Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

BMC
Bioinformatics

1ibgapmis: extending short-read alignments

Nikolaos Alachiotis', Simon Berger', Tomés Flouri', Solon P Pissis'?", Alexandros Stamatakis'

From The Second Workshop on Data Mining of Next-Generation Sequencing in conjunction with the 2012
IEEE International Conference on Bioinformatics and Biomedicine
Philadelphia, PA, USA. 4-7 October 2012

Abstract

Background: A wide variety of short-read alignment programmes have been published recently to tackle the
problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure
such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches
in the alignment; however, their ability to allow for gaps varies greatly, with many performing poorly or not
allowing them at all. The seed-and-extend strategy is applied in most short-read alignment programmes. After
aligning a substring of the reference sequence against the high-quality prefix of a short read—the seed-an
important problem is to find the best possible alignment between a substring of the reference sequence
succeeding and the remaining suffix of low quality of the read—extend. The fact that the reads are rather short and
that the gap occurrence frequency observed in various studies is rather low suggest that aligning (parts of) those
reads with a single gap is in fact desirable.

Results: In this article, we present 1ibgapmis, a library for extending pairwise short-read alignments. Apart from
the standard CPU version, it includes ultrafast SSE- and GPU-based implementations. 1ibgapmis is based on an
algorithm computing a modified version of the traditional dynamic-programming matrix for sequence alignment.
Extensive experimental results demonstrate that the functions of the CPU version provided in this library accelerate
the computations by a factor of 20 compared to other programmes. The analogous SSE- and GPU-based
implementations accelerate the computations by a factor of 6 and 11, respectively, compared to the CPU version.
The library also provides the user the flexibility to split the read into fragments, based on the observed gap
occurrence frequency and the length of the read, thereby allowing for a variable, but bounded, number of gaps in
the alignment.

Conclusions: We present 1ibgapmis, a library for extending pairwise short-read alignments. We show that
libgapmis is better-suited and more efficient than existing algorithms for this task. The importance of our
contribution is underlined by the fact that the provided functions may be seamlessly integrated into any short-
read alignment pipeline. The open-source code of 1ibgapmis is available at http://www.exelixis-lab.org/gapmis.

Background

The problem of finding substrings of a text similar to a
given pattern has been intensively studied over the past
decades, and it is a central problem in a wide range of
applications, including signal processing [1], information
retrieval [2], searching for similarities among biological
sequences [3], file comparison [4], spelling correction [5],
and music analysis [6]. Some examples are recovering the

* Correspondence: solon.pissis@h-its.org
"Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
Full list of author information is available at the end of the article

original signals after their transmission over noisy chan-
nels, finding DNA subsequences after possible mutations,
and text searching where there are typing or spelling
errors.

Approximate string matching, in general, consists in
locating all the occurrences of substrings inside a text ¢
that are similar to a pattern x. It consists of producing
the positions of the substrings of ¢ that are at distance at
most k from x, for a given natural number k. For the rest
of this article, we assume that k <|x| < |¢|. We focus on
online searching—the text cannot be preprocessed to

© 2013 Alachiotis et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative

(BioMVed Central

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://www.exelixis-lab.org/gapmis
mailto:solon.pissis@h-its.org
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

build an index on it. There exist four main approaches to
online approximate string matching: algorithms based on
dynamic programming; algorithms based on automata;
algorithms based on word-level parallelism; and algo-
rithms based on filtering. We focus on algorithms based
on dynamic programming. There mainly exist two differ-
ent distances for measuring the approximation: the edit
distance and the Hamming distance.

The edit distance between two strings, not necessarily
of the same length, is the minimum cost of a sequence
of elementary edit operations between these two strings.
A restricted notion of this distance is obtained by con-
sidering the minimum number of edit operations rather
than the sum of their costs. The Hamming distance
between two strings of the same length is the number
of positions where mismatches occur between the two
strings.

Alignments are a commonly used technique to com-
pare strings and are based on notions of distance [1] or
of similarity between strings; for example, similarities
among biological sequences [3]. Alignments are often
computed by dynamic programming [2].

A gap is a sequence of consecutive insertions or dele-
tions (indels) of letters in an alignment. The extensive
use of alignments on biological sequences has shown
that it can be desirable to penalise the formation of long
gaps rather than penalising individual insertions or dele-
tions of letters.

The notion of gap in a biological sequence can be
described as the absence (respectively, presence) of a
fragment, which is (respectively, is not) present in
another sequence [7]. Gaps occur naturally in biological
sequences as part of the diversity between individuals. In
many biological applications, a single mutational event
can cause the insertion (or deletion) of a large DNA frag-
ment, so the notion of gap in an alignment is an impor-
tant one. Moreover, the creation of gaps can occur in a
wide, but bounded, range of sizes with almost equal
likelihood.

A number of natural processes can cause gaps in DNA
sequences: long pieces of DNA can be copied and
inserted by a single mutational event; slippage during the
replication of DNA may cause the same area to be
repeated multiple times as the replication machinery
loses its place on the template; an insertion in one
sequence paired with a reciprocal deletion in one other
may be caused by unequal cross-over in meiosis; inser-
tion of transposable elements—jumping genes—into a
DNA sequence; insertion of DNA by retroviruses; and
translocations of DNA between chromosomes [8]. The
accurate identification of gaps is shown to be fundamen-
tal in various studies on disorders; for example, on
Hajdu-Cheney syndrome [9], a disorder of severe and
progressive bone loss.

Page 2 of 14

The focus of this work is directly motivated by the
well-known and challenging application of re-sequen-
cing—the assembly of a genome directed by a reference
sequence. New developments in sequencing technologies
(see [10-12], for example) allow whole-genome sequen-
cing to be turned into a routine procedure, creating
sequencing data in massive amounts. Short sequences
(reads) are produced in huge amounts (tens of giga-
bytes), and in order to determine the part of the genome
from which a read was derived, it must be mapped
(aligned) back to some reference sequence, a few giga-
bases long.

