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Abstract

Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised
Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression
microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture
of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that
specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is
that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over
the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted
here to generate random samples according to the posterior distribution of the factors, factor scores, and number of
factors. These samples are then used to estimate all the unknown parameters.

Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and
compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative
matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general
matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression
dataset from a recent viral challenge study in which individuals have been inoculated with influenza
A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated
and real data sets considered here.

Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method
when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The
uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during
the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.

Background
Factor analysis methods such as principal component
analysis (PCA) have been widely studied and can be used
for discovering the patterns of differential expression in
time course and/or multiple treatment biological experi-
ments using gene or protein microarray samples. These
methods aim at finding a decomposition of the observa-
tionmatrix Y ∈ RG×N whose rows (respectively columns)
are indexed by gene index (respectively sample index).
Typically, in gene expression analysis, the number N of
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samples is much less than the number G of genes. For
example, in an Affymetrix HU133 gene chip, the num-
ber G of genes may range from ten to twenty thousand
depending on the type of chip description file (CDF) pro-
cessing used to translate the oligonucleotide fragments to
gene labels whereas we only analyze about a hundred of
samples.
This decomposition expresses each of the N samples as

a particular linear combination of R characteristic gene
expression signatures, also referred to as factors, with
appropriate proportions (or contributions), called factor
scores, following a linear mixing model

Y = MA + N (1)
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where M ∈ RG×R represents the factor loading matrix,
A ∈ RR×N the factor score matrix and N ∈ RG×N

is a matrix containing noise samples. Each sample yi
(i = 1, . . . ,N), corresponding to the i-th column of the
observed gene expression matrix Y, is a vector of G gene
expression levels that can be expressed as

yi =
R∑

r=1
mrar,i + ni = Mai + ni (2)

wheremr is the r-th column ofM, ar,i denotes the (r, i)-th
element of the matrixA, ai and ni are the i-th column ofA
andN respectively. The number of factors R in the decom-
position is usually much less than the number of sam-
ples N. Traditional factor analysis methods such as PCA
require the experimenter to specify the desired number
of factors to be estimated. However, some recent Bayesian
factor analysis methods are totally unsupervised in the
sense that the number of factors is directly estimated from
the data [1-3].
The model (1) is identical to the standard factor anal-

ysis model [4] for which the columns of M are called
factors and should correspond to biological signatures (or
pathways). Note that the elements of the matrix M are
referred to as factor loadings, and the columns ofA are the
factor scores. Approaches to fitting the model (1) to data
include principal component analysis [5,6], least squares
matrix factorization [7,8], finite mixture modeling [9,10],
and Bayesian factor analysis [4,11,12].
This paper presents a new Bayesian factor analysis

method called unsupervised Bayesian linear unmixing
(uBLU), that estimates the number of factors and incorpo-
rates non-negativity constraints on the factors and factor
scores, as well as a sum-to-one constraint for the factor
scores. The uBLU method presented here differs from the
BLU method, developed in [13] for hyperspectral imag-
ing and applied to gene microarray expression analysis
in [14]. Note that BLU requires user specification of the
number of factors while uBLU determines the number of
factors using Bayesian birth-death model. The positivity
and sum-to-one constraints are natural in gene microar-
ray analysis when the entries of the observation matrix are
non-negative and when a proportional decomposition is
desired. Thus each factor score corresponds to the con-
centration (or proportion) of a particular factor to a given
sample. The advantage of this representation for gene
expression analysis is twofold: i) the factor scores corre-
spond to the strengths of each gene contributing to that
factor; ii) for each gene chip the factor scores give the rel-
ative abundance of each factor present in the chip. For
example, a gene having a large loading level (close to one)
for a particular factor should have a small loading (close to
zero) for all other factors. In this way, as opposed to other
factor analysis methods, there is less multiplexing making

it easier to associate specific genes to specific factors and
vice versa.
A similar approach, based on NMR spectral imaging

and called the Bayesian decomposition (BD), has been
previously developed by Moloshok et al. and applied to
gene expression data [11]. More recently, the coordi-
nated gene activity in pattern sets method (CoGAPS),
available as an open R-source [12], combines the GAPS-
MCMC matrix factorization algorithm with a threshold-
independent statistic to infer activity in specific gene
sets. However, these approaches require cold restarts of
the algorithm with different number of factors and with
different random seeds to avoid the large number of
local minima encountered in the process of fitting the
matrix factorization modelMA to the data Y. In contrast,
the proposed uBLU algorithm uses a judicious model to
reduce sensitivity to local minima rather than using cold
restarts. The novelty of the uBLU model is that it con-
sists of: (1) a birth-death process to infer the number
of factors; (2) a positivity constraint on the loading and
score matrices M, A to restrict the space of solutions; (3)
a sum-to-one constraint on the columns of A to further
restrict the solution space. The uBLU model is justified
for non-negative data problems like gene expression anal-
ysis and produces an estimate of the non-negative factors
in addition to their proportional representation in each
sample.
Bayesian linear unmixing, traditionally used for hyper-

spectral image analysis (see [13] for example), is one
of many possible factor analysis methods that could
be applied to gene expression analysis. These methods
include non-negative matrix factorization (NMF) [7,8],
independent component analysis (ICA) [15], Bayesian
decomposition (BD) [11], PCA [5], bi-clustering [16],
penalized matrix decomposition (PMD) [2], Bayesian fac-
tor regression modeling (BFRM) [1], and more recently
the gradient-based algorithm of Nikulin et al. for general
matrix factorization (GB-GMF) [17]. Contrary to uBLU,
the PCA, ICA, BFRM, GB-GMF, bi-clustering and PMD
methods do not account for non-negativity of the factor
loadings and factor scores. On the other hand, NMF does
not account for sum-to-one constraints on the columns of
the factor score matrix. Contrary to PCA and ICA, uBLU
does not impose orthogonality or independence on the
factors, as well as the GB-GMF algorithm. These relaxed
assumptions might better represent what is known about
the preponderance of overlap and dependency in bio-
logical pathways. Finally, uBLU naturally accommodates
Bayesian estimation of the number of factors, like BFRM.
Note that BFRM has been specifically developed for gene
expression data [1].
In this paper we provide comparative studies that estab-

lish quantitative performance advantages of the proposed
constrained model and its corresponding uBLU algorithm
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with respect to PCA, NMF, BFRM and GB-GMF for time-
varying gene expression analysis, using synthetic data with
known ground truth. We also illustrate the application
of uBLU to the analysis of a real gene expression dataset
from a recent viral challenge study [18] in which sev-
eral subjects were administered viral inoculum and gene
expression time course data were collected over a period
of several days. Using these data, we may infer relation-
ships between genes and symptoms and examine how the
human host response to viral infection evolves with time.

