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Abstract

Background: On the pretext that sequence reads and contigs often exhibit the same kinds of base usage that is
also observed in the sequences from which they are derived, we offer a base composition analysis tool. Our tool
uses these natural patterns to determine relatedness across sequence data. We introduce spectrum sets (sets of
motifs) which are permutations of bacterial restriction sites and the base composition analysis framework to
measure their proportional content in sequence data. We suggest that this framework will increase the efficiency
during the pre-processing stages of metagenome sequencing and assembly projects.

Results: Our method is able to differentiate organisms and their reads or contigs. The framework shows how to
successfully determine the relatedness between these reads or contigs by comparison of base composition. In
particular, we show that two types of organismal-sequence data are fundamentally different by analyzing their
spectrum set motif proportions (coverage). By the application of one of the four possible spectrum sets,
encompassing all known restriction sites, we provide the evidence to claim that each set has a different ability to
differentiate sequence data. Furthermore, we show that the spectrum set selection having relevance to one
organism, but not to the others of the data set, will greatly improve performance of sequence differentiation even
if the fragment size of the read, contig or sequence is not lengthy.

Conclusions: We show the proof of concept of our method by its application to ten trials of two or three freshly
selected sequence fragments (reads and contigs) for each experiment across the six organisms of our set. Here we
describe a novel and computationally effective pre-processing step for metagenome sequencing and assembly
tasks. Furthermore, our base composition method has applications in phylogeny where it can be used to infer
evolutionary distances between organisms based on the notion that related organisms often have much
conserved code.

Introduction and related work
During a DNA sequencing task, the nucleotides of the
reads or contigs must be placed in the correct order to
reconstruct the original sequence. This sequencing task
is particularly challenging when working with a metage-
nomic task, which requires one to gather and order simi-
lar sequences from a number of different organisms. This
metagenomic technique has been extensively discussed

in [1,2] and a framework to infer phylogenetic relation-
ships (patterns) among assemblages of microorganisms
has been developed [3]. This approach is expected
to help improve assembly projects by reducing search
spaces when grouping related sequence fragments.
Massively parallel next-generation sequencing technolo-
gies (a major technological rebirth of the former Sanger
methods of the 1980’s [4]) provide ultrahigh throughput
results at a low cost but the reads are often too short to
be able to determine their adjacency. In [5], the authors
describe a novel method for de novo assembly of large
genomes from short read sequences which they used to
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assemble two giant genomes: the Asian and African
human genome sequences.
Some of the limitations encountered in the assembly

process include read coverage and size. The absence of
placement information such as read coverage forms a
bottleneck in the reassembly process [6,7]. When the
read sequences are very short, then special procedures
must be taken to maximize their informational content
to achieve placement evidence. For this work, it may be
necessary to form contigs by de novo assembly methods
as in [8]. Despite these limitations, technologies such as
Velvet and Oases have been used for many genome
assembly projects [9,10] and [11]. Assembling reads
using approaches from probability theory, or from the
memory-based, are gaining popularity. This was deter-
mined by Zhang et. al. [12] who compared the perfor-
mance of eight distinct tools (i.e., SSAKE, VCAKE,
QSRA, SHARCGS, Edena, Velvet, SOAPdenovo, and
Taipan) against eight groups of simulated datasets.
In metagenomic studies, where there are different

kinds of reads or contigs mixed together into the same
pool, the task of separating them back into n-distinct
groups, becomes an NP-hard problem. Although a
researcher may choose to determine their order using
some computational tools, as described in Figure 1, this
still is an NP-hard problem to separate the sequence
data.
Furthermore, this difficulty of separating the reads

may prevent the assembly tools from ever being used
optimally. In [13], the authors discuss the problem of fil-
tering the reads or contigs into smaller groups for better
management. Time and productivity can be saved by

these pre-processing steps where related sequence mate-
rial is placed into a bin (here called, binning) to reduce
search spaces for reconstructing entire sequences or
genomes. It is therefore important to perform efficient
binning steps to save costs in the sequencing task to
reduce the work-load in an assembly project.
Chromosomal material across different genera were

