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Abstract

Background: Diffusion is a key component of many biological processes such as chemotaxis, developmental
differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed
in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional,
high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying
mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse
observations, which result in uncertainties of the model parameters.

Methods: We introduce a likelihood function for image-based measurements with log-normal distributed noise.
Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved
using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the
parameters we introduce profile likelihoods for diffusion processes.

Results and conclusion: As proof of concept, we model certain aspects of the guidance of dendritic cells towards
lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic
parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters
from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The
profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.

Introduction
Diffusion is assumed to be the basis of many spatial orga-
nization processes for multi-cellular organisms. Crucial
processes such as developmental pattern formation or
chemotaxis rely on gradient information arising from dif-
fusion and transport processes [1,2]. In the last decades,
diffusion processes have been of great interest not only
for experimentalist but also for theoreticians. Turing [3]
was the first to break ground, followed by Gierer and
Meinhardt [4], who introduced models for such pro-
cesses based on partial differential equations (PDEs).
A prominent aspect is the diffusion of extracellular

signaling molecules. Such molecules are synthesized and
secreted by cells and spread through the surrounding tis-
sue, forming a gradient. A biological prominent example
is guided cell movement along such gradients. In this
case, the cell senses the concentration difference between
front and back, and moves along the gradient.
Gradients of signaling molecules can be made visible

in-vivo via antibody stainings (see Figure 1 and [5-7]).
Combined with microscopy, this yields two-dimensional
(2D) images. The color intensity of each pixel provides infor-
mations about the concentration (or the number) of signal-
ing molecules. Modern microscopy devices can also
generate stacks of images, providing information about the
distribution of signaling molecules in three-dimensions
(3D) [5,8].
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Despite these high-resolution imaging data, the number
of quantitative models of biological diffusion processes is
limited. While quantitative modeling with ordinary differ-
ential equations (ODEs) is a common method and the
theory of parameter estimation and identifiability is
sound, those results have yet to be transferred to the
quantitative modeling with PDEs [9,10]. In recent years
the field of PDE-constrained optimization emerged, pro-
viding the theory and methods to estimate parameters of
PDEs [11]. Nevertheless, specific problems occurring in
biological problems, like partial observations, sparse mea-
surements and high noise levels, have yet to be addressed.
This has already been done for ODE parameter estima-
tion techniques [12] but is an open problem in the PDE
context. In particular, appropriate likelihood functions
and methods for the efficient and reliable analysis of prac-
tical identifiability [9] are not available.
In this paper, we propose a likelihood function for the

estimation of parameters of 2D diffusion process from
image data. Furthermore, we transfer the concept of profile
likelihood based identifiability analysis introduced by Raue
et al. [9] from ODEs to PDEs. This allows us to go beyond
the classical uncertainty analysis methods based on local
approximation towards global uncertainty bounds. Finally,
we evaluate the methods by studying a model for diffusion
processes involved in the migration of dendritic cells
towards lymphatic vessels (see schematic picture Figure 1B).

Methods
In the following section we shortly introduce the consid-
ered class of PDEs and the available types of measure-
ment data. Afterwards, the parameter estimation and
identifiability analysis methods are presented.

Problem description
For t Î (0, T], x ∈ � ⊂ R

2 and ϕ ∈ R
nϕ

+ we consider
reaction-diffusion models of the form

∂

∂t
u(t, x) − D�u(t, x) = f (t, x, u,ϕ), (1)

where u(t, x) is a vector-valued function describing con-
centrations, molecule numbers or similar entities for a set
of interacting substances. For non-diffusive components
the corresponding entries of the diagonal diffusion matrix
D are zero. The model is complemented with boundary
conditions and initial conditions. In the following, we
assume that boundary conditions, initial conditions and
f (t, x, u, �) are chosen such that for all x, t and � a unique,
integrable (with respect to x) solution u(t, x) exists in an
appropriate function space U .
In many cases the spatial and temporal behavior of reac-