A wide variety of short-read alignment programmes
(e.g. Bowtie [13], SOAP2 [14], REAL [15], BWA [16],
Bowtie2 [17]) were published in the past five years to
address the challenge of efficiently mapping tens of
millions of short reads to a genome, focusing on differ-
ent aspects of the procedure: speed, sensitivity, and
accuracy. These tools allow for a small number of mis-
matches in the alignment; however, their ability to allow
for gaps varies greatly, with many performing poorly
and other not allowing them at all.

Most short-read alignment programmes apply the
well-known scheme of seed-and-extend [18]. After align-
ing a substring of the reference sequence against the
seed (short high-quality prefix of the read - positions
1-3 in square brackets in Figure 1) very fast, a short-
read alignment programme must compute the best pos-
sible alignment between a substring of the reference
sequence succeeding and the remaining suffix of the
read (low-quality suffix of the read - positions 4-9). This
is achieved by allowing a bounded number of mis-
matches (position 8) and gaps (positions 5-6).

From Figure 1, we observe that a gap might need to be
inserted in the leftmost position of the alignment (posi-
tion 4). However, we are not able to know the length of
the substring of the reference sequence to be aligned
beforehand. Due to this observation, it is clear we need
an intermediate between the global (Needleman-Wunsch
algorithm [19], for example) and the local alignment
(Smith-Waterman algorithm [20], for example), known
as semi-global alignment, that allows the insertion of a
gap at the end of an alignment with no penalty (positions
10-12).

Example 1 ([21]) Let t = CGTCCGAAGT and x =
TACGAA. Figures 2a, b, and 2c illustrate the global, the
local, and the semi-global alignment, respectively.

Although gaps may occur in range of lengths, the
short length of reads means large gaps can not be confi-
dently detected directly. In Figure 3, the distribution of
lengths of gaps in homo sapiens exome sequencing is
demonstrated. The illustrated distribution agrees with
the distribution in other studies on gaps (cf. [9,22,23]).
Figure 3 represents a gap occurrence frequency of

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54 Page 3 of 14
http://www.biomedcentral.com/1471-2105/14/511/54
N
[1 3] 4 10 11 12

2 5 6
G C GACG
I
G C G A % %

from [21].

7 8 9
T C C
I

T A C

Figure 1 Seed-and-extend strategy. The alignment between the fragment of the reference sequence, starting at position 1 and ending at
position 9, and the read with one mismatch at position 8 and a gap of length two inserted in the read after position 4. This figure was taken

approximately 5.7 x 10°® across the exome. This fre-
quency is analogous to the ones observed in other stu-
dies on exome sequencing, plant genomes, and viruses
(cf. [9,23,24]).

Moreover, Figure 3 shows an exponential decrease in
the occurrence of gaps as the length increases and a
preference for lengths which are multiples of 3. The
presence of many gaps in short reads in the order of
25-150 base pairs (bp) is rather unlikely due to the low

gap occurrence frequency. Hence, applying a traditional
dynamic-programming approach, which essentially can-
not bound the number of deletions and insertions in the
alignment, would greatly affect the mapping confidence.

Motivated by the aforementioned observations, in [7],
the authors presented GapMis, a tool for pairwise global
and semi-global sequence alignment with a single gap. In
this article, we present 1ibgapmis, the analogous
library implementation. 1ibgapmis also includes two

1 2 3 4
CGTC
|
T A

* KX

(a) G
3 4 5 6 7 8
TCCGAA
I

TACGAA
(b) Local alignment

TACGAA. This figure was taken from [21].

Figure 2 Global, local, and semi-global alignment. The global, local, and semi-global alignments between t = CGTCCGAAGTG and x =

9 10 11

1 2 3 4

5
CGTCC

**TACGAA

(c) Semi-global alignment

6 7 8
GAA
]

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Page 4 of 14

0.4 I I I I I I I

0.35

0.3

0.25

0.2

Distribution [-]

0.15

0.1

0.05

0

with King's College London. This figure was taken from [21].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Gap length [bp]

Figure 3 Distribution of gap lengths in exome sequencing. The distribution of gap lengths in exome sequencing. The data were generated
by the Exome Sequencing Programme at the NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust in partnership

TR S S T TR A N NN BN |

highly optimised versions: one based on Streaming SIMD
Extensions (SSE); and one based on Graphics Processing
Units (GPU). Proof of concept versions of GapMis and
libgapmis were presented in [25] and [21], respec-
tively. Millions of pairwise sequence alignments,
performed here under realistic conditions based on the
properties of real full-length genomes, demonstrate that
libgapmis can increase the accuracy of extending
short-read alignments end-to-end compared to more tra-
ditional approaches. The importance of our contribution
is underlined by the fact that the provided open-source
library functions can directly be integrated into any
short-read alignment programme.

Definitions and notation
In this section, we give a few definitions, generally
following [26] and [7].

An alphabet ¥, is a finite non-empty set whose ele-
ments are called letters. A string on an alphabet ¥ is a
finite, possibly empty, sequence of elements of Y. The

zero-letter sequence is called the empty string, and is
denoted by &. The set of all the strings on the alphabet
Y is denoted by X*. The length of a string x is defined as
the length of the sequence associated with the string x,
and is denoted by |x|. We denote by x[i], for all 1 < i < |x|,
the letter at index i of x. Each index i, forall 1 < i < |x], is
a position in x when x = &. It follows that the ith letter of x
is the letter at position i in x, and that x = x[1 .. |x|].
A string x is a substring of a string y if there exist two
strings u and v, such that y = uxv. Let %, y, u, and v be
strings, such that y = uxv holds. If u = ¢, then x is a prefix
of y. If v = ¢, then x is a suffix of y.

