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Abstract

Background: MicroRNAs are a class of short regulatory RNAs that act as post-transcriptional fine-tune regulators of
a large host of genes that play key roles in many cellular processes and signaling pathways. A useful step for
understanding their functional role is characterizing their influence on the protein context of the targets. Using
miRNA context-specific influence as a functional signature is promising to identify functional associations between
miRNAs and other gene signatures, and thus advance our understanding of miRNA mode of action.

Results: In the current study we utilized the power of regularized regression models to construct functional associations
between gene signatures. Genes that are influenced by miRNAs directly(computational miRNA target prediction) or
indirectly (protein partners of direct targets) are defined as functional miRNA gene signature. The combined direct and
indirect miRNA influence is defined as context-specific effects of miRNAs, and is used to identify regulatory effects of
miRNAs on curated gene signatures. Elastic-net regression was used to build functional associations between context-
specific effect of miRNAs and other gene signatures (disease, pathway signatures) by identifying miRNAs whose targets
are enriched in gene lists. As a proof of concept, elastic-net regression was applied on lists of genes downregulated
upon pre-miRNA transfection, and successfully identified the treated miRNA. This model was then extended to construct
functional relationships between miRNAs and disease and pathway gene lists. Integrating context-specific effects of
miRNAs on a protein network reveals more significant miRNA enrichment in prostate gene signatures compared to
miRNA direct targets. The model identified novel list of miRNAs that are associated with prostate clinical variables.

Conclusions: Elastic-net regression is used as a model to construct functional associations between miRNA
signatures and other gene signatures. Defining miRNA context-specific functional gene signature by integrating the
downstream effect of miRNAs demonstrates better performance compared to the miRNA signature alone (direct
targets). miRNA functional signatures can greatly facilitate miRNA research to uncover new functional associations
between miRNAs and diseases, drugs or pathways.

Background
MicroRNA(miRNA)-mediated regulation constitutes a
new dimension of gene expression regulation research
[1-3]. MiRNA are short (18-24) nt non-coding RNA class
that has played a critical regulatory role to fine-tune gene
expression in wide range of biological processes. Since

their discovery [4], they emerged as a significant regulatory
layer of gene regulation at the post-transcriptional level.
MiRNAs bind to the 3’UTR of genes and cause destabili-
zation or translational repression of target mRNAs in a
mechanism that is not fully understood. More than 50% of
the human protein-coding genes are regulated by miRNAs
[5]; each miRNA targets hundreds of genes which makes
them critical molecules that deserve considerable amount
of research. Several biological processes ranging from cell
differentiation to metabolism are regulated by miRNA [3].
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Additionally, a growing list of diseases [6,7], like cancer,
biological pathways, molecular concepts, are associated
with miRNAs. For example, miRNA-1, miRNA-16,
miRNA-143, and many others are very important miRNAs
that have significant impact on prostate cancer develop-
ment [8-10].
The current major challenge in miRNA research is char-

acterizing miRNA mode of action and determining the
pathways and diseases they are involved in. Determining
the role of individual miRNAs in cellular regulatory pro-
cesses is still a major challenge. The function of many
miRNAs remains unknown, and even for relatively well
studied miRNAs, only a handful of their targets have been
characterized [11,12]. Characterizing the functions of
miRNA targets reveals higher level of understanding of
the miRNA function. Thus one of the key steps in geno-
mic studies is to infer miRNAs that target the genes of
interest. Identifying and characterizing reference biological
concepts, for example miRNA targets, overrepresented in
a list of genes that results from biological experiments is a
powerful methodology to characterize the function hidden
in the gene list. This area of research which is also known
as gene enrichment analysis has gained a considerable
body of research. Several tools, such as DAVID [13] and
GeneMANIA [14] that employ the available gene annota-
tions have been developed to identify the enriched gene
annotations (GO, pathways) in a list of genes of particular
interest, Geneset2miRNA [15] and Expression2kinases
[16] are used to discover enriched miRNAs in gene sets. A
comprehensive comparison among 68 enrichment tools
[17] identified three major trends in enrichment analysis;
namely, Gene Set Enrichment Analysis(GSEA) [18], Over
Representation Analysis(ORA) and Modular Enrichment
Analysis(MEA). Most of the 68 tools belong to the second
group as they use statistical tests like fisher and hypergeo-
metric tests to assess the overrepresentation of particular
term. Though these tools are well established as standard
tools for enrichment analysis, we find these tools lack
modular concept of gene lists. Integrating the interactions
between gene sets to assess the overrepresentation is a
promising direction to follow to gain system level under-
standing of gene enrichment analysis.
Since the cell is a complex system of interacting genes,