Methods
Mathematical constrainedmodel
Let yi represent a gene microarray vector of G gene
expression levels. The elements of yi have units of
hybridization abundance levels with non-negative values.
In the context of gene expression data, the starting point
for Bayesian linear unmixing is the linear mixing model
(LMM)

yi =
R∑

r=1
mrar,i + ni, (3)

where R is the number of distinct gene signatures that
can be present in the chip, mr = [

m1,r , . . . ,mG,r
]T is the

r-th gene signature vector, mg,r ≥ 0 is the strength of
the g-th gene (g = 1, . . . ,G) in the r-th signature (r =
1, . . . ,R), and ar,i is the relative contribution of the r-th
signature vector to the i-th sample yi, where ar,i ∈[ 0, 1]
and

∑R
r=1 ar,i = 1. Here ni denotes the residual error of

the LMM representation. For a matrix of N data samples
Y = [

y1, . . . , yN
] ∈ RG×N , the LMM can be rewritten

with matrix notations

Y = MA + N, (4)

where M = [m1, . . . ,mR] ∈ RG×R, A = [a1, . . . , aN ]
∈ RR×N andN = [n1, . . . ,nN ] ∈ RG×N represent the fac-
tor score matrix, the factor loading matrix and the noise
matrix, respectively. The matrices M, A satisfy positivity
and sum-to-one constraints defined by

mg,r ≥ 0, ar,i ≥ 0, and [ 1, . . . , 1]A =[ 1, . . . , 1] ,
(5)

wheremg,r denotes the (g, r)-th element of matrixM. The
constraints (5) arise naturally when dealing with positive
data for which one is seeking the relative contribution of
positive factors that have the same numerical characteris-
tics as the data, i.e., the signaturemr is itself interpretable
as a vector of hybridization abundances.
The objective of linear unmixing is to simultaneously

estimate the factor matrix M and the factor score matrix
A from the available N data samples. The representa-
tion (1) is rank deficient since A has rank N − 1. This
presents algorithmic challenges for solving the unmixing

problem. Several algorithms have been proposed in the
context of hyperspectral imaging to solve similar prob-
lems [6,19]. Most of these algorithms perform unmixing
in a two step procedure where M is estimated first using
an endmember extraction algorithm (EEA) followed by
a constrained linear least squares step to estimate A. A
common (but restrictive) assumption in these algorithms
is that some samples in the dataset are “pure” in the
sense that the linear combination of (2) contains a unique
factor, saymr , with factor score ar,i. Recently, this assump-
tion has been relaxed by applying a hierarchical Bayesian
approach, called Bayesian linear unmixing (BLU). The
resulting algorithm requires the number R of factors to
be specified (see [13] for details). Here we extend BLU to
a fully unsupervised algorithm, called unsupervised BLU
(uBLU), that estimates R using a birth-death model and
a Gibbs sampler. The Gibbs sampler produces an esti-
mate of the entire joint posterior distribution of the model
parameters, resulting in a fully Bayesian estimator of the
number of factors R, the factor loadings M, and the fac-
tor scores A. The uBLU model is described in the next
subsection and the Gibbs sampling algorithm is given in
the Appendix. In the Results and discussion section below
we demonstrate the performance advantages of uBLU
as a factor analysis model for simulated and real gene
expression data.

Unsupervised Bayesian linear unmixing algorithm
The BLU algorithm studied in [13] generates samples dis-
tributed according to the posterior distribution of M and
A given the number R of factors for appropriate prior
distributions assigned to the mixing parameters in (2).
First, the residual errors ni in (2) are assumed to be
independent identically distributed (i.i.d.) according to
zero-mean Gaussian distributions: ni ∼ N

(
0G, σ 2IG

)
for

i = 1, . . . ,N , where IG denotes the identity matrix of
dimension G × G.
The number of factors R to be estimated by the pro-

posed uBLU algorithm is assigned a discrete uniform prior
distribution on [ 2, . . . ,Rmax]

P[R = k]= 1
Rmax − 1

, for R = 2, . . . ,Rmax, (6)

where Rmax is the maximal number of factors present in
the mixture.
Because of the constraints in (5), the data samples yi

(i = 1, . . . ,N) live in a lower-dimensional subspace ofRK

(whose dimension is upper-bounded by K −1) denoted as
VK−1 (Rmax − 1 ≤ K ≤ G). This subspace can be iden-
tified by a standard dimension reduction procedure, such
as PCA. Hence, instead of estimating the factor loadings
mr ∈ RG (r = 1, . . . ,R), we propose to estimate their
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corresponding projections tr ∈ RK onto this subspace.
Specifically, these projections can be represented as

tr = P(mr − ȳ) (7)

where ȳ = 1
N

∑N
i=1 yi is the empirical mean of the data

matrix Y and P is the (K − 1) × G appropriate projection
matrix that projects onto VK−1, which can be constructed
from the principal eigenvectors of the empirical covari-
ance matrix of Y. This dimension reduction procedure
allows us to work in a lower-dimensional subspace with-
out loss of information, and reduces significantly the com-
putational complexity of the Bayes estimator of the factor
loadings. A multivariate Gaussian distribution (MGD)
truncated on a subset Tr is chosen as prior distribution for
the projected factors tr . The subset Tr is defined in order
to ensure the non-negativity constraint onmr (see [13])

tr ∈ Tr ⇔ {mg,r ≥ 0,∀g = 1, . . . ,G}. (8)

More precisely, Tr is obtained by noting thatmr = P−1tr+
ȳ and by looking for the vectors tr such that all compo-
nents of P−1tr + ȳ are non-negative. To estimate the mean
vectors er of these truncated MGDs, one can use a stan-
dard endmember extraction algorithm (EEA) common in
hyperspectral imaging, e.g. N-FINDR [19]. To summarize,
the prior distribution for the projected factor tr is

tr|er , s2r ∼ NTr
(
er , s2r IR−1

)
(9)

where NTr
(
er , s2r IR−1

)
denotes the truncated MGD with

mean vector er and covariance matrix s2r IR−1, with s2r a
fixed hyperparameter. Assuming the vectors tr , for r =
1, . . . ,R, are a priori independent, the prior distribution
for the projected factor matrix T = [t1, . . . , tR] is

f
(
T|E, s2,R) ∝

R∏
r=1

exp
[
−‖tr − er‖2

2s2r

]
1Tr (tr) (10)

where ∝ stands for “proportional to”, ‖·‖ is the standard
l2-norm, 1X (·) denotes the indicator function on the set
X , E = [e1, . . . , eR] and s2 = [

s21, . . . , s2R
]
.