tion-diffusion processes is studied by means of image data
collected using microscopy devices. We consider a time-
series of images taken at time points tk for k = 1, . . . , N,
which are not necessarily equally spaced. For each image
the number of pixels M and their pixel area Apt is known.
A suitable function to map the state u(t, x; �) to the obser-
vables is

yk,i(u,ϕ) = b +
∫
Api

h(u(tk, x;ϕ)) dx (2)

for i = 1, . . . , M and k = 1, . . . , N . Here b ∈ R+

denotes a constant off-set due to background lumines-
cence and h defines the observables and could for
instance be a mapping onto the first component of u.
With our assumptions made about existence, unique-
ness and integrability this is a well-defined function.
Biological measurement data are in general noise cor-

rupted. The noise distribution depends on the measure-
ment techniques. As measured fluorescence intensities are
always positive and as image acquisition is basically a
counting process, we assume multiplicative log-normal
measurement noise, i.e.

ȳk,i = εyk,i. (3)

With ȳk,i we denote the intensity of pixel i at time
point tk. We assume that ε ∼ LN (0, σ 2), hence
ȳk,i ∼ LN (yk,i, σ 2). In the following, we introduce the
corresponding likelihood function which is used to esti-
mate the unknown parameters θ = (�, b, s2).

Figure 1 Haptotaxis: Data and schematic description of the process. Haptotaxis: Data and schematic description of the process. (A)
Fluorescence staining image taken from [7], which shows the Z-stack projection of non-permeabilized ear dermis stained for CCL21. Left image
is the maximum intensity projection and the right image shows same staining as color-coded average projection. Lymphoid vessel boundaries
are indicated by the blue dotted line (scale bars: 100µm). (B) Schematic of the dendritic haptotaxis process adapted from [6]. Dendritic cells
move along a gradient of immobilized CCL21 towards the lymphatic vessels.
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Maximum likelihood estimation
For multiplicative log-normal noise the likelihood func-
tion is

L(θ) =
∏
k,i

1√
2πσ ȳk,i

exp

(
−1
2

(
log(ȳk,i) − log(yk,i)

σ

)2
)
. (4)

The statistically most consistent parameters are those,
which maximize the likelihood function, i.e. the maxi-
mum likelihood estimator (MLE). Instead of maximizing
the likelihood function commonly the negative loga-
rithm of the likelihood function, J(θ) = − log L(θ), is
minimized to improve the numerics. The minimization
problem for parameter estimation for models of the
type (1) is then given as

θ∗ = argmin
(u,θ)∈U×R

nθ
+

J(θ)

s.t.yk,i(u) = b +
∫
Api

h(u(tk, x))dx

∂

∂t
u(t, x) − D�u(t, x) = f (t, x, u,ϕ).

(5)

Optimization problems of this type belong to the class
of PDE-constrained optimization problems, for which
different numerical methods have been established (see
[11] and references therein). Depending on the problem
structure the PDE is either first optimized and then dis-
cretized or discretized and the optimized, which is often
necessary and can be justified mathematically [11]. For
the example considered, we used the second approach.
Furthermore, we optimize the logarithm of the para-
meters instead of the parameters themselves. This take
care of the natural positivity constraints and has for
ODE models been shown to be more reliable.
While the optimization problem (5) can be solved

numerically, the main problem for parameter estimation
is the shape of the likelihood function. Non-identifiabil-
ities and non-linear correlated parameters, leading to
‘banana-shaped’ likelihoods, render local approximation
methods for the evaluation of confidence intervals often
inaccurate.