Let x be a non-empty string and y be a string. We say
that there exists an occurrence of x in y, or, more sim-
ply, that x occurs in y, when x is a substring of y. Every
occurrence of x can be characterised by a position in y.
Thus we say that x occurs at the starting position i in y
when y[i .. i + |%| - 1] = x. It is sometimes more suitable
to consider the ending position i + |x| - 1. The Hamming
distance 0 for two strings of the same length, is defined

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

as the number of positions where the two strings have
different letters. A don’t care letter is a special letter that
does not belong to alphabet ¥, and matches with itself as
well as with any letter of ¥.. It is denoted by k. A gap is a
finite sequence of such don’t care letters. A gap string is a
finite, possibly empty, sequence of elements of the alpha-
bet ¥ U {%}. Two letters a and b of alphabet ¥ U {*} are
said to correspond (denoted by a = b) if they are equal,
or, if at least one of them is the don’t care letter. The
G-distance, denoted by dg, for two gap strings of the
same length is defined as the number of positions in
which the two strings possess letters that do not corre-
spond. A gap string x is called single-gap string if there
exist two strings # and v on alphabet ¥ and a gap g, such
that x = ugv. Let conc(y’) be an operation that, given a
gap string

}/ =Y080Y181 - - - Vn_28n—2Vn—1

where y; € ¥* for all 0 < i < n, and g; e {*k}*, for all
0 <j < n -1, returns the string y = yoy1 ... ¥,.1, such
thaty e X*

The approximate string matching with k-mismatches
and a single gap problem can now be formally defined:

Problem 1 ([21]) Given a text t of length n, a pattern
x of length m < n, an integer k, such that 0 < k < m,
and integers o and B, such that 0 < o < f and B < n,
find all prefixes of t, such that for each prefix y

« either there exists a single-gap string y’, with a gap g
such that y = conc(y’), og(x, y) < k and o < |g| < B;

« or there exists a single-gap string x’, with a gap g
such that x = conc(x)), g%, y) < k and o < |g| < B;
eordy (% y) < kand a =0.

Example 2 ([21]) Let t = AGCAGAGGAGCAGG
CGTTCCGTGGT, x = ACCGT, k = 2, o = 6, and
B = 7. A solution to this problem instance is the ending
position 11, since there exists a single-gap string x* =
ACCk %k Kk k*kkGT, with a gap g = kkdkk*k*, such
that x = conc(ACChx%kk*k*kGT), og(x’, t[1 .. 11]) = 2,
and |g| = 6.

Let G[O .. n, 0 .. m] be a matrix, where G[i, j] contains
the minimum number of mismatches of the alignment
between substring ¢[1 .. i] of £ and substring x[1 .. j] of x
allowing the insertion of a single gap either in ¢[1 .. {] or in
x[1..jl,foralll1<i<n 1<j<m Foralll<j<mand
1 < i < n, we say that x[1 .. j/] matches ¢[1 .. {] with at most
k-mismatches and a single gap if and only if G[i, j] < k.
Matrix G is defined by the following recurrence [7].

min{Gi — 1,j — 1]+ 8y (clil, x[jl), Gliijl} i > j
min{G[i — 1,j — 1] + 8u(¢[i], x[j]), Gli,i]} i <j
Gli— 1,j — 1]+ 8u(ei], x[j]) i=j.

Glij| =

Page 5 of 14

In order to compute the exact location of the inserted
gap, either in the text or in the pattern, we also need to
define a matrix H[O .. n, O .. m] [7], such that

j—i stG[ijl=Glii]andi <]
i—j stGlij]=Gljjlandi>j
0 otherwise

H[i,j] =

Example 3 ([21]) Let t = AGGTCAT, x = GGGTA,
and B = 2. Figure 4a and 4b illustrate matrix G and
matrix H, respectively.

Algorithm GapMis

Given the text ¢ of length #, the pattern x of length m,
and the threshold f as input, algorithm GAPMIS, first
introduced in [7] (see Additional File 1), computes
matrices G and H. In fact, we only need to compute a
diagonal stripe (a narrow band) of width 2 + 1 in matrix
G and in matrix H. As a result, algorithm GAPMIS com-
putes a pruned version of matrices G and H, denoted by
G" and H”, respectively (see Figure 4c and 4d).

Proposition 1 ([7]) There exist at most 23 + 1 cells of
matrix G that solve Problem 1.

Proposition 2 ([7]) Problem 1 can be solved by algo-
rithm GAPMIS in time O(mp).

Example 4 ([21]) Let t = AGGTCAT, x = GGGTA,
k=1,a =1, and = 1. Starting the trace-back from cell
HI6, 5] (see Figure 4d), yields a solution since G[6, 5] < 1
(see Figure 4c). Trivially, the inserted gap is in the pat-
tern, and its length is 1. Finally, we can find the position
of the inserted gap (position 5) using matrix H. Hence, a
solution to this problem instance is the ending position 6
(see Figure 5), since there exists a single-gap string x’ =
GGGT*A, with a gap g = *, such that x = conc
(GGGT*A), dg(x’, t[1 .. 6]) = 1, and |g| = 1.

Alternatively, we could compute matrix G and matrix
H based on a simple alignment score scheme depending
on the application of the algorithm (see the following
section or [27], for example), and compute the maxi-
mum score in time ©(f) by Proposition 1.

Library 1ibgapmis
In this section, we give a brief description of the library
implementation. 1libgapmis was implemented in the
C programming language. First, we start by describing
the standard CPU version of the library. Thereafter, we
discuss some technical issues regarding the SSE- and
GPU-based implementations. Finally, we describe how
the provided functions are extended to accommodate a
variable, but bounded, number of gaps in the alignment.
Algorithm GAPMIS was implemented as a function
computing matrices G and H based on a simple align-
ment score scheme. The scheme uses the scoring matrix
EDNAFULL [28] (resp. EBLOSUMS62 [29]) for DNA

Alachiotis et al. BVIC Bioinformatics 2013, 14(Suppl 11):54 Page 6 of 14
http://www.biomedcentral.com/1471-2105/14/511/54