The sum-to-one constraint for the factor scores ai, for
each observed sample i (i = 1, . . . ,N), allows this vector
ai to be rewritten as

ai =
(
a1:R−1,i
aR,i

)
with a1:R−1,i = [

a1,i, . . . , aR−1,i
]T ,

(11)

and aR,i = 1 − ∑R−1
r=1 ar,i. Note here that any compo-

nent of ai could be expressed as a function of the others,
i.e., ar,i = 1 − ∑

k 
=r ak,i. The last component aR,i has
been chosen here for notation simplicity. To ensure the

positivity constraint, the subvectors a1:R−1,i must belong
to the simplex

S = {a1:R−1,i | ∥∥a1:R−1,i
∥∥
1 ≤ 1 and ai � 0}, (12)

where ‖·‖1 is the l1 norm (‖ai‖1 = ∑R
r=1 |ar,i|) and

ai � 0 stands for the set of inequalities {ar,i ≥ 0}r=1,...,R.
Following the model in [13], we propose to assign uni-
form distributions over the simplex S as priors for the
subvectors a1:R−1,i (i = 1, . . . ,N), i.e.,

f
(
a1:R−1,i|R

) = 1S
(
a1:R−1,i

)
. (13)

For the prior distribution on the variance σ 2 of the
residual errors we chose a conjugate inverse-Gamma dis-
tribution with parameters ν/2 and γ /2

σ 2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (14)

The shape parameter ν is a fixed hyperparameter whereas
the scale parameter γ will be adjustable, as in [13]. A non-
informative Jeffreys’ prior is chosen as prior distribution
for the hyperparameter γ , i.e.,

f (γ ) ∝ 1
γ
1R+(γ ). (15)

The resulting hierarchical structure of the proposed
uBLU model is summarized in the directed acyclic graph
(DAG) presented in Additional file 1: Figure S1.
The model defined in (1) and the Gaussian assumption

for the noise vectors n1, . . . ,nN allow the likelihood of
y1, . . . , yN to be determined

f (Y|�) =
(

1
2πσ 2

)GN
2
exp

[
−

∑N
i=1

∥∥yi − Mai
∥∥2

2σ 2

]
.

(16)

Multiplying this likelihood by the parameter priors
defined in (10), (13), (14) and (6), and integrating out the
nuisance parameter γ , the posterior distribution of the
unknown parameter vector � = {M,A, σ 2,R} can be
expressed as

f (�|Y) =
∫

f (�, γ |Y) dγ

∝
∫

f (Y|�) f (�|γ ) f (γ ) dγ .
(17)

Considering the parameters to be a priori independent,
the following result can be obtained

f (�|γ ) = f (A|R) f
(
T|E, s2,R)

f
(
σ 2|ν, γ )

f (R) (18)

where f (A|R), f
(
T|E, s2,R)

and f
(
σ 2|ν, γ )

are respec-
tively the prior distributions of the factor score matrix A,
the projected factor matrix T and the noise variance σ 2

previously defined.
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Due to the constraints enforced on the data, the poste-
rior distribution f (M,A,R|Y) obtained from the proposed
hierarchical structure is too complex to derive analytical
expressions of the Bayesian estimators, e.g., the minimum
mean square (MMSE) and maximum a posteriori (MAP)
estimators. In such case, it is natural to use Markov chain
Monte Carlo (MCMC) methods [20] to generate samples
M(t), A(t) and R(t) asymptotically distributed according
to f (M,A,R|Y). However, the dimensions of the factor
loading matrix M and the factor score matrix A depend
on the unknown number R of signatures to be identified.
As a consequence, sampling from f (M,A,R|Y) requires
exploring parameter spaces of different dimensions. To
solve this dimension matching problem, we include a
birth/death process within the MCMC procedure. Specif-
ically, a birth, death or switch move is chosen at each iter-
ation of the algorithm (see the Appendix and [21]). This
birth-death model differs from the classical reversible-
jumpMCMC (RJ-MCMC) (as defined in [21]) in the sense
that, for the birth-death model, each move is accepted
or rejected at each iteration using the likelihood ratio
between the current state and the new state proposed
by the algorithm. The factor matrix M, the factor score
matrix A and the noise variance σ 2 are then updated,
conditionally upon the number of factors R, using Gibbs
moves.
After a sufficient number of iterations (Nmc iterations,

including a burn-in period of Nbi iterations), the tradi-
tional Bayesian estimators (e.g., MMSE and MAP) can be
approximated using the generated samples M(t), A(t) and
R(t). First, the generated samples are used to approximate
the MAP estimator of the number of factors

R̂MAP = argmax
k∈{2,...,Rmax}

P[R = k|Y]

≈ argmax
k∈{2,...,Rmax}

Nk
Nr

(19)

where Nk is the number of generated samples R(Nbi+1),
. . . ,R(Nmc) satisfying R(t) = k and Nr = Nmc − Nbi.
Then, conditioned on R̂MAP, the joint MAP estimator(
M̂MAP, ÂMAP

)
of the factor and factor score matrices is

determined as follows

(
M̂MAP, ÂMAP

)≈ argmax
t=Nbi+1,...,Nmc

f
(
M(t),A(t)|Y,R= R̂MAP

)
.

(20)

Results and discussion
The proposed method consists of estimating simultane-
ously the matrices M and A defined in (1), under the
positivity and sum-to-one constraints mentioned previ-
ously, in a fully unsupervised framework, i.e., the number
of factors R is also estimated from the data. A Gibbs

sampler algorithm is designed that generates samples dis-
tributed according to the posterior distribution associated
to the proposed uBLU model. For more details about the
Gibbs sampling strategy, see the Appendix.

Simulations on synthetic data
To illustrate the performance of the proposed Bayesian
factor decomposition, we first present simulations con-
ducted on synthetic data. More extensive simulation
results are reported in the Additional file 1.

Simulation scenario
Several synthetic datasetsD1, . . . ,D4 were generated. The
experiments presented here correspond to the expression
values of G = 512 genes (for datasets D1, D3 and D4)
or G = 12000 genes (for dataset D2) with N = 128
samples. Each sample is composed of exactly R = 3
factors mixed using the linear mixing model in (1). The
factors of the first dataset D1 have been generated so
that only a few genes affect each factor. For the second
dataset D2, realistic factors have been extracted from real
genetic datasets. The third datasetD3 has been generated
enforcing the factors to be orthogonal but not necessar-
ily positive whereas in the forth dataset, D4, factors are
orthogonal and positive. These simulation conditions are
summarized in Table 1.
In each case, the R = 3 factors were mixed in random

proportions (factor scores), with positivity and sum-to-
one constraints. All synthetic datasets were corrupted by
an i.i.d. Gaussian noise sequence. The signal-to-noise ratio
is SNRi = 20 dB where SNRi = G−1σ−2

∥∥∥∑R
r=1mrar,i

∥∥∥2
for each sample i (i = 1, . . . ,N).

Proposedmethod (uBLU)
The first step of the algorithm consists of estimating
the number of factors R involved in the mixture, and
hence determining the dimensions of the matrices M
and A, using the maximum a posteriori (MAP) estimator
R̂MAP. The second step of the algorithm consists of esti-
mating the unknown model parameters (M, A and σ 2)
given R̂MAP. The estimated posterior distributions of the
unknown model parameters are given in Additional file 1:
Figure S5 and validate the proposed Bayesian model.
The burn-in period and number of Gibbs samples were

determined using quantitative methods described in the
Additional file 1: Section “Convergence diagnosis”.