Profile likelihood based identifiability analysis
The uncertainty of the MLE is commonly analyzed by a
local approximation of the objective function and the
resulting asymptotic confidence intervals. This local
approximation, however, is not reliable for nonlinear pro-
blems when we are interested global uncertainty bounds.
The profile likelihood (PL) is a tool to quantify the

uncertainty of the MLE and to determine global uncer-
tainty bounds, therefore, the MLE is calculated for a
one-dimensional sub-space of the parameter space. In
our case we calculate the profile likelihood for the

unknown parameters of interest, i.e. θi. For parameter
θi, PL(θi) is computed by the re-optimization of all para-
meters θj ≠ θi along the profile of parameter θi [13]:

PL(θi) = max L(θ)
θj �=i

= exp
(

−min
θj �=i

J(θ)
)
. (6)

The minimization must fulfill the same constraints as in
(5). This can be repeated for all parameters θi, i = 1, . . . ,
nθ, and allows the evaluation of the likelihood ratio R(θi) =
PL(θi)/L(θ*) for the individual parameters. Based on the
likelihood ratio R(θi) we can determine globally valid con-
fidence intervals for the parameter θi,

Ci =
{
θi

∣∣∣∣R(θi) < exp
(

−δα

2

)}
,

with confidence level a and the corresponding likeli-
hood ratio threshold δa = c2(a, 1) [13]. And according
to [9] a parameter is called practical non-identifiable if
the likelihood ration does not fall below the threshold
δa for increasing and decreasing values of θi. Hence a
profile likelihood which is flat, i.e. remains above the
threshold δa, indicates a practically unidentifiable para-
meter. For systems of ordinary differential equations the
profile likelihood calculation has been shown to be a
suitable method to quantify the practical identifiability
and the uncertainty of parameters.

Results
To illustrate the proposed parameter estimation and
uncertainty analysis framework, we consider the forma-
tion of gradients of signaling protein which are immobi-
lized by the extracellular matrix. Such gradients are, for
instance, the basis of the haptotaxis of dendritic cells
towards the lymphatic vessels upon the detection of
unknown antigenes [6,7] (see Figure 1B). In this process,
dendritic cells move towards the closest lymphatic vessel
in the tissue and are subsequently transported through
the lymphoid system towards the lymph nodes. The
movement of the dendritic cells is guided by an immo-
bilized gradient of the cytokine CCL21, which is
released from the lymphoid vessels [6].
In the following we formulate a model for the gradient

formation process. In our model, the signaling protein
CCL21, denoted by P, is produced constantly at a spa-
tially distributed source Q, the lymphoid system. The sig-
naling protein gradient is immobilized through complex
formation with a tissue bound sugar, denoted by S. The
immobilized CCL21 protein is denoted by C.
Following the problem formulation, we study a pro-

cess containing three state variables: p, s and c. Each
variable is a function of the spatial location x Î Ω =
[0,1]2, time t Î [0, T] and a set of unknown parameters
θ. The model considered is:
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∂

∂t
p − D�p = αQ − k1ps + k−1c − γ p

∂

∂t
s = −k1ps + k−1c

∂

∂t
c = k1ps − k−1c

(7)

for t Î (0, T] and x Î Ω, with initial conditions

∀x ∈ � : p(0, x) = c(0, x) = 0 and s(0, x) = s0, (8)

and no-flux boundary conditions,

∂

∂ν
p = 0, (9)

where ν denotes the outer normal of Ω. The binding
and unbinding rates of CCL21 and tissue-bound sugar
are denoted by k1 and k−1. The diffusion constant of
CCL21, the rate of CCL21 degradation and the rate of
CCL21 release from the lymph system are D, g and a,
respectively. In the following, we assume that Q : Ω ®
{0, 1} and s0 ≡ 1, due to scaling. We consider the kinetic
parameters θ = (D, a, k1, k−1, g) of this model as
unknowns with θ Î [10−2, 101]5.
For this process image-resolved measurements of the

immobilized CCL21 have been taken at one time point
(see Figure 1A and [7]). And it might be assumed that the
process has reached a steady state (personal communica-
tion with authors of [7]). Analytical analysis of the model
(1) showed that not all parameters are identifiable from
steady state data. In particular, it can be shown that the
reaction rates k1 and k−1 are structurally not identifiable.
In the following, we want to analyze whether time-series
data are sufficient to estimate all kinetic parameters of the
model. We want to address this question with the image-
based profile likelihood method introduced above and the
model considering signaling protein, substrate and sub-
strate-bound protein.
The measured output of the system (7)-(9) are micro-

scopy images of tissue stained for the complex C.
According to (2) we have

yi,k = b +
∫
Api

c(tk, x) dx.