proteins, miRNA and other macromolecules, incorporating
biological networks is valuable modeling structure to define
network-based functional similarity measures between
genes signatures Constructing functional associations
between gene sets (signatures) helps to reveal the underly-
ing biological mechanism linking the gene sets. Building
functional associations between diseases and pathways
uncovers the dysregulated pathways in complex diseases
like cancer. Taking this into consideration, inferring the
miRNA function from the downstream or upstream bio-
logical context is effective and has revealed novel miRNA

functions. Integrating the protein context of miRNA
targets is a promising dimension for miRNA function pre-
diction and for linking miRNAs to pathways and diseases.
Protein-network based functional enrichment analysis is a
new trend in enrichment analysis. Several studies started
incorporating the network topology of the gene sets
[19-22]. One way to incorporate network in enrichment is
to extend the gene sets by incorporating the protein neigh-
bors of the genes sets and then apply standard enrichment
tests like Fisher’s and hypergeometric tests [19]. Another
track is to assess the connectedness of the overlapped
genes; more interconnected gene sets indicate more func-
tional association [21].
In the past few years, the functional association

between miRNAs and protein interactions gained a sig-
nificant body of attention. Here we use the term context-
specific miRNA effect to represent the effect of miRNA
the partners of the miRNA targets in the protein net-
work. Though miRNAs target a wide range of genes that
play role in most of the biological processes, analyzing
the characteristics of the targets in protein networks
showed that there is a significant correlation between the
protein degree in protein networks and the number of
targeting miRNAs, highly connected proteins are con-
trolled by larger number of miRNAs [23]. This functional
property between topological features of biological net-
works has been employed to reduce noise in discovering
miRNA-mRNA interactions [24]. Single miRNAs and
miRNA custers showed to target multiple protein mem-
bers of single protein complexes [25]. For example,
SMAD3-SMAD4-FOXO3 complex is enriched with miR-
1284 targets, and MAD1-SIN3A-HDAC2 complex is
enriched with targets of the miR-510-514 and miR-1912-
1264 clusters. Other studies demonstrated that the tar-
gets of miRNAs are modular; the targets of particular
miRNA are interacting in protein networks, thus consid-
ering the miRNA context-specific effect provides higher
level of understanding of miRNA function when com-
pared to employing only direct targets of miRNAs [23].
Previously [26], we showed that using the indirect targets
of miRNA to represent the miRNA gene signature is
effective to reveal the treating miRNAs from a set of
downregulated genes upon pre-miRNA treatment. The
previous study showed a proof of concept that integrating
protein networks to form context-specific miRNA effect
is informative to identify miRNA mode of action. Our
previous analysis suggests that integrating functional pro-
tein networks to functionally characterize miRNA func-
tion helps researchers to gain system-level understanding
of the gene list of interest. To the best of our knowledge,
no protein network-based method has been developed
particularly for miRNA enrichment analysis.
The goal of this work is use interactions among pro-

tein when assessing the overrepresentation of miRNA
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targets in a set of genes. This would lead us to build
functional associations between gene sets, for example,
miRNA targets and disease signatures. For this purpose
we used regularized regression model to predict influ-
ence coefficient of miRNAs on disease signatures. The
resulted coefficients are used to reveal miRNA enrich-
ment in the gene set. This approach is applied to
uncover functional associations between miRNAs, dis-
ease and pathways. This work will advance our under-
standing of the mode of action of miRNAs and their
influence on the context of the targets. This model can
be applied to associate gene signatures in general. In
this work we only focused on miRNA gene signatures.

Materials and methods
Biological interactions
For the course of this study we used two sets of
miRNA-target interactions. The firs is computationally
predicted miRNA targets downloaded from TargetScan
[27] [PredNet], and the second is experimentally vali-
dated miRNAs and their targets that were extracted
from two public databases mirTarbase [28] and miRe-
cord [29]. The union of mirTarbase and miRecord was
used as a source of experimentally validated miRNA-tar-
get interactions [ExpNet]. For protein networks, we used
undirected functional protein interactions from Reac-
tome database [30]. The protein networks are used in
conjugation with the miRNA target networks to find the
partners of each miRNA targets.