0 1 2 3 4 5 0 1 2 3 4 5
€|G|G|G|T|A €|G|G|G|T|A
o|e[|0]10]010]00 ole 0112345
A0 L{L({1|1]0 1[A]11]0]0({0]0]0
2|G{0|0[L|1]1|1 2|G|2]0(0]0]2(3
3|G|[0]0(0]1]1]1 3|G[[3]0(0]0]1|2
«|TIO]T|1|1|1|1 4|T|]|4]0(0]0]0|1
s|CIO[L|1{1]1]2 5|C[|9(0]3]2(1]0
e|A[[O[1|1|1]1]1 6|A| 1604320
ATIO(1]1{1[1]|2 | T| 71015400
(a) Matrix G (b) Matrix H
0 1 2 3 4 5 0 1 2 3 4 5
€|G|G|G|T|A €|G|G|G|T|A
ol€|]0]0]0 ole| 012
1[AT0[1]1]1 1{A][1]0]0]0
2|G|[0]0]1]1|1 2|G|[2]0]0]0]2
3|G 00111 3|G 0(0(0]1]2
4|T 11111 4| T 0[0]0]1
5|C 11112 5|C 21110
6| A 11 6| A 210
7|T 2 7| T 0
(¢) Matrix G¥ (d) Matrix H”
Figure 4 Dynamic-programming matrices. The matrices G, H, G", and H” for t = AGGTCAT, x = GGGTA, and B = 2. This figure was taken
from [21].
Gibte hucleotide (revp. rosiduc) match or mismarcn, S P penaly (1) xgap xtersion penaly:
Moreover, it uses affine gap penalty to score the inser- Finally, the total score for each alignment is obtained

tion of a gap of n >0 positions as follows: by adding these two scores: scoring matrix and affine

Alachiotis et al. BVIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Page 7 of 14

{1..6] A

x G

taken from [21].

2 3 4
G G T
o
G G T

Figure 5 Single-gap alignment. The single-gap alignment between t =

5 6
C A

|
* A

AGGTCAT and x = GGGTA for k = 1, & = 1, and B = 1. This figure was

gap penalty scores. The optimal alignment is the align-

ment with the highest such total score. The same align-

ment score scheme is applied in package EMBOSS [30].
We implemented the following functions:

+«gapmis_one to_one: this function finds the opti-
mal semi-global alignment between two sequences. It
first implements algorithm GAPMIS in time O(mg);
thereafter, it finds the optimal semi-global alignment
in time O(B). Finally, gapmis_one_ to_one finds
the position of the single gap via backtracking in
matrix H in time O(m). The user can omit computing
the position of the single gap and thereby computing
matrix H.

+ gapmis_one to_ many: this function uses func-
tion gapmis_one_to_one as building block. It
computes the ¢ optimal semi-global alignments
between a query sequence and a set of € target
sequences.

+ gapmis many to_many: this function uses
function gapmis_one to_many as building block.
It computes the x x € optimal semi-global align-
ments between a set of kK query sequences and a set
of £ target sequences.

Finally, we implemented functions results_one_ -
to_one, results one to many, and results -
many to many for generating the visualisation of the
analogous output in a format similar to the one gener-
ated by EMBOSS.

SSE-based implementation

The SSE-based implementation is a direct application of
the inter-sequence vectorisation scheme. It has been
used to accelerate the Smith-Waterman algorithm and
analogous dynamic-programming algorithms [31,32].
Algorithm GAPMIS, under this vectorisation scheme,
uses SSE instructions to simultaneously compute multi-
ple separate matrices (usually 2, 4, or 8 depending on
the vector width and the data type used) corresponding

to alignments of one query sequence against multiple
other target sequences.

Currently, the vectorisation uses 32 bit floating-point
arithmetics to represent scores, implying that, on CPUs
with SSE3 vector units, a vector width w := 4 is used. By
restricting scores to integer values and using 16 bit inte-
gers, we may increase the vector width to w := 8. For
performance-related reasons, the SSE-based version only
supports the computation of alignment scores, and,
therefore, does not support backtracking. The functions
provided are gapmis one to many opt sse and
gapmis many to many opt sse, which make use
of the aforementioned vectorisation scheme to compute
the scores for each pair of sequences. Finally, we make
use of the purely sequential function gapmis_one -
to_one to find the position of the single gap via back-
tracking in matrix H. In order to further accelerate the
computations, the user may optionally and transparently
execute these functions on multi-core architectures by
setting the number of threads. More technical details of
the SSE-based implementation can be found in [21].

GPU-based implementation

The function gapmis_one_ to_one was ported to
GPUs using OpenCL in order to maintain a vendor-
independent GPU version. In analogy to the SSE-based
implementation, only the computation of alignment
scores are offloaded to the GPU. The GPU implementa-
tion is also similar to the SSE-based implementation in
the sense that multiple dynamic-programming matrices
are computed simultaneously.

Aligning a set of query sequences X = {X1,..., Xy}
against a set of target sequences t={tj,...,t} is
achieved by launching a total of k x ¢ threads on the
GPU to exploit inter-sequence parallelism—similar to the
aforementioned SSE vectorisation scheme. GPU threads
are grouped such that every thread group aligns one
query sequence against all target sequences. Each thread
in a thread group computes a different dynamic-pro-
gramming matrix sequentially and independently of all

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

other threads. Due to the independence between the
individual alignment tasks, we refer to this scheme as
inter-task parallelisation. In order to prevent memory-
access conflicts and also maximise memory throughput,
an inter-sequence device memory organisation scheme
is applied (see Figure 6 in this regard).

Similar to the SSE-based version, the functions pro-
vided are gapmis one to many opt gpu and
gapmis many to many opt gpu. Finally, we make
use of the purely sequential function gapmis one -
to_one to find the position of the single gap via back-
tracking in matrix H. More technical details of the
GPU-based implementation can be found in [21].

Accommodating multiple gaps

The presence of multiple gaps is unlikely given
the observed gap occurrence frequency in real-life
applications: 5.7 x 10 in the human exome (see the
Background Section), 1.7 x 107 in Beta vulgaris [24],
2.4 x 10 in Arabidopsis thaliana [24], and 3.2 x 10°
in bacteriophage PhiX174 [24]. However, in order to
increase the flexibility of our library, we implemented
two additional functions, gapmis_one to one f
and gapmis_one to one_ onf, to allow for a vari-
able, but bounded, number of gaps in the alignment.