organized into species-specific groupings by virtue of the
motif composition which was contained in the DNA [14].
In our study, we present a similar framework of organizing
samples of DNA by their motif content. Our method dif-
fers from the authors’ work, however, because it could be
applied to smaller sequence fragments than chromosomes
and it also employs motifs of similar base-composition to
associate (e.g., bin) sequences of different organisms into
related groups. Our set of motifs are biologically relevant
since they were derived from known bacterial restriction
sites. We permuted the base composition of the bases
found in a particular restriction site to generate a list of all
possible motifs of the same composition. Here, all the
motifs belonging to a set of the same base composition is
said to form a spectrum set. We show that an organism’s
recognition sequence belongs to only one of the four pos-
sible non-palindromic spectrum sets. Furthermore, each
set must be strategically selected for successful sequence
binning.
Our hypothesis is that a restriction site base composi-

tion algorithm can be used to separate and bin the
sequence material from several different organisms. Our
method compares the spectrum set motif proportions
between sequences and uses this knowledge to separate
them. For instance, if the motifs have similar proportions

Figure 1 Sequence fragments are separated into groups (called,“bins”) of relatedness by a quick pre-proccessing step. This graphic taken from
our previous work in [33].
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across two sequences, then there is evidence to suggest
that the sequences are related to each other in some way.
Here, this relation is called an association. In summary,
our work stands apart from the traditional assembly pre-
processing methods found in wet-labs since our method
relies on statistics alone to find likenesses across
sequence material to discover associations and bin the
sequence data.

Methods
Genome sequences
The genomic DNA sequences were studied from six dif-
ferent phylogenetic groups (Actinobacteria, Firmicutes
and Proteobacteria) shown in Table 1. The genomes
and chromosomes for this study were downloaded from
Genbank (a public and international online database)
and were manipulated with tools which we describe
below. All sample genomes were at least 1 Mb in length.
There is evidence to suggest that GC-groups have a ten-
dency to mutate to AT groups [15,16]. Furthermore, it
is thought that similar GC composition implies similar
genomic structure [17]. In light of this knowledge, our
analysis was drawn from bacteria comprising many
raised and lowered levels of GC-content.
In each experiment, ten trials of five freshly drawn

reads were studied. We used MetaSim [18] to create
artificial contigs (or reads) similar to those of an actual
assembly project. Each set of contigs (or reads) was
extracted from the Contig Originator organism of
Table 1. We applied all four spectrum sets to deter-
mine the proportional distributions used for the leaf
weights in our heatmap trees. We placed randomly
selected contigs in each test. There were also several
other related organisms added to each pool to test and
further determine the association behaviors.
We found very similar trends in each division. We illus-

trate them by discussing the arbitrarily chosen the organ-
isms Staphylococcus and Clostridium of the Firmicutes
division. The results from the other divisions featured in
Table 1, Proteobacteria and Actinobacteria, were very
similar to the findings of the Firmicutes.

Read and contig sequences
The synthetic data was made up of shorter reads of less
than 1 kbp and were generated utilizing the 454 frame-
work that was offered by the MetaSim software tool.
MetaSim selects its reads by a statistical approach
according to user input. The software simulates the
approaches of both Sanger sequencing and Roche’s 454
(sequencing-by-synthesis). The maximum allowed length
of contigs by MetaSim is 1 Kbp and so the longer reads
or contigs for this study (1 Kbp 30 Kbp) had to be gen-
erated by our own tool, which also follows the 454
(sequencing-by-synthesis) method. We created longer
reads or contigs of lengths 2 kbp, 5 kbp, 10 kbp and 30
kbp for an exhaustive study using this tool. Although it
may appear that some of these reads are unnaturally
long, we note that the typical lengths of reads appear to
be growing as the sequencing technology improves and
evolves.
In our experiments, we ran binning tests containing

many reads or contigs but due to redundancy in the out-
come of the analysis, our tests required only about five to
ten reads or contigs to display the relevant trends. This
small set of sequence data was acceptable to our work
because we often observed that nearly all of the reads of
a larger set had very similar distributions of motifs con-
tent from the spectrum sets.