Defining context-specific effect of miRNA signature
In this section we first explain how the context-specific
effect of miRNAs is constructed from miRNA-targets
networks and protein networks. miRNA(miR) binds to a
mRNA(m) directly by binding to the miRNA response
element (MRE) in the 3’UTR or indirectly by influencing
a PPIN neighbor of the direct targets. The direct
miRNA-target interactions are used from PredNet, and
the indirect interactions, which we will refer to in this
work as miRNA context-specific effect, is built by inte-
grating miRNA-targets with PPIN. The constructed
miRNA context-specific effect (miRNet) was constructed
as described in our previous work [26].

Model performance assessment
In this work we hypothesize that given a gene signature
(list of gene of particular interest), we can predict the
enriched miRNAs in the gene signature using the pro-
posed miRNet miRNA-target interactions. First, we used
seven gene sets that were retrieved from public data sets
with known enriched miRNA. This list of genes are genes
that are downregulated upon miRNA transfection to HeLa
and LNCaP cell and are used to demonstrate a proof-of-
concept of the proposed model. The lists are described in

Table 1. A prostate cancer signature is identified from
MSKCC Prostate cancer cohort(GSE21032); 480 genes
were identified as down regulated in prostate cancer com-
pared to normal samples, and 51 as upregulated using
Significant Analysis of Microarays(SAM) [31].

Predicting miRNA influence coefficient using regularized
regression to build functional association
In this section we explain how we used regularized regres-
sion model to find miRNAs enriched in gene lists. The
model takes two inputs; miRNA-target(gene) interactions
and a gene list. We used PredNet and miRNet separately
to determine the initial variables (miRNAs) in the regres-
sion model; each variable represents the influence of a
miRNA on all targets in miRNA-target interactions. We
used the genes downregulated upon miRNA treatment as
response variable (GeneSignature) in the regression model.
The regularized regression model predicts non-redundant
miRNAs that influence the genes in the gene list. miRNAs
with high coefficient indicates that the miRNA highly
affect the genes in the gene list directly or indirectly
depending on the miRNA-target interaction used. To
summarize the regularized regression model, let us assume
that GeneSignature represents the list of genes of interest,
miRNetj is the targets of miRNA (j), and bj is the predicted
influence coefficient miRNA (j) on the gene signature. The
predicted bj values are then used to assess the association
between miRNAs and gene signatures.
The regularized regression model is described as pre-

viously discussed [26]:

GeneSignature =
miR∑

j=1

miRNetj ∗ βj + λPα(β) (1)

where

Pα(β) =
miR∑

j=2

[
1
2
(1 − α)β2

j + α|βj|] (2)

is the elastic-net penalty. a is a value that ranges from
0 to 1 that penalize correlated variables. When a =1,
the model is called Lasso regression, and when a =0,
the model is called ridge regression. Optimizing a is cri-
tical step to obtain good solution with non-spars regres-
sion coefficient values(b). Another factor that is
important to optimize is l that is critical to shape the
sparsity of the solution. Depending on the purpose of
the experiment, if there is a large number of variables
that need to be reduced (forcing b to 0), then l should
be set to a high value.
One of the contributions of this study is to assess the

benefit of using the context-specific effect of miRNA for
better miRNA functional characterization. We used miR-
Net that includes the context-specific effect of miRNAs
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as the miRNA signature to predict miRNAs enriched in
gene signatures from disease and pathway related genes.
We can rewrite the model as:

GeneSignature =
miR∑

j=1

βj ∗ miRNetj + λPα(β) (3)

where miRNetj is the targets of miRNAj in the con-
text-specific miRNA-target interaction. In this model, b
is the predicted influence coefficient of miRNAs that
represent the enrichment of each miRNA targets in the
gene signature. Figure 1 gives an overall description of
the major components of the model.