+ gapmis one to one f: this function provides
the user the option to split the query sequence into
f fragments, based on the observed gap occurrence
frequency and the query length, by taking the
number of fragments as input argument. It then

Page 8 of 14

uses function gapmis_one to_one to perform a
single-gap alignment for each fragment indepen-
dently. The total score of the alignment is obtained
by adding the f individual scores of the fragments.
We denote this function by gm -£ <int>, where
<int> is the number of fragments f used as input
argument.

+ gapmis one to_one_ onf: this function com-
putes the alignment by using the optimal number of
fragments. First, it takes the maximum number of
fragments as input argument, say fpa.x and only
computes the total score of the alignments, for each
different number 1, 2, ..., fi,.x of fragments. It then
uses function gapmis one to one f to compute
the alignment by passing the optimal number of
fragments—the one that gives the maximum total
score in the previous step—as input argument. We
denote this function by gm -onf <int>, where
<int> is the maximum number of fragments f, .«
used as input argument.

Experimental results

The experiments were conducted on a Desktop PC using
up to 4 cores of Intel i7 2600 CPU at 3.4 GHz under
Linux, and an NVIDIA GeForce 560 GPU with 336
CUDA cores and 1 GB DDR5 device memory. 1ibgap-
mis is distributed under the GNU General Public License
(GPL). The library is available at http://www.exelixis-lab.
org/gapmis, which is set up for maintaining the source
code and the man page documentation.

P L

index 1 elements

A

Ajt

texts B

Bi+1

C

|
|
}
I
|
|
|
|
|

¢

1+1

inter—reference vector

|

i A4

group i

Figure 6 Inter-sequence GPU memory organisation. The inter-sequence GPU memory organisation. This figure was taken from [21].

padded to a multiple of 32

EAi+1 Biti Ci+1

http://www.exelixis-lab.org/gapmis
http://www.exelixis-lab.org/gapmis

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

To the best of our knowledge, 1ipgapmis is the first
library for extending pairwise short-read alignments. The
main design goal of 1ipgapmis is to identify a single
gap in the alignment (see the Background Section for the
motivation). Therefore, in this section, we focus on com-
paring the performance of function gapmis_one -
to_one to the analogous performance of EMBOSS
needle. The latter implements Needleman-Wunsch
algorithm for semi-global alignment. The Needleman-
Wunsch algorithm is the traditional approach used for
semi-global alignment. needle is, up-to-date, one of the
most popular pairwise sequence alignment programmes
for global and semi-global alignment.

We generated 100, 000 pairs of 100 bp-long sequences
on the DNA alphabet. Initially, each pair consisted of
two identical sequences. Subsequently, we inserted:

+ a single gap with a uniformly random length that
ranged between 1 and 30 into one of the two
sequences;

+ a uniformly random number of mismatches that
ranged between 1 and 10.

Since the presence of multiple gaps is unlikely based
on the gap occurrence frequency observed in real data-
sets, this experimental setting aims to demonstrate the
suitability of the proposed algorithm compared to more
traditional approaches in identifying the simulated
inserted gap.

We seamlessly integrated function gapmis one -
to_one into a test programme, denoted by gapmis, for
computing the optimal semi-global alignment between a
pair of sequences. In each case, for a fair comparison of
needle and gapmis, an effort was made to run the pro-
grammes under as similar conditions as possible. In gapmis,
we additionally used function results_one to_one to
produce the corresponding output. While parsing the out-
put generated by the two programmes, we considered any
inserted gap as gap, excluding, however, a gap inserted in
the end of the alignment.

We consider as valid those alignments where the
number of inserted gaps is less or equal to the ones ori-
ginally inserted. Furthermore, we consider as correct
those valid alignments with gaps whose total length is
smaller or equal to the length of the ones originally
inserted and with number of mismatches being less or
equal to the ones originally inserted.

The above experimental procedure was repeated using
different gap opening and gap extension penalties. As cor-
roborated by the results in Tables 1, 2, 3, gapmis is more
suitable for identifying single alignment gaps in all cases.
As it is also shown in [7] and [21], needle cannot-—by
design—guarantee the insertion of at most one gap into the
alignment, even when setting the gap opening penalty to

Page 9 of 14

Table 1 Valid and correct alignments with gap opening
penalty 10.0 and gap extension penalty 0.5

Programme Valid Correct
Needle 94,552 94,516
Gapmis 100,000 99,996

The valid and correct alignments of 100, 000 pairs of 100 bp-long generated
sequences with gap opening penalty 10.0 and gap extension penalty 0.5.

12.0 and the gap extension penalty to 0.5. The correct (as
per our definition) alignments of Tables 1, 2, 3 are illu-
strated in Figure 7. Furthermore, we compared the proces-
sing times of gapmis to those of needle by generating
10,000 pairs of 100, 150, 200, and 250 bp-long DNA
sequences in analogy to the aforementioned experiment.
We used two different versions of gapmis: one with the
modifier -m 30 to set B = 30; and one with f = n - 1,
where B is the maximum allowed length of the single gap,
and # is the length of the longest sequence.

The results in Figure 8 show that gapmis was able to
complete the assignment up to 20x faster than needle.
Although the asymptotic complexity of the two algo-
rithms is the same, the number of arithmetic operations
required by algorithm GAPMIS is substantially lower.
This can be easily explained by examining the recur-
rence relations of the two algorithms. The version with
the modifier -m 30 was always the fastest confirming
our theoretical results. Note that, it only computes a
narrow band in the dynamic-programming matrices (see
Figure 4c and 4d).