Motifs
REBASE [19] is an online database of information con-
cerning bacterial restriction enzymes and their recognition
sites. Each of the organisms (Campylobacter, Burkholderia,
Bifidobacterium, Mycobacterium, Clostridium, Staphylo-
coccus) were queried at REBASE for their organism-speci-
fic, palindromic recognition site sequences of length-6.
This length was desirable for our work because (1) it is a
common size in bacteria, mitochondria and plasmids and,
(2) it is statistically interesting. For example, let A be the
size of the DNA alphabet {A, C, G, T} (four elements) and
let L be the motif length. There are A

L
2 = 4

6
2 = 43 = 64

possible palindromic sites available from the set of all pos-
sible length-6 words, AL = 46 = 4096. When compared to
the seemingly spontaneous occurrence rates of the shorter
motifs, these longer words are less likely to be random
occurrences along the genome.
Base compositions and spectrum sets
There are usually several uniquely spelled, palindromic
recognition sequences of length-6 for each bacterial organ-
ism according to REBASE. For example, Clostridium has
eleven recognition sequences (Figure 2), and Staphylococ-
cus (Figure 3) has only four. It is typically rare to find
common recognition sequences between two organisms
however, in this case, ATGCAT is common to both. Con-
sulting REBASE, we found all the known restriction sites
and placed each into one of four unique sets according to

Table 1 Genera for the study

Organism Contig Originator Division

Bifidobacterium longum
Mycobacterium bovis
Clostridium tetani

Staphylococcus aureus
Burkholderia pseudomallei

Campylobacter jejuni

NC_004307
NC_002945
NC_004557
NC_007622
NC_012695
NC_008787

Actinobacteria
Actinobacteria
Firmicutes
Firmicutes

Proteobacteria
Proteobacteria

This table displays the genera used in our study. The Read Originator column
displays the sequences which we processed via MetaSim for its reads. To
determine their general associative behaviors, we studied ten trials of five
freshly drawn reads. We chose two organisms from each of the three divisions
from which to draw our contigs.
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their DNA compositions. In Figure 4, we show this group-
ing of all restriction sites. We call these sets, spectrum sets
where each element of a set contains the same count of
each base. We name each set by the following motifs:
AAATTT, AATTCG, CCGGAT and CCCGGG. For exam-
ple, the motifs, ATTTAA, AATTTA, TAAATT and
TTAAAT, are all elements belonging to the AAATTT-
spectrum set. A DNA word, w is palindromic if w ==
reversed[Complemented(w)]. We do not consider palin-
dromes in our spectrum sets, although many of the
restriction sites of restriction modification systems are
naturally palindromic, since they are thought to be avoided
in the genome [20]. This avoidance property may confuse
our results since we are investigating their occurrences in
a sequence. Table 2 lists the sizes of each set.

Proportions
We use proportions, not frequencies, in our study of
motif content because we are only using a subset of
the set of all possible motifs of length-6. We ignored

overlapping palindromes (no nested motifs) in the
sequences for simplicity. The motif occurrence data in
the sequences was normalized to make the compari-
sons meaningful. We determine the proportionality for
each motif in a set across a genome by the following
Equation 1:
The proportion of,

mi in SL =
count(mi) ∗ |mi|

|SL|
(1)

where mi is a motif, SL is a sequence fragment (a read,
contig or genome), count(mi) represents the number of
occurrences of mi found in SL, and |mi| and |SL| are the
lengths of the motif and the sequence, respectively. For
each motif in a spectrum set, the proportion of sequence
that is made up of the motif is calculated by this equation.
For each spectrum set, a vector is created from all propor-
tions to be applied to a clustering analysis by hclust: a com-
mand in the R Statistical software [21]. The result of the
analysis is a heatmap [22] to determine the associations.

Figure 2 The spectrum set taken from the four restriction sites of the Clostridium genera. There are ten unique recognition sites covering all
four spectrum sets (shown in Figure 4). This graphic taken from our previous work in [33].
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We used the motif proportions, to make vectors from
each sample sequence. Comparing the vectors across
the organisms determined likenesses and relatedness. If
the vectors of the spectrum set motifs were similar
between sequences, then this may have been an indica-
tion of much common DNA between both sequences.
This may also suggest a degree of relatedness between
the organisms. Since a contig comes from a sequence,
then the contig and the sequence will both share all
their DNA and so our analysis will locate these similar-
ity patterns and bin them together. Our analysis code
was written in Python and soon will be made available
to the bioinformatics community by our software repo-
sitory located at [23]. In Figure 5, we provide a sum-
mary of how our method is applied.