Context-specific miRNA effect to find functional
associations between miRNAs, diseases and pathways
To further validate the applicability of the proposed
method to characterize the mode of action of miRNAs,
we used curated genes sets from disease and pathway sig-
natures. To build functional association between miR-
NAs and diseases, and miRNAs and pathways, we
extracted disease gene signatures from microarray data
related 13 cancers from Gene Expression Omnibus. 450
expression profiles including control and disease samples
were extracted to define a gene signature for each dis-
ease. All microarray experiments were conducted using
GPL96 platform to avoid possible platform bias. In addi-
tion to avoid any possible bias that might result from the
normalization algorithms, we manually extracted raw

data and normalized them using the RMA normalization
algorithm [32] implemented in bioconductor. We used
Significant Analysis of Microarray (SAM)in order to
obtain gene signatures for each disease. For each disease,
we only considered the top 200 differentially expressed
genes (top upregulated 100 and top downregulated 100)
in each experiment. In total, 1942 genes were associated
with the 13 cancers. The predicted disease-miRNA inter-
actions of the regression model were validated against a
gold standard disease miRNA associations manually
extracted from miR2disease [33] and HMDD [34] data-
bases. The gold standard network contains 743 interac-
tions between the 13 cancers and 305 miRNAs. Area
Under Curve (AUC) is used to assess the performance of
the proposed model and compare it with the other
results. On the other hand, to build functional associa-
tions between miRNAs and pathways, we used curated
pathways from the Molecular Signatures Database
(MSigDB) gene sets [18] that contains 1452 canonical
pathway gene sets. We removed all pathways that have
less than 10 genes and we ended up with 788 pathways.
The goal is to find how the miRNA context-specific
effect can explain the pathway or disease genes.

Results
Parameter optimization
In the proposed model, two parameters(l and a) that
determines sparsity of the solution need to be optimized.
As both parameters increase, the number of nonzero

Table 1 Summary of gene lists used in this study to validate the performance of the proposed method in comparison
with existing algorithms

Experiment description Enriched
miRNAs

Number of reported genes Reference

HeLa cells transfected with miR-1 miR-1 96 repressed genes [35]

HeLa cells transfected with miR-124 miR-124 174 repressed genes [35]

HeLa cells transfected with miR-373 miR-373 65 repressed genes [35]

LNCaP cells treatedwith pre-miR-1 miR-1 88 repressed genes and 80
upregulated genes

[36]

LNCaP cells treatedwith pre-miR-206 miR-206 83 repressed genes and 62
upregulated genes

[36]

LNCaP cells treatedwith pre-miR-27b miR-27b 51 repressed genes and 157
upregulated genes

[36]

LNCaP cells transfected with pre-miR-32 miR-32 67 repressed genes [37]

LNCaP cells transfected with pre-miR-148a miR-148a 79 repressed genes [37]

Genes predicted to be targets of 11
prostate miRNAs extracted from PRedNet

miR(1, 204,
205, 143,
145,
221, 222,
27b, 133b,
31,
let-7

1854 [5,12,38]

Altered genes in prostate cancer using
Taylor data

480 downregulated in prostate and 51 upregulated in prostate 269
downregulated genes in PCa samples that have BCR recurrence

[39]

Genes associated with BCR event in
prostate cancer

[39]
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influence coefficients (b) decreases. In our previous work
[26], we described how to optimize both a and l. In
brief, we selected a=0.6 as l-min values started to get
steady as shown in Figure 2. For the selected optimal a
value, 100 values of l were evaluated to select the opti-
mal one (Figure 3) that gives the minimum mean square
error. To find regression coefficients, glmnet implemen-
tation in MATLAB from http://www-stat.stanford.edu/
~tibs/glmnet-matlab was used.

Regularized regression model identifies the correct
miRNA cell treatment
The first line of validation of the effectiveness of the pro-
posed model is to apply it on gene sets of known refer-
ence. In this work we assessed the performance of the
proposed regression method using several gene lists

reported by recently published studies that used expres-
sion profiling analysis to discover genes that were down-
regulated upon miRNA treatment. Full summary of the
gene lists used in this study is shown in Table 1. We
compiled the list we used in our previous work in addi-
tion to a new list of signatures.
To identify the influence coefficient of each miRNA on

the gene list of interest (repressed genes after miRNA
treatment in this case), the model takes the miRNet and
the gene signatures. The model output is the coefficient
value of each miRNA in miRNet. To compare our protein
network-based regularized regression model with other
ORA based methods, we assessed the performance of each
method based on the rank of the miRNA under treatment
as specified in Table 1. For example, using the repressed
genes after treating LNCaP cells with pre-miRNA-1, all