We also evaluated the time efficiency of the acceler-
ated SSE- and GPU-based versions of 1ibgapmis, by
comparing their processing times against the ones of the
standard CPU version. In particular, we generated a 75
bp-long DNA query sequence and 4, 639, 576 100 bp-
long DNA target sequences. This represents a realistic
setting for re-sequencing applications because the seed
part of a short read usually occurs in thousands or mil-
lions of positions along the reference sequence. Hence
an important problem in re-sequencing is the efficient
and accurate extension of these thousands to millions of
potential alignments. We used the following versions of
the function gapmis_one to many:

» the CPU version;
« the single-core SSE version;

Table 2 Valid and correct alignments with gap opening
penalty 8.0 and gap extension penalty 1.0

Programme Valid Correct
needle 76,512 76,501
gapmis 100,000 99,997

The valid and correct alignments of 100, 000 pairs of 100 bp-long generated
sequences with gap opening penalty 8.0 and gap extension penalty 1.0.

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Table 3 Valid and correct alignments with gap opening
penalty 12.0 and gap extension penalty 0.5

Programme Valid Correct
needle 95,452 95427
gapmis 100,000 99,999

The valid and correct alignments of 100, 000 pairs of 100 bp-long generated
sequences with gap opening penalty 12.0 and gap extension penalty 0.5.

« the SSE version with 4 threads (-t 4);
« the GPU version.

The same experiment was repeated with 150 and 200
bp-long sequences. As shown by the results in Figure 9,
the single-core SSE version accelerates the computations
by a factor of 6 compared to the CPU version; the
SSE -t 4 version by a factor of 23 compared to the
CPU version; and the GPU version by a factor of 4 com-
pared to the CPU version. The cell updates per second
(CUP/s) are 290 MCUP/s, 1.6 GCUP/s, 6.5 GCUP/s,
and 1.2 GCUP/s, for the CPU, the SSE, the SSE -t 4,
and the GPU versions, respectively.

As further experiment, we generated 1, 000, 000 75
bp-long DNA query sequences and 200 100 bp-long

Page 10 of 14

DNA target sequences. Similar to the above experiment,
the four aforementioned versions of function gapmis_-
many to_ many were used, and the same experimental
procedure was repeated with 150 and 200 bp-long
sequences. As shown by the results in Figure 10, the sin-
gle-core SSE version accelerates the computations by a
factor of 6 compared to the CPU version; the SSE -t 4
version by a factor of 20 compared to the CPU version;
and the GPU version by a factor of 11 compared to the
CPU version. The CUP/s are 190 MCUP/s, 1.1 GCUP/s,
4 GCUP/s, and 2.2 GCUP/s, for the CPU, the SSE, the
SSE -t 4, and the GPU versions, respectively.

As further experiment, in order to evaluate the perfor-
mance of programme gapmis, function gapmis_one -
to_one f, function gapmis_one to_one_ onf, and
needle, under real conditions, we simulated 1, 000,
000 100 bp-long query sequences from the 30 Mbp
chromosome 1 of Arabidopsis thaliana (AT) obtained
from [33], and inserted mismatches and gaps into the
reference sequence; then we aligned them back against
the original reference sequence. As mismatch occur-
rence frequency and gap occurrence frequency we used
1.6 x 10 and 2.4 x 107, respectively—the ones observed

needle &=
gapmis &

=

100000

80000

T

60000

T

T

Correct alignments [-]

40000

20000

10,0.5

Figure 7 Correct alignments. The correct alignments of Tables 1-3.
A

Gap opening penalty, Gap extension penalty [-]

8,1 12,0.5

Alachiotis et al. BVIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Page 11 of 14

Processing time [s]

180

160 -

140

120

100

80

60

40

20

needle
gapmis &X €L
dgapmis -m 30 =
LSS
5T S
o
A//‘/_/ Y f<,>>
00,9, b, NSNS DL
5SS > v b
NSO X N4
K D Pa¥%t $
e <] > b
x S { <
s 920 -
5 LK x e
< : Y X
%>
/_ '<_\‘\ 4 >\>
LS 4 "5
00" %% bs
S ¢
< >
S / P
e X X
e < XS SO
"oV e X
% .0 ;
X Y ?
X K~ >
b, .0,
SN]
% |
“‘ N
™
Va
KX Py
5
\/\' v 5SS N mim m
bresz 2T,
oS §/\/\\ RO
| x\/‘()’x 5,

100 150
Length of target sequence [-]

Figure 8 Processing times of needle and gapmis. The processing times of needle and gapmis for aligning 10, 000 pairs of sequences.

Processing time [s]

700

600 |

500

400

300

200

100

<
X x
9.4
¢ Y]
AN
P
Y%
X
5%
v
Y
P
PaNe
P,
- X \>>
AN
5
< Y%
J 8"
YOS <X
e N
> >
X
< R
S
2 4
b Vo’
> . S
b x i
XX ; %
W R 1 i
(Y]]
ey e

75,100 120,150
Length of query sequence, Length of target sequences|-]

Figure 9 Processing times of gapmis_one_to_many. The processing times of gapmis_one to_many for aligning a query sequence and 4,
639, 576 target sequences.
A

Alachiotis et al. BVIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Page 12 of 14

) 1 I
10000 a
8000 | -
)
(4]
E 6000 -
je)]
£
]
Q
[&]
S
& 4000 } o
2000 -
doxe
P i
0 Al - %5 .

75,100

sequences and 200 target sequences.

Length of query sequences, Length of target sequences [-]

Figure 10 Processing times of gapmis_many_to_many. The processing times of gapmis_many to_many for aligning 1, 000, 000 query

125, 150 175, 200

in AT [24]. Since, in practice, insertions occur less fre-
quently than deletions, 42% of the inserted gaps were
insertions and 58% deletions—also observed in AT [24].
For the length of the inserted gaps, we used the distri-
bution of gap lengths shown in Figure 3, which is con-
sistent with other studies on gap distributions (cf.
[9,22,23]). Since the queries were simulated, we were
able to know the exact location of the fragments of the
reference sequence they were derived from (the target
sequences). Hence, we were able to classify each gener-
ated alignment as valid/invalid and correct/incorrect.
We define accuracy as the proportion of correct align-
ments in the dataset. Thus, we evaluated the accuracy of
the aforementioned programmes in extending an align-
ment end-to-end, assuming that the seed part of the
alignment is already performed by using a conventional
indexing scheme, that is, a hash-based index [15] or an
FM index [16]. We repeated the same experiment by
simulating 150 bp-long query sequences and using other
gap occurrence frequencies—observed in Beta vulgaris
(BV) [24] and Homo sapiens (HS) exome [9].

