needed to estimate a family of net-
work parameters. The literature on the analysis of large
networks, with its emphasis on select topological com-
parisons, typically imposes a vast reduction in network
complexity. Thorne et al. [69], in proposing a method to
generate confidence intervals for network-related corre-
lations and motif-abundances reinforced the complex-
ities in defining a suitable null model for a biological
process.
General criticisms leveled against the use of re-
sampling methods are applicable here; see Berger [70].
The practical matter of using D for observation studies
raises the topic of partial exchangeability. It is unreason-
able to assume that either of the biological datasets
presented here met the assumption of exchangeability.
However, unconditional procedures also struggle when
confronted with observational data and/or missing or
hidden covariates. Our one- and two-sample comparison
approaches require or assume a hypothesized network
model for the purpose of sampling; we do not employ
fixed-network random rewiring schemes or variations
that seek to align a set of topological measures across a
set of stochastic networks.
A significant one- or two-sample finding naturally sug-

gests the question, “Where do the networks differ?”
Similar to individual effect tests in regression, the an-
swer to this question will involve one or more nodes or
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subgraphs. Answering targeted questions routinely ap-
pear in the literature, see [71-72]. Dong and Horvath
[73] suggest approximately factorizable networks; [74]
locate regulatory hot-spots by integrating network top-
ology and transcriptome data. Since D is a sum of node-
based dissimilarities, a test for dissimilarity between two
aligned nodes or subgraphs can be formed using the
portion of D attributable to that node or subgraph. Such
an approach may help isolate molecular targets or sub-
networks for closer study. Determining the sampling dis-
tribution for the modified test statistic is identical to the
procedure developed here. See Yates [49] for more de-
tails and examples.
Conclusions
In this paper we have demonstrated an inferential frame-
work for performing one- and two-sample hypothesis tests
for biological networks. We proposed a suitable test statis-
tic and evaluated it with both simulated and microarray
data under a variety of situations. The dissimilarity test
statistic proposed is a logical extension of existing mea-
sures used in sequence alignment/nominal data compari-
sons. In generating the null distribution of the test statistic
we used an assumed parametric model, resamples from a
collection of null samples, and made use of permutation
testing principles. Resampling methods suggest that coun-
terintuitive behaviours may occur when dealing with a
(potentially complex) network model. While not explicitly
demonstrated here, our procedure easily facilitates node-
level or subgraph post hoc tests.
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