Figure 1 An overview of constructing influential miRNA-GeneSignature interactions. A. miRNA gene signature is identified by transfecting
cells with pre-miRNA and then identify gene down-regulated upon the transfection. B. Using the context-specific effects of miRNAs (genes
affected by miRNAs directly and indirectly) to build functional associations between miRNAs and GeneSignatures via elastic-net regression
model. This step sheds light on the functional associations between miRNA and pathways, miRNAs and diseases. It is also used as a miRNA
enrichment method to identify miRNAs whose targets are enriched in gene lists. Using miRNA-gene networks and disease or pathway gene
networks, the model predicts functional interactions between diseases and miRNAs or pathways and miRNAs.
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the methods ranked miRNA-1 as the top miRNA. Table 2
summarizes the comparison among the four methods
which showed to rank the overexpressed miRNA first
(part of this results are taken from our previous work
[26]).
The results from this section demonstrate the applicabil-

ity and effectiveness of the regression models that uses
context-specific effect of miRNAs. Our protein-network
based regression model outperformed the other ORA
based methods (Expression2Kinase and GeneSet2miRNA),
and regression model that does not consider protein
networks.

Proposed regression model is robust for gene lists with
multiple miRNAs
We next assessed the proposed model on gene sets that
are targets of multiple miRNAs. For this test we extracted
the targets of 11 prostate cancer miRNAs from PredNet
performance of the model on To further apply the pro-
posed model on gene sets that are mixed of multiple

miRNA targets, we identified a set of prostate miRNAs
that showed to play a role in prostate cancer (Table 3).
Only regression models were able to predict the 11 miR-
NAs as the top 11 retrieved miRNAs (Table 3). This table
is adopted from our previous work [26].

New insights into miRNA systems biology in prostate
cancer
The previous analysis conducted in the previous sections
provides evidence to the applicability of our model to
identify functional associations between miRNAs and gene
lists. To take this analysis one step further, we used the
480 downregulated and 51 upregulated (Table 1) genes in
prostate cancer to identify miRNAs that gives us more
insights on the dysregulated mechanisms in prostate
cancer. The proposed model identified 14 miRNAs, 12 of
which have expression data in Taylor data(Figure 4). The
expression of the 12 miRNAs enriched in the downregu-
lated gene in prostate cancer was extracted from the
Taylor data to assess the diagnostic significance in prostate

Figure 2 Optimizing alpha value with respect to min-lambda. 20 a values, ranging from 0 to 1, were initially selected to optimize a. For
each a value, 100 values of l were evaluated. 10-fold cross validation as conducted to select l with minimum meas square error. We selected
a=0.6 as l-min values started to get steady.
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cancer. SVM was able to perform better using the 12 miR-
NAs predicted by our model (90%) compared to miRNAs
from Expression2Kinase(85%). The expression of the 12
miRNAs is associated with cancer recurrence and other
clinical variables(Figure 4). Previous experimental work
have already shown that miR-146b and miR-206 are pros-
tate cancer related miRNAs and targeting ROCK1 [40]
and HDAC4 [36], respectively. Using context-specific

miRNA effect regression model, miRNA-16-1 was identi-
fied as the most significant miRNA in upregulated genes,
in addition to three less significant miRNAs (miR-222,
miR-338 and miR-34c). Using Expression2Kinase tool,
miR-16-1 did not show significant enrichment. This sup-
ports our notion that integrating protein networks to
assess overrepresentation of miRNAs in gene lists reveals
novel insights to diseases (prostate cancer in this work).

Figure 3 Mean Square Error vs lambda to optimize lambda value. Lambda value (l) is optimized using 10-fold cross validation. We selected
100 values of l and used those that minimize the mean square error when a=0.6.