The high accuracy of 1ibgapmis is demonstrated by
the results shown in Table 4. The results show that func-
tion gm -onf 3 has the highest accuracy in all cases. It
can increase the accuracy of extending short-read align-
ments end-to-end by 0.01% compared to needle. Given
the observed gap occurrence frequencies, the increased
accuracy of gap identification is significant. For instance,
the proportion of pairs of sequences with gaps in the six
datasets of Table 4 ranged from 0.85% to 3.5%.

Although the gap opening penalty in needle could be
increased by the user, this would have a potentially fatal
impact on accuracy because the high number of mis-
matches opted would be underestimated [21]. We
checked this assumption by conducting the following last
experiment. We obtained 100, 000 100 bp-long and 100,
000 150 bp-long query sequences from the 30 Mbp chro-
mosome 1 of AT, and inserted mismatches and gaps into
the reference sequence; then we aligned them back
against the original reference sequence using needle,
similar to the previous experiments. The gap opening
penalty ranged from 10.0 to 20.0, and the gap extension

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Page 13 of 14

Table 4 Correct alignments using gapmis, gapmis_one to one f, gapmis one to one onf, and needle

Species Length of queries [bp] Gap occurrence frequency gapmis gm-f2 gm-f3 gm-onf2 gm-onf3 needle
AT 100 24 x10° 999,099 998,404 997,561 999,207 999,259 999,126
AT 150 24 x10° 998,805 998,171 997,542 999,024 999,152 999,115
BV 100 17 x 107 999,361 998,868 998,229 999,432 999,459 999,353
BV 150 17 x 10° 999,196 998,771 998,249 999,347 999,432 999,378
HS 100 57 % 10° 999,809 999,615 999,419 999,822 999,825 999,782
HS 150 57 x 10° 999,795 999,606 999,408 999,817 999,825 999,793

The correct alignments of 1, 000, 000 pairs of simulated sequences with various observed gap occurrence frequencies using gapmis, gapmis_one_to_one_f,
gapmis_one to_one onf, and needle. Each of the datasets consists of 1,000,000 pairs of sequences; the highest number of correct alignments for each

dataset is shown in bold.

Table 5 Valid and correct alignments using needle

Programme Species Length of queries Gap occurrence Gap opening Gap extension Valid Correct
[bp] frequency penalty penalty alignments alignments

needle AT 100 24 %107 10.0 05 99,988 99,917
needle AT 100 24 x10° 15.0 05 99,992 99911
needle AT 100 24 x10° 200 05 99,996 99,850
needle AT 150 24 % 107 10.0 0.5 99,991 99,919
needle AT 150 24 %107 15.0 05 99,992 99,901
needle AT 150 24 %107 20.0 05 99,996 99,834

The valid and correct alignments of 100, 000 pairs of simulated sequences with the gap occurrence frequency observed in Arabidopsis thaliana using needle.
Each of the datasets consists of 100,000 pairs of sequences; the highest numbers of correct and valid alignments for each dataset are shown in bold.

penalty was set to 0.5. Our assumption is confirmed by
the results shown in Table 5. Notice that, increasing the
gap opening penalty increases the valid alignments but
has a negative impact on the accuracy of needle: the
number of correct alignments decreases.

Conclusions

In this article, we presented 1ibgapmis, an ultrafast
and flexible library for extending pairwise short-read
alignments end-to-end. Apart from the standard CPU
version, it includes ultrafast SSE- and GPU-based imple-
mentations. 1ibgapmis is based on GapMis, a tool
that computes a different version of the traditional
dynamic-programming matrix for sequence alignment.

This work is directly motivated by the next-generation
re-sequencing application. We demonstrated that 1ib-
gapmis is more suitable and efficient than more tradi-
tional approaches for extending short-read alignments
end-to-end. Adding the flexibility of bounding the num-
ber of gaps inserted in the alignment, strengthens the
classical scheme of scoring matrices and affine gap pen-
alty scores. The presented experimental results are very
promising, both in terms of identifying gaps and
efficiency.

By exploiting the potential of modern CPU and GPU
architectures and applying multi-threading, we improved
the performance of the purely sequential CPU version
by more than one order of magnitude. More impor-
tantly, the functions provided in 1ibgapmis can be

directly integrated into any short-read alignment pro-
gramme. Our immediate target is to further optimise
the code, and also integrate the functions of this library
into a short-read alignment pipeline.

Additional material

Additional file 1: Algorithm GAPMIS. The algorithm GAPMIS computes
matrices G and H. It takes as input the text t of length n, the pattern x of
length m, and the threshold B. This algorithm was taken from [7].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SPP and AS designed the study. NA, SB, TF, and SPP developed the library.
TF and SPP conducted the experiments. SPP wrote the manuscript with the
contribution of all authors. The final version of the manuscript is approved
by all authors.

Acknowledgements

The publication costs for this article were funded by the Heidelberg Institute
for Theoretical Studies (HITS gGmbH). NA, SB, and TF are supported by
funding from the DFG (German Science Foundation, grants STA 860/2 and
STA 860/4). SPP is supported by the NSF-funded iPlant Collaborative (NSF
grant #DBI-0735191). AS is supported by institutional funding from HITS
gGmbH. We thank Rajesh Kumar Gottimukkala from Life Technologies for
valuable comments and useful discussions.

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 11, 2013: Selected articles from The Second Workshop on Data
Mining of Next-Generation Sequencing in conjunction with the 2012 IEEE
International Conference on Bioinformatics and Biomedicine. The full
contents of the supplement are available online at http.//www.
biomedcentral.com/bmcbioinformatics/supplements/14/511.

http://www.biomedcentral.com/content/supplementary/1471-2105-14-S11-S4-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S11
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S11

Alachiotis et al. BMIC Bioinformatics 2013, 14(Suppl 11):54
http://www.biomedcentral.com/1471-2105/14/511/54

Authors’ details
'Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. “Florida
Museum of Natural History, University of Florida, Gainesville, FL, USA.