To calculate the output function we discretized (7)-(9)
by finite differences and numerically integrated the dis-
cretized state variable c. For the estimation process, data
are generated via model simulation (for parameters see
Table 1). Forthese simulations we chose a y-shape source
term imitating a lymphoid vessel branch (see Figure 2A).
We consider images taken at five time points tk Î (0, 1],
k = 1, . . . , 5 with 50 pixels each Apt, j = 1, . . . , 50. To
account for measurement noise, log-normal noise was

added (according to (3)) with s = 10−2 and b = 10−4 (see
Figure 2B for one representative image).
For this artificial data set the maximum likelihood

estimate θ* is shown in Table 1. The chosen data points
where sufficient to identify parameters D, a, k1 and k−1
well. They are practical identifiable on a confidence
level a = 98% as the likelihood ration R(θ) falls below
the given threshold for increasing and decreasing values
of the parameters (Figure 2). For these parameters a
Hessian based approximation of the likelihood at the
ML estimate yields a good approximation of the profile
likelihood (Figure 2). This is not the case for g. For g,
the Hessian based approximation of the likelihood func-
tion underestimates the true uncertainty. Indeed, the
profile likelihood for g reveals that the parameter is
practical non-identifiable as no lower bound exists in
the considered regime. Thus, for this parameter, the
analysis of the profile likelihood is required to assess the
uncertainty of the parameter estimation.
The identifiability properties as well as the parameter

confidence intervals change depending on the noise
levels and the number of time points M. Simulation
results show that, as expected, the confidence interval
width increases then the noise levels increase. Addition-
ally the practical non-identifiability of parameter g
increases drastically with the noise level. An increased
number of time points results in tighter confidence
intervals and improved identifiability properties. If the
number of time points is large enough the degradation g
even becomes identifiable (results not shown). This
shows that with time-resolved data all parameters can
be identified.

Discussion and conclusion
In this paper we introduced profile likelihood-based
identifiability analysis for diffusion processes based on
2D image data. As proof of concept, we applied our
method to a reaction diffusion system involved in the
guidance of dendritic cells to the lymphatic vessels [6,7].
Based on current knowledge this is the first paper using
profile likelihood methods in this context.
Our approach facilitates the rigorous definition of uncer-

tainty bounds compared to local approximative methods
like the approximation of the Hessian matrix. This allows
us to determine precisely which parameters can be identi-
fied, which we illustrate for a model describing the forma-
tion of CCL21 gradients, involved in the guidance of
dendritic cells. Furthermore, profile likelihood-based
uncertainty analysis also facilitates the planning of experi-
ments [14]. If a specific parameter of the model is of parti-
cular biological interest its expected identifiability
properties after performing a proposed experiment can be
analyzed. Another strength of the likelihood function
introduced is the straight forward extension to voxel based
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data, i.e. 3D image stacks. In the current setup the 2D area
integral in (2) becomes a 3D volume integral. We will
address this extension and it’s application in future work.
In the illustrative example we used a simple finite dif-

ference method to discretize the Laplace operator. This
approximation scheme sufficed as we knew the exact
parameter values and could set parameter bounds for
the optimization such that the discretization errors did
not influence the optimization. In real applications this
is impossible and an adaptive scheme has to be applied
to ensure convergence of the PDE solver [11]. Otherwise
the profile likelihood calculation is affected by discreti-
zation errors and no longer reliable.
Our analysis of the illustrative example showed that

time-series image-data are particularly suitable to estimate
the kinetic parameters of a reaction-diffusion processes.
An interesting question for future work is whether dose

response experiments yield similar results. Finally, the pro-
file likelihood analysis yields a more reliable estimate of
the uncertainty in the parameter estimation for such pro-
cesses and is required to give rigorous global uncertainty
bounds. Given the introduced likelihood function we
could now approach the model selection in a statistical
reasonable way.
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