Table 2 Rank of enriched miRNAs in gene lists downregulated and differentially expressed genes after miRNA
treatment

PPI-based regression model Regression model Expression2Kinase GeneSet2miRNA

Downregulated gene set in LNCaP cells

pre-miRNA-1 1st 1st 1st 1st

pre-miRNA-206 1st 1st 1st 2nd

pre-miRNA-27b 1st 2nd 1st 1st

pre-miRNA-32 1st 3nd 5st 3st

pre-miRNA-148a 1st 1nd 3st 1st

Differentially expressed gene set in LNCaP

pre-miRNA-1 1st 2nd 1st 2nd

pre-miRNA-206 1st 1st 1st 2nd

pre-miRNA-27b 2nd 3rd 10th 15th

Downregulated gene set in HeLa cells

miRNA-1 1st 1st 1st 2nd

miRNA-124 1st 1st 2nd 2nd

miRNA-373 1st 1st 2nd 2nd
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Additional analysis was conducted using the miRNAs that
were enriched in 269 BCR related genes. Five miRNAs
(miR-130a, miR-205, miR-133b,miR-338, miR-429) were
predicted to be enriched in the BCR related genes. Using
survival (BCR events, time to BCR event) data provided
in [39], we build KM curves to assess the biological signal
hidden in the five miRNAs. We used hierarchical clustering

to group the samples based on the expression of the five
miRNAs, and then use KM to assess the significance in
the survival data associated with each group. The five miR-
NAs demonstrated a significant separation between the
two groups(Figure 5). This results further supports that
protein-based enrichment analysis is a promising direction
of enrichment analysis.

Table 3 Comparative analysis of four methods to assess their performance to identify the 11 prostate related miRNAs

PPI-based regression model regression model Expression2Kinase GeneSet2miRNA

miR-1 ✓ ✓ ✓ ✓

miR-204 ✓ ✓ ✓ ✓

miR-143 ✓ ✓ ✓ ✓

miR-145 ✓ ✓ ✓ ✓

miR-205 ✓ ✓ ✓ ✓

miR-221 ✓ ✓ ✓

miR-31 ✓ ✓

miR-27b ✓ ✓ ✓

Let-7a ✓

miR-133b ✓ ✓

miR-222 ✓ ✓

✓ indicates that the miRNA is identified in the top 11 enriched miRNAs

Figure 4 Heatmap of 12 miRNAs predicted using our model to be enriched in prostate cancer genes. Using the expression of the 12
miRNAs predicted by our model to be enriched in downregulated genes in prostate cancer, the miRNAs are associated with multiple clinical
outcome. This supports our model that it predicts prostate related miRNAs and they can segregate prostate cancer into distinct subtypes.
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Reconstructing miRNA-disease and miRNA-pathways
functional association using miRNA context-specific effect
After demonstrating that elastic-net regression successfully
identified miRNAs from downregulated gene lists post to
miRNA treatment, we applied the regression modeling to
identify miRNAs associated with diseases and pathways
using miRNA context-specific effect and disease and path-
way signatures. We further analyzed the resulting miRNA-
disease and miRNA-pathways functional associations from
the regression model.
We first constructed miRNA context-specific effect and

gene-disease network to be used as predicted and
response variables, respectively, as input to the regression
model. miRNA context-specific effect was constructed by
integrating results from TargetScan and protein interac-
tions. This study only focused on genes that are targeted
by a miRNA and interact with proteins at the protein
level. We obtained 3235 genes that are targeted by 305
miRNAs. For the disease gene interactions, we obtained
1942 genes as disease signatures across 13 cancers. Our
model generated 741 interactions between the 13 cancers
and 305 miRNAs. 364 interactions were common with
the gold standard, 157 were in the gold standard and
missed by our method, and 220 were identified by the

model and not in the gold standard. 37 new interactions
were predicted between miRNAs and prostate cancer.
Further diagnostic and prognostic characterization of the
37 prostate miRNAs were conducted. We used the 37
miRNAs to evaluate their association with prostate can-
cer. We extracted the miRNA expression from two pros-
tate cancer data sets. The first is Taylor data [39]
(GSE21032) that contains the expression of the miRNAs
across 139 samples (98 primary, 12 metastatic and 29
normal). We only obtained 16 miRNAs with expression
data in the Taylor data. We first tested the ability of
these miRNAs to predict tumor samples. We used sup-
port vector machine (SVM) from the LIBSVM library
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) implemented
in MATLAB to assess the performance. 10-fold cross
validation was used to avoid the overfitting problem. The
results show that the newly predicted 16 prostate miR-
NAs are diagnostically as good as the gold standard pros-
tate miRNAs. The predicted prostate miRNAs were able
to classify cancer samples with 90% accuracy in Taylor
data. We further conducted survival analysis to assess if
the 16 miRNAs are associated with cancer recurrence.
The results showed that both the 57 miRNAs in common
with the gold standard and the 16 miRNAs predicted are