Published: 4 November 2013

References

1.

2.

20.

21.

22.

23.

Levenshtein VI: Binary codes capable of correcting deletions, insertions,
and reversals. Tech Rep 8 Soviet Physics Doklady; 1966.

Wagner RA, Fischer MJ: The String-to-String Correction Problem. Journal
of the ACM 1974, 21:168-173.

Sellers PH: On the Theory and Computation of Evolutionary Distances.
SIAM Journal on Applied Mathematics 1974, 26(4):787-793.

Heckel P: A technique for isolating differences between files.
Communications of the ACM 1978, 21(4):264-268.

Peterson JL: Computer programs for detecting and correcting spelling
errors. Communications of the ACM 1980, 23(12):676-687.
Cambouropoulos E, Crochemore M, lliopoulos CS, Mouchard L, Pinzon YJ:
Algorithms for Computing Approximate Repetitions in Musical
Sequences. International Journal of Computational Mathematics 2000,
79(11):1135-1148.

Flouri T, Frousios K, lliopoulos CS, Park K, Pissis SP, Tischler G: GapMis: a
tool for pairwise sequence alignment with a single gap. Recent Pat DNA
Gene Seq 2013, 7:84-95.

Gusfield D: Algorithms on strings, trees, and sequences: computer science and
computational biology USA: Cambridge University Press; 1997.

Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV,
Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S,
Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM,
Trembath RC: Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a
disorder of severe and progressive bone loss. Nature Genetics 2011,
43(4):303-305.

Balasubramanian S, Klenerman D, Barnes C, Osborne M: 2007, Patent
US20077232656.

Ju J, i Z, Edwards J, Itagaki Y: 2007, Patent EP1790736.

Rothberg J, Bader J, Dewell S, McDade K, Simpson J, Berka J, Colangelo C:
Founding patent of 454 Life Sciences. 2007, Patent U520077211390.
Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome biology 2009, 10(3):R25+.

LiR Yu C LiY, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 2009,
25(16):1966-1967.

Frousios K, lliopoulos CS, Mouchard L, Pissis SP, Tischler G: REAL: an
efficient REad ALigner for next generation sequencing reads. In
Proceedings of the first ACM International Conference on Bioinformatics and
Computational Biology (BCB 2011). USA: ACM;Zhang A, Borodovsky M,
Ozsoyoglu G, Mikler AR 2010:154-159.

Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012, 9:357-359.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment
Search Tool. Journal of Molecular Biology 1990, 215(3):403-410.
Needleman SB, Wunsch CD: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology 1970, 48(3):443-453.

Waterman MS, Smith TF: Identification of common molecular
subsequences. Journal of Molecular Biology 1981, 147:195-197.

Alachiotis N, Berger S, Flouri T, Pissis SP, Stamatakis A: 1ibgapmis: an
ultrafast library for short-read single-gap alignment. Bioinformatics and
Biomedicine Workshops (BIBMW), 2012 IEEE International Conference on: 4-7
October 2012 2012, 688-695.

Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T,
Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA,
Shendure J: Targeted capture and massively parallel sequencing of 12
human exomes. Nature 2009, 461(7261):272-276.

Ostergaard P, Simpson MA, Brice G, Mansour S, Connell FC, Onoufriadis A,
Child AH, Hwang J, Kalidas K, Mortimer PS, Trembath R, Jeffery S: Rapid
identification of mutations in GJC2 in primary lymphoedema using

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Page 14 of 14

whole exome sequencing combined with linkage analysis with
delineation of the phenotype. J Med Genet 2011, 48(4):251-255.

Minosche AE, Dohm JC, Himmelbauer H: Evaluation of genomic high-
throughput sequencing data generated on lllumina HiSeq and Genome
Analyzer systems. Genome Biology 2011, 12:R112.

Flouri T, Frousios K, lliopoulos CS, Park K, Pissis SP, Tischler G: Approximate
string-matching with a single gap for sequence alignment. In Proceedings
of the second ACM International Conference on Bioinformatics and
Computational Biology (BCB 2011). USA: ACM;ACM 2011:490-492.
Crochemore M, Hancart C, Lecrog T: Algorithms on Strings USA: Cambridge
University Press; 2007.

Na JC, Roh K, Apostolico A, Park K: Alignment of biological sequences
with quality scores. International Journal of Bioinformatics Research and
Applications 2009, 5:97-113.

National Center for Biotechnology Information (NCBI): 2013 [ftp:/ftp.ncbi.
nih.gov/blast/matrices/NUCA4.4].

National Center for Biotechnology Information (NCBI): 2013 [ftp//ftp.ncbi.
nih.gov/blast/matrices/BLOSUM62].

Rice P, Longden |, Bleasby A: EMBOSS: The European Molecular Biology
Open Software Suite. Trends in Genetics 2000, 16(6):276-277.

Alachiotis N, Berger S, Stamatakis A: Coupling SIMD and SIMT
architectures to boost performance of a phylogeny-aware alignment
kernel. BMC Bioinformatics 2012, 13:196.

Rognes T: Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinformatics 2011, 12:221.

National Center for Biotechnology Information (NCBI): [http://www.ncbi.nim.
nih.gov/].

doi:10.1186/1471-2105-14-S11-S4
Cite this article as: Alachiotis et al: 1ibgapmis: extending short-read
alignments. BMC Bioinformatics 2013 14(Suppl 11):54.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/21378985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21378985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22388286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21266381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22067484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22067484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22067484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136367?dopt=Abstract
ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4
ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4
ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22876807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22876807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22876807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21631914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21631914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/

	Abstract
	Background
	Results
	Conclusions

	Background
	Definitions and notation
	Algorithm GapMis
	Library libgapmis
	SSE-based implementation
	GPU-based implementation
	Accommodating multiple gaps

	Experimental results
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors' details
	References