Table 1 Synthetic datasetsD1, . . . ,D4

D1 Peaky factors

D2 Realistic factors

D3 Orthogonal factors

D4 Orthogonal and positive factors
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Comparison to othermethods
The performance of the proposed uBLU algorithm is com-
pared with other existing factor decomposition methods
including PCA, NMF, BFRM and GB-GMF by using the
following criteria, which are common measures used to
compare factor analysis algorithms,

• the factor mean square errors (MSE)

MSE2r = 1
G

∥∥m̂r − mr
∥∥2 , r = 1, . . . ,R

where m̂r is the estimated r-th factor loading vector,
• the global MSE of factor scores

GMSE2r = 1
N

N∑
i=1

(
âr,i − ar,i

)2 , r = 1, . . . ,R

where âr,i is the estimated proportion of the r-th
factor in the i -th sample,

• the reconstruction error (RE)

RE = 1
NG

N∑
i=1

∥∥yi − ŷi
∥∥2 (21)

where ŷi = ∑R
r=1 m̂râr,i is the estimate of yi,

• the spectral angle distance (SAD) betweenmr and its
estimate m̂r for each factor r = 1, . . . ,R

SADr = arccos
(

m̂T
r mr∥∥m̂r
∥∥ ‖mr‖

)
where arccos(·) is the inverse cosine function,

• the global spectral angle distance (GSAD) between yi
(the i -th observation vector) and ŷi (its estimate)

GSAD = 1
N

N∑
i=1

arccos
(

ŷTi yi∥∥ŷi∥∥ ∥∥yi∥∥
)
,

• the computational time.

The proposed uBLU algorithm, the PCA, NMF and
GB-GMF methods were implemented in Matlab 7.8.0
(R2009a). The BFRM software (version 2.0) was down-
loaded from [22] and implemented with default values
for the parameters. All methods were implemented on an
Intel(R) Core(TM)2 Duo processor.
Simulation results are reported in Tables 2, 3, 4 and 5.

Note that the positivity and sum-to-one constraints that
are enforced on the data for the proposed uBLU algorithm
avoid the scale ambiguity inherent to any factor decom-
position problem. Conversely, for the other factor decom-
position methods (PCA, NMF, BFRM and GB-GMF), if
{M,A} is an admissible solution, {MB,BTA} is also admis-
sible for any scaling and permutation matrix B. Hence a
re-scaling is required to identify appropriate permutations

before computing MSEs and GMSEs. Moreover, when
PCA, NMF, BFRM and GB-GMF methods are run for
R = 4, we only considered the 3 factors yielding the 3
smallest SADs values.
These results show that the uBLU method is more flex-

ible since it provides better unmixing performance across
all of the considered synthetic datasetsD1, . . . ,D4 as com-
pared to other existing factorizationmethods (PCA, NMF,
BFRM and GB-GMF). Moreover, uBLU has the following
advantages: i) it is fully unsupervised and does not require
the number of factors to be specified as a prior knowledge,
ii) due to the constraints, the factors and factor scores
are estimated without scale ambiguity. The disadvantage
is the execution time: uBLU requires more computation
due to the Gibbs sampling.

Evaluation on gene expression data
Here the proposed algorithm is illustrated on a real time-
evolving gene expression data from recent viral challenge
studies on influenza A/H3N2/Wisconsin. The data are
available at GEO, accession number GSE30550.

Details on data collection
We briefly describe the dataset. For more details the
reader is referred to [14,18]. H3N2 dataset consists of
the gene expression levels of N = 267 Affymetrix chips
collected on 17 healthy human volunteers experimentally
infected with influenza A/Wisconsin/67/2005 (H3N2). A
clinical symptom score was assigned to each sample by
clinicians who participated in the study. Nine of the 17
subjects (those labeled Z01, Z05, Z06, Z07, Z08, Z10, Z12,
Z13, and Z15 in Figure 1c) became clinically ill during the
study. These labels are only used as ground truth to quan-
tify performance and are not available to the uBLU algo-
rithm. The challenge consists of inoculating intranasally
a dose of 106 TCID50 Influenza A manufactured and
processed under current good manufacturing practices
(cGMP) by Baxter BioScience. Peripheral blood microar-
ray analysis was performed at multiple time instants cor-
responding to baseline (24 hours prior to inoculation with
virus), then at 8 hour intervals for the initial 120 hours and
then 24 hours for two further days. Each sample consisted
of over G = 12000 gene expression values after stan-
dard microarray data normalization with RMA using the
custom brain array cdf [14]. No other preprocessing was
applied prior to running the five unsupervised methods
(uBLU, PCA, NMF, BFRM, and GB-GMF).

Application of the proposed uBLU algorithm
The uBLU algorithm was run with Nmc = 10000 Monte
Carlo iterations, including a burn-in period of Nbi = 1000
iterations. uBLU allows the posterior distribution of the
number of factors R, depicted in Figure 1a, to be esti-
mated. The results show that the MAP estimate of the
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Table 2 Simulation results for datasetD1

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.39 N/A N/A 205.99 267.42

0.60 6.04 61.12 N/A N/A

0.54 0.97 9.78 325.58 67.14

GMSE2r (×10−3) 0.04 N/A N/A 64.39 226.58

0.04 2.00 2.00 N/A N/A

0.05 0.30 0.28 75.87 41.33

SAD2
r (×10−1) 0.46 N/A N/A 21.69 12.48

0.29 3.49 3.50 N/A N/A

0.28 1.49 1.50 23.24 27.43

GSAD (×10−2) 3.39 20.38 20.38 24.04 37.35

RE 0.18 9.12 9.12 1.94 9.16

Time (s) 1.24 × 103 0.03 0.71 47.15 0.39 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2)

0.39 6.01 0.48 212.30 40.27

0.60 6.53 0.45 681.42 147.74

0.54 5.86 0.28 137.22 94.90

GMSE2r (×10−3)

0.04 6.62 0.19 76.09 45.29

0.04 2.40 0.01 142.72 17.37

0.05 0.84 0.05 76.22 33.78

SAD2
r (×10−1)

0.46 1.86 0.53 10.68 11.86

0.29 1.18 0.31 15.18 12.50

0.28 1.36 0.26 5.33 13.96

GSAD (×10−2) 3.37 3.39 3.38 24.23 33.38

RE 0.18 0.18 0.18 1.84 0.18

Time (s) 1.24 × 103 0.10 0.95 53.60 0.56 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2)

0.39 6.02 87.78 205.66 195.89

0.60 6.53 0.45 247.96 101.34

0.54 8.03 0.26 330.01 68.69

GMSE2r (×10−3)

0.04 23.82 26.56 64.59 57.58

0.04 11.70 0.23 114.02 3.10

0.05 6.37 18.04 75.47 27.72

SAD2
r (×10−1)