Figure 5 Kaplan Meier curves of two groups of patients based on BCR related miRNAs. Using the expression of the 5 miRNAs enriched in
BCR related genes, hierarchical clustering was applied to identify two groups and then KM was used to associate them with survival analysis.
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able to significantly separate high risk from low risk
patients (p = 0.00025 and 0.007, respectively).
To construct miRNA-pathway functional association,

we limited our analysis to the highly significant associa-
tions (regression coefficient greater than 0.5) (Figure 6).
77 interactions between 13 miRNAs and 60 pathways.
Most of the miRNAs are linked to more than one path-
way. miRNA-302f is highly involved in several pathways
including Caspase, AR, ARF6 and development path-
ways. miRNA-1 and 16 are also highly associated with
several pathways. We compared this network with miR-
Path [41], which is a tool that identifies molecular path-
ways altered by miRNAs. miRPath shows that miR-1b is
associated with pentose phosphate and glutathione
metabolism pathways, unlike our method that shows it
is associated with transcriptional pathways (ATF2,
ARF6, DNA-PK). miRPath is unable to associate miR-
16-1 to any pathway, however, our method associated

miR-16 to several pathways (HDAC, Leukemia, VEGF).
This results provides new potential pathways and new
miRNA mode of actions that may help to reveal higher
level of understanding of miRNA function.

Discussion
The last decade witnessed a revolution and dramatic
changes in high-throughput technologies application in
several areas in functional genomics, and are becoming a
standard routine in many experimental laboratories.
Most these experiments deliver a set of genes relevant to
the scientific question under investigation. For example,
profiling the gene expression of prostate tumors and nor-
mal tissues results in a set of differentially expressed
genes that could shed light on the dysregulated pathways
in prostate cancer. The first line analysis of gene sets is to
reveal the underlying biological knowledge of gene sets.
This is accomplished by inferring overrepresentation of

Figure 6 Functional associations between miRNAs and biological pathways. Using the context-specific effects of miRNAs and the
GeneSignature of pathways as input to the regression model, functional associations between miRNAs and are constructed. In this figure only
interactions of regression coefficient greater than 0.5 are selected.
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curated gene signatures in the gene set of interest. One of
the questions asked is what are the regulatory miRNAs
that explain a particular gene set. To answer this ques-
tion, several tools employing gene functional annotations
have been developed. These tools assist biologists to
characterize the functional role of miRNAs. Most of the
developed methods employ statistical overrepresentation
analysis like fisher and hypergeometric test. Unfortu-
nately, these methods are static as they do not consider
the systematic effect of miRNAs on the protein networks.
In this work, we proposed protein network-based regu-
larized regression model to predict influence coefficient
of miRNAs on gene list, and thus infer enriched miRNAs
in gene sets. High influence here means that the miRNAs
are potential regulators for the gene list. Our proposed
model is based on miRNA context-specific effect, a
miRNA-gene interaction network that considers the
indirect association between miRNAs and the targets, to
build functional associations between miRNAs and gene
signatures.
The first question we asked is that, is context-specific

miRNA effect based regression models effective to infer
enriched reference molecular concepts(GO terms, disease,
pathway, miRNA). We chose to answer this question
miRNA gene sets which are list of genes downregulated
upon miRNA treatment. Thus we collected several gene
sets that were downregulated upon pre-miRNA transfec-
tion. Accurate and effective models should infer transfect-
ing miRNAs from the downregulated gene set. The first
application of the miRNA context-specific effect is to use
it as input to the elastic regression model to predict miR-
NAs whose targets are enriched in gene lists. Since we
know the miRNA that the models should return, we used
the rank of the miRNA as a performance assessment mea-
sure. Models that rank the correct treatment miRNA are
considered as effective and accurate. Based on the results
reported in Table 2, the proposed regression model
demonstrated a proof-of-concept. Further analyzing the
results in Table 2, the methods showed to agree on some
cases(miR-1,miR-206) and disagree on others(miR-27b).
Most methods prefer gene sets of large size to have good
performance.
The proposed model showed to be robust against

redundant gene sets. Analyzing the results of the four
models on miR-124 and miR-373 revealed that Expres-
sion2Kinase and Geneset2miRNA are sensitive to
miRNA families. For example, both tools ranked miR-
124 and miR-373 second after miR-506 and miR-520
respectively. Looking deeper into the relationships
between these miRNAs, we found that the miRNAs pre-
dicted second are from the same family of the treating
miRNA. For example, miR-1 and miR-206, miR-124 and
miR-506, and miR-373 and miR-520 are from the same
family and target the same targets.