Results and discussion
According to their proportions of motif content, the
clustering in heatmaps describes a tree of relatedness
between the organisms. Similar proportions between the

sequences are indicated by their close proximity in a
subtree of the main tree of relatedness. A parent
sequence is one which is closely related to the sequence
from which the reads or contigs were derived. Since
these fragments may contain large regions of common
code with parent sequence(s), they will associate with
them and will be found in its subtree in our heatmaps.
By association, we imply that there is ample evidence to
suggest that the reads or contigs are more similar to their
parent(s) than any other genome in the tree of related-
ness. We, furthermore, suggest that these fragments
make up a sequence that is related to the parent(s). This
property can be utilized to create bins from which to
begin assembling each sequence in the reassembly task.

Sequence data
In the following, we discuss the task of binning long
reads or contigs. Here, we choose to use DNA strands
of a length 5000 bps. These strands shall be contigs for
the purpose of describing the tool that manipulates

Figure 3 The spectrum set taken from the four restriction sites of the Staphylococcus Genera. The motif ATGCAT is common to Clostridium. This
graphic taken from our previous work in [33].
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them. Our method is a tool to determine the propor-
tions of motifs occurring in sequence data. The tool
requires enough information from each strand to make
correct decisions about relatedness and if there is an
insufficient amount of sequence material for compari-
sons to others, then our base composition tool will
make poor determinations. Sequence fragments of 700
bps were often enough to show the trends we discuss in
this paper, but we found some errors. We found that

longer sequence data provided clearer and more accu-
rate results due to having enough base information
upon which our method relies.
This size of sequence material may seem large if the

sequences were reads and not contigs. However, we note
that sequencing and assembly technologies appear to con-
tinually create longer reads than previous technologies.
Very large sizes may soon be a reality since read pre-pro-
cessing methods and various read alignment technologies
are already being used to create larger contigs [24-29].

Clostridium and Staphylococcus
Clostridium and Staphylococcus typify the kinds of phe-
nomena we observed after of ten trials of each experi-
ment, using the arbitrarily selected pairs of organisms
from Table 1. Here will describe the typical kinds of
observed phenomena using spectrum sets on these two
organisms. We will begin by showing that the two genera
groups, Clostridium and Staphylococcus, are unrelated by
the analysis of their motif proportions. We note from

Figure 4 From its base composition, each bacterial restriction site fits into only one of the four spectrum sets, featured by unique color patterns.
The motifs of each set are made up by the permutations of one of the following words; AAATTT, AATTCG, CCGGAT or CCCGGG. This result taken
from our previous work in [33].

Table 2 Members of the spectrum sets

Set Seed Available Motifs

AAATTT 12

CCCGGG 12

AATTCG 156

CCGGAT 156

The numbers of available motifs belonging to each spectrum. The motifs in
the spectrum set are nonpalindromic and are permutations of the set seeds.
The set created from the permutation of AATTCG is called, the AATTCG-
spectrum, for example.
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Figures 3 and 4 that only Clostridium, having the recog-
nition sites ATTAAT and CCCGGG, can be discrimi-
nated by the AAATTT and CCCGGG-Spectrum sets
(Staphylococcus does not have restriction sites of this
composition). By our analysis of motif proportions of this
spectrum set, we see that both organisms have very dif-
ferent proportions of these spectrum sites.
We note from Figures 6 and 7 that there were two

clearly contrasted subtrees in the heatmap to separate the
two organisms. There was similar contrast between the
sequences of our other heatmaps of the other organisms.
In the present two organisms, we noted that the heatmaps
are nearly opposite from each other: the Clostridium
family members tend to have warmer colors (elevated pro-
portions) and the Staphylococcus members have colder
colors (low proportions) in the AAATTT-spectrum set.
This trend is the inverse for the CCCGGG-spectrum set.
The AATTCG-spectrum set was also successful in show-

ing two different family subtrees but there was much less
apparent contrast between the organisms than there was
when using the AAATTT-spectrum set. We attribute this
high contrast to the phenomenon that a spectrum set may
perhaps be more biologically relevant to one of the organ-
isms than the other, according to their recognition
sequence usage. The CCGGAT-spectrum set was not typi-
cally very successful in showing contrasts for binning in

our trials for these organisms. This same experiment was
performed ten times with different (i.e., newly selected)
contigs and we observed similar results in the heatmaps as
those discussed. We suggest that since the Staphylococcus
group appears to have a higher proportion of CCCGGG
content than Clostridium, this contrast helps to associate
the reads by relations.
It is clear that the proper use of the correct spectrum set

can neatly differentiate one organism group from another
for binning. Above, we saw that there are differences in
the amounts of the spectrum sets which are found in the
organisms. This made a high contrast which helped to
determine one organism from another. We will now dis-
cuss how this method can discriminate between only read
or contig sequence data.