0.46 1.86 6.14 9.74 8.84

0.29 1.18 0.31 22.15 26.80

0.28 1.36 0.26 8.17 27.32

GSAD (×10−2) 3.39 3.34 3.36 28.62 29.23

RE 0.18 0.18 0.18 2.08 0.18

Time (s) 1.24 × 103 0.11 0.96 63.88 0.70 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMF methods.
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Table 3 Simulation results for datasetD2

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 N/A N/A N/A

0.14 N/A 1.06 37.67 58.75

0.14 0.12 26.68 52.09 150.09

GMSE2r (×10−1) 0.34 0.01 N/A N/A N/A

0.15 N/A 1.12 1.17 22.37

0.09 0.94 6.24 0.62 1.18

SAD2
r (×10−1) 0.39 0.44 N/A N/A N/A

0.48 N/A 1.32 16.53 13.34

0.47 0.44 3.72 15.21 18.14

GSAD (×10−2) 1.51 1.02 1.53 37.99 129.40

RE (×10−2) 0.64 1.62 1.65 0.65 5.47

Time (s) 22.06 × 103 0.29 32.02 4.07 × 103 9.24 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 14.87 24.41 61.00

0.14 0.01 20.53 50.59 58.31

0.14 0.09 14.02 35.89 65.11

GMSE2r (×10−1) 0.34 0.03 0.34 1.41 4.80

0.15 0.02 2.44 0.65 9.40

0.09 0.05 0.92 1.19 5.40

SAD2
r (×10−1) 0.39 0.44 2.84 14.35 13.72

0.48 0.12 4.75 15.47 13.62

0.47 0.37 4.00 17.50 15.82

GSAD (×10−2) 1.02 1.02 1.49 29.29 129.29

RE (×10−2) 0.64 0.63 1.55 0.75 1.62

Time (s) 22.06 × 103 0.28 45.91 5.37 × 103 16.59 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 13.13 24.25 64.90

0.14 0.01 20.53 50.52 64.09

0.14 0.09 14.02 28.32 69.99

GMSE2r (×10−1) 0.34 0.09 0.20 1.42 15.12

0.15 0.48 1.00 0.65 9.55

0.09 0.05 0.44 1.31 7.73

SAD2
r (×10−1) 0.39 0.44 2.54 14.74 14.53

0.48 0.13 5.52 15.45 14.55

0.47 0.37 4.79 16.45 16.17

GSAD (×10−2) 1.02 1.01 1.06 40.36 129.29

RE (×10−2) 0.64 0.63 0.69 0.86 1.50

Time (s) 22.06 × 103 0.54 55.86 5.59 × 103 16.59 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMF methods.
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Table 4 Simulation results for datasetD3

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.83 0.82 N/A 1.14

0.85 0.80 0.92 1.34 2.30

1.15 N/A N/A 1.36 N/A

GMSE2r (×10−2) 7.75 7.29 7.72 N/A 8.94

7.76 0.47 0.48 12.30 11.86

9.84 N/A N/A 11.05 N/A

SAD2
r (×10−1) 0.59 7.09 7.04 N/A 15.55

7.13 6.71 7.19 8.41 16.43

8.71 N/A N/A 8.54 N/A

GSAD (×10−1) 3.23 2.58 2.59 6.59 15.26

RE (×10−4) 3.11 0.70 0.70 0.47 2.50

Time (s) 1.59 × 103 0.01 0.70 42.02 0.40 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.15 0.15 1.74 1.20

0.85 1.02 0.76 1.76 2.26

1.15 1.57 1.03 1.55 2.40

GMSE2r (×10−2) 7.75 14.89 2.80 11.40 14.09

7.76 0.11 0.40 12.11 12.33

9.84 0.11 0.30 10.94 12.76

SAD2
r (×10−1) 0.59 2.60 2.47 11.34 15.76

7.13 7.16 6.59 9.45 16.40

8.71 8.80 7.67 9.06 15.66

GSAD (×10−1) 3.23 2.58 1.71 6.88 15.20

RE (×10−4) 3.11 0.27 0.29 0.49 2.44

Time (s) 1.59 × 103 0.10 1.24 59.72 0.54 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.02 1.43 1.43 1.19

0.85 1.48 5.49 3.92 2.06

1.15 1.68 0.90 1.88 2.33

GMSE2r (×10−2) 7.75 13.78 20.56 16.66 13.15

7.76 4.35 12.36 15.34 11.75

9.84 3.99 2.67 11.25 13.29

SAD2
r (×10−1) 0.59 0.97 10.27 10.24 15.97

7.13 7.93 15.78 16.45 14.92

8.71 8.66 6.93 10.98 15.89

GSAD (×10−1) 3.23 1.17 1.20 5.51 15.98

RE (×10−4) 3.11 0.16 0.16 0.41 2.45

Time (s) 1.59 × 103 0.13 1.15 67.71 0.69 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMF methods.
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Table 5 Simulation results for datasetD4

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 N/A 5.12 N/A N/A

1.61 0.01 3.59 15.35 18.69

0.05 0.44 N/A 14.42 19.20

GMSE2r (×10−1) 0.28 N/A 3.23 N/A N/A

0.87 0.02 2.65 0.33 1.62

0.69 0.76 N/A 0.50 1.30

SAD2
r (×10−1) 0.34 N/A 4.25 N/A N/A

3.08 0.17 3.71 14.90 14.89

0.51 0.68 N/A 15.59 15.70

GSAD (×10−2) 4.97 5.24 5.25 157.09 156.19

RE (×10−4) 4.49 4.88 4.89 19.34 8.48

Time (s) 1.61 × 103 0.02 1.36 35.29 0.40 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 0.01 6.18 18.38 21.63

1.61 0.01 4.79 16.10 19.55

0.05 0.09 4.21 15.04 19.85

GMSE2r (×10−1) 0.28 0.05 1.67 1.44 1.29

0.87 0.05 1.01 0.37 1.75

0.69 0.05 0.94 0.26 1.17

SAD2
r (×10−1) 0.34 0.27 4.12 15.21 15.65

3.08 0.17 4.09 15.26 15.90

0.51 0.32 4.16 16.07 15.36

GSAD (×10−2) 4.97 4.95 4.99 157.08 154.80

RE (×10−4) 4.49 4.34 4.36 25.00 8.48

Time (s) 1.61 × 103 0.10 1.78 41.05 0.55 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 0.01 6.98 17.51 21.60