This is because the elastic net regularize against corre-
lated variables and thus reduce redundant sets. These
results demonstrated the effectiveness of the context-
specific miRNA effect based elnastic-net regression
model as enrichment analysis methodology.
The next step was to apply the model on gene sets

with unknown regulatory miRNAs. The objective to
identify putative regulatory miRNAs that explains the
underlying regulatory mechanism of the gene set. For
this test, we used prostate cancer signatures as both
miRNA and target expression data are available, in addi-
tion to survival and clinical data. Since downregulated
genes in prostate cancer can be noisy as they may har-
bour indirect targets of miRNAs and enriched with mul-
tiple miRNAs as there is big body of evidence showing
that several miRNAs are dysregulated in prostate cancer.
14 miRNAs were enriched in the genes downregulated
in prostate cancer and miR-16-1 was identified to be
enriched in the upregulated genes in prostate cancer.
The 14 miRNAs are significantly associated with clinical
variables of prostate cancer which supports their role in
prostate cancer development. Earlier experimental stu-
dies [5] showed that miR-16-1 is in clinical trails as a
promising prognostic biomarker. Further analysis
revealed that miR-16-1 targets BCL2, CCND1, and
WNT3A genes [40] which are associated with increased
survival and invasion rates. Additional studies [5] sup-
port significant role of miR-16-1 in slowing prostate
cancer progression, suggesting that using context-speci-
fic effect of miRNAs could reveals very significant con-
tribution to the miRNA cancer research. Unfortunately,
the expression of miR-16-1 was not available in the
miRNA expression data we used and thus we were
unable to further confirm its association with clinical
outcome.
After showing that context-specific miRNA effect is

informative to be used to associate miRNAs with gene
signatures, we used it to build functional association
between miRNAs and other curated gene sets. In this
study we used diseases and pathways curated gene set
as response variable in our model with the aim to iden-
tify the enriched miRNAs in each gene set. Using gene
sets of multiple diseases and pathways, we expected a
functional association between miRNAs and the other
curated sets. The resulted miRNA-disease associations
reveal new associations between miRNAs and diseases,
especially prostate cancer. 16 new prostate cancer miR-
NAs are diganostic and prognostic biomarkers that can
be further investigated. The results also uncovered new
associations between miRNAs and pathways. Further
investigations of the miRNA pathways associations help
to explore and validate the power of the model predic-
tions. Our findings here suggest that using protein-net-
work based regularized regression is a new direction of
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miRNA enrichment analysis that could give us more
functional insights into dysregulated pathways or dis-
eases. In addition, the results indicate that miRNA con-
text-specific effect allows defining new mode of action
for miRNAs. Using these findings, functional networks
associating miRNA with diseases or pathways could be
constructed.

Conclusion
Uncovering miRNA mode of action is a key step to reveal
functional associations between miRNAs, diseases and
pathways. A crucial task in functional genomics is to
interpret gene lists based on curated gene annotations. In
this study we used regularized regression model that is
trained on novel miRNA-gene interactions network to
predict associations between miRNAs and gene sets (dis-
eases, pathways). The model succeeded in the proof-of-
concept experiments and showed promise to be applied
to other genes lists that harbour biological function.
Using the context-specific effect of miRNAs is more
effective than just using the direct miRNA targets to infer
functional miRNAs from gene lists. The results gained
from this study provide higher level of understanding of
miRNA function and how it acts as a key regulator mole-
cule in the cellular system. This concludes that the pro-
posed model gives more insight into the functional role
of miRNAs in disease development. Although limitations
exist in the current work, the uncovered interactions are
important for understanding diseases and patterns
underlying miRNA-mediated regulations.
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