Proportional differences in contigs by spectrum sets
We shall now discuss an application of separating reads
originating from three different organisms that have been
mixed together into the same pool. Incidentally, a part of
this process comprises the separation of contigs belonging
to two different organisms. For our test, we arbitrarily
selected another organism (featured in our organism
group in Table 1) Burkholderia pseudomallei to be added
to the contigs from Clostridium tetani and Staphylococcus
aureus. The contigs are of length 5000 bps which we

Figure 5 The flowchart that we applied to the clustering operation using heatmaps.
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chose to illustrate the test and to showcase its
performance.
Tests to determine pliable spectrum sets
When working with the contigs of two organisms, a
spectrum set could be selected based on the restriction
sites which are inherent to the involved organisms.
However, a sequencing task may combine contigs of
three or more organisms together. The contigs of each
organism will have to be separated from those of the
other organisms to make the sequence assembly more
feasible. Due to the large number of contigs in the
whole project, it may not be convenient to run a base
composition analysis over all sequence data and so, to
determine the spectrum set for the binning task, it is
suggested to use the spectrum set test as shown in
Figure 8. This test is a base composition analysis taken

only across the organisms who are known to be close
relatives of the contigs (parents) in the pool. In Figure 8,
we note that Burkholderia has the lowest proportions of
the AAATTT-spectrum set. Conversely, in Figure 9, Sta-
phylococcus and Clostridium have the lowest propor-
tions of the CCCGGG-spectrum set. When either of
these spectrum sets are applied to the pool of all con-
tigs, we note that the Burkholderia, Staphylococcus and
Clostridium contigs reflect the same trends observed at
the genome-level. For instance, Figures 10 and 11 reflect
the underlining trends of Figures 8 and 9, respectively,
in terms spectrum set motif coverage.
Removal of the contrasting contig group
In Figure 8 (spectrum set AAATTT ), we noted that
Burkholderia had low proportions of this set, and also
in Figure 9 (spectrum set CCCGGG, the opposite was

Figure 7 Separation by the motifs of the CCCGGG-Spectrum set. Note a clear distinction between each bin. In addition, we note that there is no
longer a color pattern showing that Clostridium botulinum are closely related, as we saw in Figure 6. This result taken from our previous work
in [33].

Figure 6 Separation by the AAATTT-Spectrum set. There is a clear distinction between each bin; Closteridium and Staphylococcus of the
Firmacute division. The data is segregated except for the two middle sequences forming a separate group. We had similar results from the
AATTCG-Spectrum set. This result from our previous work in [33].
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Figure 9 The CCCGGG-Spectrum set test. The sequence data is analyzed by base composition to determine relatedness.

Figure 8 The AAATTT-Spectrum set test. The sequence data is applied to our base composition analysis to determine its relatedness.

Figure 10 The AAATTT-spectrum set analysis taken across all sequence data in a pool. The Burkholderia pseudomallei sequence data, having
elevated proportions of the motifs of this spectrum set, create a contrast from those of Clostridium tetani and Staphylococcus aureus. These
organisms are observed to have mixed proportions by this heatmap.

Figure 11 The CCCGGG-spectrum set analysis taken across all the contigs in the pool. We note that the Burkholderia pseudomallei sequence
data, having low proportions of the motifs of this spectrum set, create a contrast from those of Clostridium tetani and Staphylococcus aureus.
These organisms are observed to have mixed proportions by this heatmap.
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true. In Figures 10 and 11, we see that the Burkholderia
contigs also show this same pattern. Therefore, by this
strong contrast, we could remove all contigs which
show these strong contrasts and in doing so we would
likely be binning the Burkholderia contigs. We note that
the spectrum set AATTCG was unable to to show con-
trasts between two of three organisms (Figure 12) but
Burkholderia was still a contrasting group. Interestingly,
without this organism, the AATTCG spectrum set
clearly differentiated Staphylococcus and Clostridium
contigs as shown in Figure 13. This suggests that the
addition of Burkholderia (having such low proportions
of the spectrum set motifs) to the set may change the
parameters of the heatmap software.