1.61 0.01 7.30 15.07 19.03

0.05 0.07 4.27 14.55 19.14

GMSE2r (×10−1) 0.28 0.22 0.65 0.75 1.29

0.87 0.51 0.91 0.77 1.18

0.69 0.05 0.56 0.56 1.33

SAD2
r (×10−1) 0.34 0.27 4.41 15.61 15.51

3.08 0.19 4.81 16.31 14.77

0.51 0.33 4.00 15.84 15.26

GSAD (×10−2) 4.97 4.91 4.94 156.76 162.63

RE (×10−4) 4.49 4.30 4.33 13.48 8.29

Time (s) 1.61 × 103 0.16 1.56 48.22 0.70 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMF methods.
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Figure 1 Experimental results on the H3N2 viral challenge dataset of gene expression profiles. (a) Estimated posterior distribution of the
number of factors R. (b) Factor loadings ranked by decreasing dominance. (c) Heatmap of the factor scores of the inflammatory component clearly
separates symptomatic subjects (bottom 9 rows) and the time course of their molecular inflammatory response. The five black colored pixels
indicate samples that were not assayed.

number of factors is R̂MAP = 4 (more than 90% of the gen-
erated Gibbs samples of the number of factors were equal
to 4).
Figure 2 shows the reconstruction error RE(t) as a func-

tion of the number of iterations (t = 1, . . .). The recon-
struction errors are computed from the observed gene
expression data matrix and the estimates of the factor and
factor score matrix M and A at each iteration. Figure 2
also indicates that the number of burn-in andMonte Carlo
samples Nbi = 1000 and Nmc = 10000 are sufficient.
The different factors are depicted in Figure 1b where

the G genes have been reordered so that the dominant
genes are grouped together in each factor. Factors are then

ordered with respect to their maximum loading. Specifi-
cally, the k-th sharp peak in the figure occurs at the gene
index that has maximal loading in factor k. Genes to the
right of this dominant gene up to the (k + 1)-st peak
also dominate in this k-th factor, but at a lower degree.
uBLU identifies a strong factor (the first factor, in red) by
virtue of its significantly larger proportion of highly dom-
inant genes. Many of the genes in this strong factor are
recognizable as immune response genes that regulate pat-
tern recognition, interferon, and inflammation pathways
in respiratory viral response. A very similar factor was
found in a different analysis [14,18] of this dataset and
here we call it the “inflammatory component”.
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Figure 2 Reconstruction error and estimated number of factors as a function of the number of iterations (H3N2 challenge data). Top:
Reconstruction error (RE(t)) computed from the observation matrix Y and the estimated matricesM(t) and A(t) as a function of the iteration index t.
Bottom: Estimated number of factors R(t) as a function of the iteration number t.

The factor scores corresponding to this inflamma-
tory component are shown in Figure 1c, where they
are rendered as an image whose columns (respectively
rows) index the subjects (respectively the different time
sampling instants). Figure 1c shows that uBLU clearly
separates the samples of subjects exhibiting symptoms
(associated with the last 9 rows) from those who remain
asymptomatic (associated with the first 8 rows), when
the estimated number of factors is R̂ = 4. Moreover,
this symptom factor can be used to segment the data
matrix into 3 states: pre-onset-symptomatic (before sig-
nificant symptoms occur), post-onset-symptomatic and
asymptomatic.

Furthermore, this inflammatory factor identified by the
proposed uBLU algorithm is most highly represented in
those samples associated with acute flu symptoms, as
measured bymodified Jackson scores (see [14], Figure 1B).
The dominant gene contributors to this inflamma-
tory component correspond to well-known transcrip-
tion factors controlling immune response, inflammatory
response and antigen presentation – see Table 6. The
reader is referred to [14,18] for more details on clinical
determination of symptom scores and biological signifi-
cance of the inflammatory component genes.
For comparison we applied a supervised version of the

proposed uBLU algorithm to the H3N2 dataset. This was

Table 6 NCI-curated pathway associations of group of genes contributing to uBLU inflammatory component

Pathway name Genes P-value

IFN-gamma pathway CASP1, CEBPB, IL1B, IRF1, IRF9, PRKCD, SOCS1, STAT1,
STAT3

1.34e-09

PDGFR-beta signaling pathway DOCK4, EIF2AK2, FYN, HCK, LYN, PRKCD, SLA, SRC,
STAT1, STAT3, STAT5A, STAT5B

3.26e-08

IL23-mediated signaling events CCL2, CXCL1, CXCL9, IL1B, STAT1, STAT3, STAT5A 2.18e-07

Signaling events mediated by TCPTP EIF2AK2, SRC, STAT1, STAT3, STAT5A, STAT5B, STAT6 6.38e-07

Signaling events mediated by PTP1B FYN, HCK, LYN, SRC, STAT3, STAT5A, STAT5B 2.40e-06

GMCSF-mediated signaling events CCL2, LYN, STAT1, STAT3, STAT5A, STAT5B 3.70e-06

IL12-mediated signaling events HLA-A, IL1B, SOCS1, STAT1, STAT3, STAT5A, STAT6 1.32e-05

IL6-mediated signaling events CEBPB, HCK, IRF1, PRKCD, STAT1, STAT3 1.80e-05

NCI-curated pathway associations of group of genes contributing to uBLU inflammatory component, whose factor scores are shown in Figure 1 (Source: NCI pathway
interaction database http://pid.nci.nih.gov). Genes in uBLU factor are significantly better represented in the NCI-curated pathways than the genes in NMF (compare
p-values here to those in Table 8).

http://pid.nci.nih.gov
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implemented by setting the number of factors to R = 4
and using the algorithm [13] to jointly estimate M and
A. The inflammatory component found by the super-
vised algorithm was virtually identical to the one found by
the proposed algorithm (uBLU) that automatically selects
R = 4.

Comparison to othermethods
The uBLU algorithm is compared with four matrix factor-
ization algorithms, i.e. PCA, NMF, BFRM and GB-GMF
methods.
Figure 3 depicts the different factors, ordered so that

the inflammatory group is the leftmost one (in red).
The factor loadings obtained with NMF or PCA reveal
the inflammatory component. However, there are fewer

highly dominant genes in the NMF and PCA loadings for
this factor as compared to uBLU. The BFRMandGB-GMF
methods found four pathways, several overlapping with
those of uBLU, NMF and PCA.
The factor scores of the five matrix factorization meth-

ods corresponding to the inflammatory component are
depicted in Figure 4. This figure shows that the uBLU and
the NMF methods are better able to attain a high con-
trast separation between the acutely symptomatic samples
and the other samples. This is confirmed by the evalua-
tion of the Fisher criteria (22) between these two regions
(see Table 7). Indeed, denote by

(
μpos, σ 2pos

)
the empirical

mean and variance of the scores associated with the Npos
samples in the acute symptomatic state (bright colored
samples in the lower right rectangle of Figure 1c). Denote