Phylogeny from full chromosomes
To demonstrate its ability to differentiate sequence data
into biologically relevant groups, we show that our
method is able to form phylogenetic trees which con-
form to NCBI’s taxonomy tool [30]. In our example, we
arbitrarily selected a chromosome from each of seven
diverse organisms listed in Table 3. We then applied
our framework to extract the distributions of each spec-
trum set and compared the results to the taxonomy tree
in Figure 14 from NCBI which is based on the classifica-
tion of their taxonomy database and other resources.
We remind the reader that the subtrees in this exam-

ple contain organisms that may be related by basic evo-
lutionary phenomena. If we had contigs in the pool
from each of these organisms, then these fragments

would associate to form more specific family subtrees.
Instead, this data is chromosomal sequence material
which group by relatedness.
We inspected the resulting trees of this example with

the following criteria: the bacterium should be the most
evolutionarily distinct organism. The mammals (i.e., the
dog, rabbit, rat and mouse) should be the most evolutio-
narily similar group of the set. The worm and the fruit
fly should be found in a subtree which is evolutionarily
between the bacterium and the mammals. Indeed, the
worm and the fruit fly are quite diverse organisms, how-
ever, for this example they are clearly more similar to
each other (than to the bacterium) and do not belong to
the set of mammals. Therefore, our inspection involved
checking for three basic subtrees: one for the mammals,
one for the worm and fruit fly, and a subtree containing
only the bacterium. In other words, the subtrees had to
be arranged similarly to those of NCBI’s taxonomy tree
shown in Figure 14.
In Figures 15 through 18, we note the phylogenetic

trees from each spectrum set. By inspection, the closest
trees to the one in Figure 14 are from the CCGGAT
and AAATTT spectrum sets, Figures 15 and 16, respec-
tively. Both of these trees show that the bacterium is
most evolutionarily distant from rest of the organisms
and that the fruit fly and the worm form a subtree
which is distinct from that of the mammals. The loca-
tions of the subtrees in both figures are in the same
configuration as illustrated in NCBI’s taxonomy tree
however, the tree of the AAATTT-spectrum set is not as

Figure 12 The AATTCG-Spectrum set test: The genomes or chromosomes are analyzed by base composition to determine the expected
clustering behavior of their contigs.

Figure 13 Separation of contigs of Clostridium tetani and Staphylococcus aureus by the AATTCG-spectrum set. We found that this spectrum set
worked well to separate the contigs. The AAATTT-spectrum set did not perform as well as we had expected from our work in Figure 6. We
suggest that the contigs of these particular organisms followed trends shown in Figure 12.
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accurate as that of the CCGGAT-set due to the dis-
played shorter evolutionary distances (for instance,
longer branch lengths indicate more distance). In addi-
tion, the distance between rat and mouse is expectedly
closer by the CCGGAT-spectrum set than by the
AAATTT-set.
The tree from the AATTCG-spectrum set in Figure 17

shows that the bacterium is evolutionarily found between
the mammal’s subtree and that of the worm and fruit fly.
This is inaccurate by the taxonomy tree Figure 14. In addi-
tion, the tree from the CCCGGG-spectrum set (Figure 18)
is also inaccurate since it shows that the fruit fly is closely
related to the rabbit. These results confirm our earlier
findings that the choice of the correct spectrum set is of
paramount importance for a successful analysis.
Since the spectrum set motifs were originally inspired

from palindromic restriction sites, we also studied the
proportions of an exhaustive list of length-6 palindromic
motifs (64 in total) across the sequence data. Interest-
ingly, although palindromic motifs have been known to

successfully differentiate chromosomes, as shown in
[14]. However in Figure 19, we note that palindromes
do not successfully recreate the taxonomy tree from
Figure 14.
To summarize these results, we offer Table 4 which

contains the highest to lowest resemblance to the tree in
Figure 14. We note from their ranking that the spectrum
sets do not behave uniformly and that further study is
required to understand how they should be applied to a
particular set of organismal data for classification.