Figure 3 Factor loadings ranked by decreasing dominance for H3N2 challenge data. uBLU shows a particularly strong component (Figure 1b),
the group �1, that corresponds to the well-known inflammatory pathway. NMF and PCA algorithms also reveal an inflammatory component, but it
includes fewer relevant genes than uBLU. See Figure 4 for the corresponding factor scores.
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Figure 4 Heatmaps of the factor scores of the inflammatory component for H3N2 challenge data. The inflammatory factor determined by
the proposed uBLU method (a) shows higher contrast between symptomatic and asymptomatic subjects than the other methods. The five black
colored pixels of the heatmaps indicate samples that were not assayed.
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Table 7 Simulation results for real H3N2 dataset

uBLU PCA NMF BFRM GB-GMF

Fisher criteria (×10−2) (22) 6.20 2.03 6.17 4.68 2.30

RE 6.48.10−2 4.89 7.31.10−2 4.82 9.51.10−2

Time ≈ 12 h 1.5 s 116 s ≈ 47min ≈ 10 h

Number of iterations 10 000 N/A 5 000 10 000 500

Measure of the Fisher linear discriminant measure ([23], p. 119) between post-onset symptomatic samples and the other samples on heatmaps (Figure 4),
reconstruction error (RE) between the observed data and the MAP estimators, computational times (for an implementation in MATLAB 7.8.0 (R2009a) on a 3 GHz
Intel(R) Core(TM)2 Duo processor), and corresponding number of iterations.

by
(
μpos, σ 2pos

)
the same parameters for the remaining

samples. The Fisher linear discriminant measure ([23],
p. 119) is defined as(

μpos − μpos
)2

Nposσ 2pos + (N − Npos)σ 2pos
. (22)

To compare the biological relevance of the inflamma-
tory genes found by uBLU to those found by the other
methods we performed gene enrichment analysis (GEA).
Here we only report GEA comparisons between uBLU
and NMF. Tables 6 and 8 show the pathway enrich-
ment associated with the top 200 genes found by uBLU
and NMF, respectively, using NCI pathway interaction
database (http://pid.nci.nih.gov). The uBLU genes are sig-
nificantly better associated with the NCI-curated path-
ways than the NMF genes. In particular, the two most
enriched pathways, IFN-gamma and PDGFR beta signal-
ing, associated with the uBLU genes have much higher
statistical significance (lower p-value) than any of the
pathways associated with NMF.
Figure 5 shows how the factor scores of the dominant

factor can be used as features to cluster samples. Euclidean
multidimensional scaling (MDS) [24] is used to map the
factor score vector for each sample as a coordinate in the
plane. Each sample is embedded with a color and a size,

denoting the state of the subject (asymptomatic subjects
in blue, symptomatic subjects in red) and the time stamp,
respectively. These figures show that uBLU can separate
sick and healthy subjects, as well as or better than NMF,
BFRM and GB-GMF.
One can conclude from these comparisons that, when

applied on the H3N2 dataset, the proposed uBLU algo-
rithm outperforms PCA, NMF, BFRM, and GB-GMF
algorithms in terms of finding genes with higher path-
way enrichment and achieving higher contrast of the acute
symptom states.
The computational times required by the five consid-

ered matrix factorization methods, including the pro-
posed uBLU algorithm, when applied to this real dataset,
are reported in Table 7. The GB-GMF algorithm is slightly
faster than the proposed algorithm but does not identify
the inflammatory component or achieve good contrast of
the acute symptom states in the H3N2 challenge study.

Conclusions
This paper proposes a new Bayesian unmixing algorithm
for discovering signatures in high dimensional biologi-
cal data, and specifically for gene expression microarrays.
An interesting property of the proposed algorithm is that
it provides positive factor loadings to ensure positivity
as well as sum-to-one constraints for the factor scores.

Table 8 NCI-curated pathway associations of group of genes contributing to NMF inflammatory component

Pathway name Genes P-value

IL23-mediated signaling events CCL2, CXCL1, CXCL9, IL1B, JAK2, STAT1, STAT5A 2.18e-07

IL12-mediated signaling events GADD45B, IL1B, JAK2, MAP2K6, SOCS1, STAT1,
STAT5A, STAT6

1.10e-06

IFN-gamma pathway CASP1, IL1B, IRF9, JAK2, SOCS1, STAT1 1.07e-05

Signaling events mediated by TCPTP EIF2AK2, PIK3R2, STAT1, STAT5A, STAT5B, STAT6 1.07e-05

IL27-mediated signaling events IL1B, JAK2, STAT1, STAT2, STAT5A 1.22e-05

CXCR3-mediated signaling events CXCL10, CXCL11, CXCL13, CXCL9, MAP2K6, PIK3R2 1.23e-05

GMCSF-mediated signaling events CCL2, JAK2, STAT1, STAT5A, STAT5B 6.24e-05

PDGFR-beta signaling pathway EIF2AK2, JAK2, PIK3R2, ARAP1, DOCK4, STAT1, STAT5A,
STAT5B

1.38e-04

NCI-curated pathway associations of group of genes contributing to NMF inflammatory component, whose factor scores are shown in Figure 4 (Source: NCI pathway
interaction database http://pid.nci.nih.gov). Genes in uBLU factor are significantly better represented in the NCI-curated pathways than the genes in NMF (compare
p-values here to those in Table 6).

http://pid.nci.nih.gov
http://pid.nci.nih.gov
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Figure 5 Chip clouds after demixing for H3N2 challenge data. These figures show the scatter of the four dimensional factor score vectors
(projected onto the plane using MDS) for each algorithm that was compared to uBLU. uBLU, NMF and BFRM obtain a clean separation of samples of
symptomatic (red points) and asymptomatic (blue points) subjects whereas the separation is less clear with PCA. In these scatter plots the size of a
point is proportional to the time at which the sample was taken during challenge study.
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The advantages of these constraints are that they lead
to better discrimination between sick and healthy indi-
viduals, and they recover the inflammatory genes in a
unique factor, the inflammatory component. The pro-
posed algorithm is fully unsupervised in the sense that
it does not depend on any labeling of the samples and
that it can infer the number of factors directly from the
observation data matrix. Finally, as any Bayesian algo-
rithm, the Monte Carlo-based procedure investigated in
this study provides point estimates as well as confidence
intervals for the unknown parameters, contrary to many
existing factor decomposition methods such as PCA or
NMF.
Simulation results performed on synthetic and real data

demonstrated significant improvements. Indeed, when
applied to real time-evolving gene expression datasets,
the uBLU algorithm revealed an inflammatory factor with
higher contrast between subjects who would become
symptomatic from those who would remain asymp-
tomatic (as determined by comparing to ground truth
clinical labels).
In this study, the time samples were modeled as inde-

pendent. Future works include extensions of the proposed
model to account for time dependency between samples.

Appendix A: Gibbs sampler
This appendix providesmore details about the Gibbs sam-
pler strategy to generate samples {M(t),A(t), σ 2(t) ,R(t)}
distributed according to the joint distribution
f
(
M,A, σ 2,R|Y)

(the reader is referred to [25] for more
details about the Gibbs sampler and MCMC methods).
This joint distribution can be obtained by integrating out
the hyperparameter γ from f (�, γ |Y) defined in (18) and
can be written

f
(
M,A, σ 2,R|Y) ∝ f

(
Y|M,A, σ 2,R

)
× f

(
T|E, s2,R)

× f (A|R)

× f
(
σ 2) f (R)

(23)

where the dimensions of the matricesM, T, andA depend
on the unknown number of factors R and the priors have
been defined in the Section “Methods”.
The different steps of the Gibbs sampler are detailed

below.