Conclusion
As in playing with jigsaw puzzles, if there are the pieces
of several different puzzles in the same box, then the
completion of any one of the puzzles is a sizable under-
taking. In the same way, during a sequence assembly
task where the contigs of different organisms are mixed
together in the pool, much time can be spared by first
sorting the contigs into their own bins from which to
work. Our method places many of the unknown contigs
into their corresponding bins to drastically reduce the
search space.
Most of this paper discussed working with contigs

which are typically longer than reads. Our base compo-
sition analysis tool works by quantifying the amount the
spectrum set motifs which are contained in the
sequence data. When there is not enough sequence
data, then our method may produce erroneous results
and so we suggest using contigs of at least 1000 bps
because they should contain enough sequence informa-
tion for a good analysis. We should mention here that
we have had very good results when using contigs of
700 bps in length and so 1000 bps is not always abso-
lutely necessary.
By sorting the contigs with related sequence data which

is based on motif proportions, our method aims to
accomplish the binning task. We used heatmaps to show
the contig clusters by organism-types. Furthermore, we
illustrated that there are only four spectrum sets, which
can be created from length-6 recognition sites to apply to
differentiate by contrasting the sequence data. For
instance, we used the AAATTT and CCCGGG-spectrum

Table 3 Genomes used in the test

Locus Organism Common Name

NC_003279 Caenorhabditis elegans chrm1 Worm

NC_006583 Canis lupus familiaris chrm 1 Dog

NT_033779 Drosophila melanogaster chrm 2L Fruit fly

NT_039169 Mus musculus chrm 1 genomic contig Mouse

NC_016829 Mycoplasma hyorhinis GDL-1 chrm 1 Bacteria

NW_003159226 Oryctolagus cuniculus breed Thorbecke inbred chrm1 Rabbit

NW_047544 Rattus norvegicus chrm 1 Rat

The organisms used in the base composition experiment. We note that rabbit, dog, mouse and rat are seemingly more closely related than the bacteria, fruit fly
and the worm. This observation is used as a first-glance assessment of the heatmaps below.

Figure 14 NCBI’s Taxonomy Tree used for validation and
comparison. This phylogenetic tree was used to compare the
results of the spectrum set analysis of the organisms listed in Table
3. We ranked the results on a scale of highest to lowest
resemblance in Table 4.
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sets to show that one set had high proportional values in
one organism, but not the other. This created the con-
trast that would help to bin the contigs of these two
organisms. We then showed how the contigs of three
organisms can be binned in a two-step process. We first
removed the most contrasting set of contigs in the pool
and then reapply our method to the remaining contigs.

An analysis by base composition can also be used to
determine evolutionary orders of organismal sequence
data. For instance, we showed that our method could cre-
ate phylogenetics trees which were very similar to those
produced by NCBI’s taxonomy tool.
One of the leading benefits to our method is that

there is no setup required as there would be for other

Figure 15 The CCGGAT-spectrum set. This tree perfectly resembles the taxonomy tree of Figure 14 and shows the great evolutionary distances
between the organisms. The rat and mouse are found to be closely related. We note tree distinct subtrees: one containing the bacterium, one
for the mammals and one containing the worm and fruit fly. The location of these subtrees conforms to taxonomy tree.

Figure 16 The AAATTT-spectrum set. This tree also resembles the taxonomy tree but there is a slight distance between mouse and rat which is
not found in Figure 15. We note tree distinct subtrees conforming to the taxonomy tree.

Figure 17 The AATTCG-spectrum set. We note that mouse and rat are not closely related. The bacterium is also evolutionarily located between
the mammals and the subtree containing the worm and fruit fly.

Figure 18 he CCCGGG-spectrum set. This tree is inaccurate because it indicates that the rabbit and the fruit fly are closely related.
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sequence recognition softwares such as BLAST [31] or
BLAT [32]. While these methods provide powerful
sequence analysis, they require expansive hardware
requirements for use (i.e., memory, storage and fast
computational power). Our method is a statistical
approach, programmed in Python to run on basic hard-
ware and does not require a database for operation.
Our goals for the future are to test this base composition

framework using synthetic and biological data to further
analyze its performance and levels of sensitivity. This work
will be conducted using MetaSim, to generate contigs of a
10 X coverage for two or more genomes which we shall
apply to our binning method. This study will help to give
us a more realistic interpretation of its power for discrimi-
nating contigs and how best to use it as a pre-processing
step to sequence assembly.
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