Inference of the number of factors
The proposed unsupervised algorithm includes a
birth/death process for inferring the number of factors R,
i.e., it generates samples R in addition to M and A. More
precisely, at iteration t of the algorithm, a birth, death

or switch move is randomly chosen with probabilities
bR(t) , dR(t) and sR(t) . The birth and death moves con-
sist of increasing or decreasing by 1 the number R of
factors using a reversible jump step (see [21] for more
details), whereas the switch move does not change the
dimension of R and requires the use of a Metropolis-
Hastings acceptance procedure. Let consider a move,
at iteration index t, from the state {M(t),A(t),R(t)} to
the new state {M�,A�,R�}. The birth, death and switch
moves are defined as follows, similar to those used in [26]
(Algorithms 3, 4 and 5).

• Birthmove:When a birth move is proposed, a new
signaturem� is randomly generated to build
M� = [

M(t),m�
]
. The new corresponding space is

checked so that the signatures are sufficiently distinct
and separate from one another. Then, a new factor
score coefficient is drawn, for each vector ai
(i = 1, . . . ,N), from a Beta distribution B

(
1,R(t)),

and the new factor score matrix, denoted as A�, is
re-scaled to sum to one.

• Deathmove:When a death move is proposed, one
of the factors ofM(t), and its corresponding factor
score coefficients, are randomly removed. The
remaining factor scores are re-scaled to ensure the
sum-to-one constraint.

• Switchmove:When a switch move is proposed, a
signaturem� is randomly chosen and replaced with
another signature randomly generated. If the new
signature is too close to another, its corresponding
factor scores are proportionately distributed among
its closest factors. Indeed, the switch move consists of
creating a new signature (birth move) and deleting
another one (death move) in a faster single step.

Each move is then accepted or rejected according to
an empirical acceptance probability: the likelihood ratio
between the actual state and the proposed new state.
The factor matrix M, the factor score matrix A and
the noise variance σ 2 are then updated, conditionally
upon the number of factors R, using the following Gibbs
steps.

Generation of samples according to f
(
T|A, σ 2,R, Y

)

Sampling from the joint conditional f (T|A, σ 2,R,Y) is
achieved by updating each column of T using Gibbs
moves. Let denote T\r the matrix T whose r-th column
has been removed. The posterior distribution of tr is the
following truncated multivariate Gaussian distribution
(MGD)

tr|T\r , ar , σ 2,Y ∼ NTr (τ r ,�r) (24)
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where

�r =
[∑N

i=1
a2r,iP�−1PT + 1

s2r
IR

]−1
,

τ r = �r

[∑N

i=1
ar,iP�−1εr,i + 1

s2r
er

]
,

εr,i = yi − ar,iȳ −
∑

j 
=r
ar,imj.

(25)

Formore details on howwe generate realizations from this
truncated distribution, see [13].

Generation of samples according to f
(
a1:R−1,i|T, σ 2,R, Y

)

Straightforward computations lead to the posterior distri-
bution of each element of a1:R−1,i

f
(
a1:R−1,i|T, σ 2,R,Y

) ∝ exp
[
−1
2
āT1:R−1,i�

−1
1:R−1,iā1:R−1,i

]
× 1S

(
a1:R−1,i

)
(26)

where

ā1:R−1,i = a1:R−1,i − μ1:R−1,i,

�1:R−1,i =
[
MT

\R�−1M\R
]−1

,

μ1:R−1,i = �1:R−1,i
[
MT

\R�−1M\R
]
,

M\R = M\R − mR1TR−1,

(27)

1R−1 = [1, . . . , 1] ∈ RR−1 and M\R denotes the factor
loading matrix M whose R-th column has been removed.

Figure 6 Contribution of each constraint on the scores of the inflammatory factor (H3N2 challenge data). The five black colored pixels of the
heatmaps indicate samples that were not assayed. Note that when only the sum-to-one constraint is applied, non-negativity is not guaranteed.
However, for this dataset the sum-to-one factor scores turn out to take on non-negative values for the inflammatory factor (but not for the other
factors).
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Table 9 Contribution of each of uBLU’s constraints

Without Positivity Sum-to-one Positivity and

constraints sum-to-one

P-value of the “IFN-gamma pathway” 6.00.10−2 2.05.10−2 2.17.10−1 1.34 .10−9

P-value of the “IL23-mediated signaling events” 2.60.10−1 8.37.10−2 2.28.10−2 2.18.10−7

Benefit of constraints in uBLU in terms of gene enrichment in the NCI-curated IFN-gamma and IL23-mediated pathways. As in Tables 6 and 8, the top 200 genes in the
inflammatory components, whose scores are shown in Figures 6(a-d), were analyzed using the NCI Pathway Interaction Database. Both positivity and sum-to-one
constraints are necessary for uBLU to reveal these two pathways with the high significance (p-value less than 10−6).

Equation (26) shows that the factor score distribution is
an MGD truncated on the simplex S defined in (12).

Generation of samples according to f
(
σ 2|T, A,R, Y)

Using (14) and (16), one can show that the conditional dis-
tribution f (σ 2|M,A,Y) is the following inverse-Gamma
distribution

σ 2|M,A,Y ∼ IG
(
GN
2

,
1
2

N∑
i=1

∥∥yi − Mai
∥∥2) . (28)

Appendix B: Contribution of each of uBLU’s
constraints
To illustrate the advantage of enforcing non-negativity
and sum-to-one constraints on the factors and on the
factor scores, as detailed in the Methods section, we eval-
uated the effect of successively stripping out these con-
straints from uBLU. In particular we implemented uBLU
under the following conditions: i) without any constraints,
ii) with only the positivity constraints on the factors and
the scores, iii) with only the sum-to-one constraint on
the scores, and iv) with both positivity and sum-to-one
constraint on factors and scores as proposed in (5).
Figures 6 display heatmaps of the factor scores of the

inflammatory component. The segmentation into two
main regions (post-symptomatic samples and asymp-
tomatic samples) becomes apparent only when the sum-
to-one constraint is enforced on the scores. To quantify
the benefit that is visible in Figure 6 we performed a GEA
analysis, reported in Table 9, on the top 200 genes found
in each of the inflammatory components found by uBLU
implemented with no constraints, positivity constraints,
sum-to-one constraints, and both constraints. The table
shows that both constraints are necessary to obtain the
best enrichment scores (lowest possible p-values).

Additional file

Additional file 1: Supplementary materials on algorithm details and
performance validation. Directed acyclic graph (DAG) of the model and
flowchart of the proposed algorithm are provided in this additional file.
More results on synthetic datasets are also presented to validate the
proposed Bayesian algorithm, including a convergence diagnosis.
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